Mixed Stock Analysis of Chinook Salmon Harvested in Southeast Alaska Commercial Troll and Sport Fisheries, 2020–2022

by

Kyle R. Shedd

David L. Leonard

and

Jeff V. Nichols

November 2024

Alaska Department of Fish and Game

Divisions of Sport Fish and Commercial Fisheries

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figures or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
gram	g	all commonly accepted		abbreviations	
hectare	ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	H_A
kilogram	kg		AM, PM, etc.	base of natural logarithm	e
kilometer	km	all commonly accepted		catch per unit effort	CPUE
liter	L	professional titles	e.g., Dr., Ph.D.,	coefficient of variation	CV
meter	m		R.N., etc.	common test statistics	(F, t, χ^2, etc)
milliliter	mL	at	@	confidence interval	CI
millimeter	mm	compass directions:		correlation coefficient	
		east	E	(multiple)	R
Weights and measures (English)		north	N	correlation coefficient	
cubic feet per second	ft ³ /s	south	S	(simple)	r
foot	ft	west	W	covariance	cov
gallon	gal	copyright	©	degree (angular)	0
inch	in	corporate suffixes:		degrees of freedom	df
mile	mi	Company	Co.	expected value	E
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	oz	Incorporated	Inc.	greater than or equal to	≥
pound	lb	Limited	Ltd.	harvest per unit effort	HPUE
quart	qt	District of Columbia	D.C.	less than	<
yard	yd	et alii (and others)	et al.	less than or equal to	≤
		et cetera (and so forth)	etc.	logarithm (natural)	ln
Time and temperature		exempli gratia		logarithm (base 10)	log
day	d	(for example)	e.g.	logarithm (specify base)	log _{2,} etc.
degrees Celsius	°C	Federal Information		minute (angular)	,
degrees Fahrenheit	°F	Code	FIC	not significant	NS
degrees kelvin	K	id est (that is)	i.e.	null hypothesis	H_{O}
hour	h	latitude or longitude	lat or long	percent	%
minute	min	monetary symbols		probability	P
second	S	(U.S.)	\$, ¢	probability of a type I error	
		months (tables and		(rejection of the null	
Physics and chemistry		figures): first three	, D	hypothesis when true)	α
all atomic symbols		letters	Jan,,Dec	probability of a type II error	
alternating current	AC	registered trademark	® TM	(acceptance of the null	
ampere	A	trademark	ı M	hypothesis when false)	β
calorie	cal	United States	T. C	second (angular)	"
direct current	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of	TICA	standard error	SE
h ous on orrion	hp	America (noun)	USA United States	variance	
horsepower	•	TICC	Limited States	population	Var
hydrogen ion activity (negative log of)	pН	U.S.C.	Code	sample	var
hydrogen ion activity (negative log of) parts per million	•	U.S. state	Code use two-letter	1 1	
hydrogen ion activity (negative log of)	pН		Code use two-letter abbreviations	1 1	
hydrogen ion activity (negative log of) parts per million	pH ppm ppt, %		Code use two-letter	1 1	
hydrogen ion activity (negative log of) parts per million	pH ppm ppt,		Code use two-letter abbreviations	1 1	

FISHERY DATA SERIES NO. 24-20

MIXED STOCK ANALYSIS OF CHINOOK SALMON HARVESTED IN SOUTHEAST ALASKA COMMERCIAL TROLL AND SPORT FISHERIES, 2020–2022

by

Kyle R. Shedd Alaska Department of Fish and Game, Division of Commercial Fisheries, Anchorage

David L. Leonard Alaska Department of Fish and Game, Division of Commercial Fisheries, Juneau

and

Jeff V. Nichols Alaska Department of Fish and Game, Division of Sport Fish, Douglas

Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1565

November 2024

Funding sources: For commercial fishery samples are Alaska General Fund Salmon Stock ID FM-192, U.S. Section PSC Coded-Wire Tag Improvement Program awards NA18NMF4380067, NA19NMF4380058, NA20NMF4380058, and NA21NMF4380443, and PST implementation fund awards NA18NMF4380213 and NA21NMF4380040. Funding sources for sport fishery samples are U.S. Letter of Agreement award NA18NMF4380181 and Federal Aid in Sport Fish Restoration Act under Project F-10-32-33, Job No. S-1-1. The funding source for genetic analysis was PSC Northern Endowment Fund Project NF-2020-I-14, PST Genetics Base Grant NA19NMF4380240 and NA21NMF4380036, and State of Alaska general funds.

ADF&G Fishery Data Series was established in 1987 for the publication of Division of Sport Fish technically oriented results for a single project or group of closely related projects, and in 2004 became a joint divisional series with the Division of Commercial Fisheries. Fishery Data Series reports are intended for fishery and other technical professionals and are available through the Alaska State Library and on the Internet: http://www.adfg.alaska.gov/sf/publications/. This publication has undergone editorial and peer review.

Product names used in this publication are included for completeness and do not constitute product endorsement. The Alaska Department of Fish and Game does not endorse or recommend any specific company or their products.

Kyle R. Shedd Alaska Department of Fish and Game, Division of Commercial Fisheries 333 Raspberry Road, Anchorage AK 99518, USA

David L. Leonard Alaska Department of Fish and Game, Division of Commercial Fisheries 1255 W. 8th Street, Juneau AK 99811-5526, USA

and

Jeff V. Nichols Alaska Department of Fish and Game, Division of Sport Fish 803 3rd Street, Douglas, AK 99824-5412, USA

This document should be cited as follows:

Shedd, K. R., D. L. Leonard, and J. V. Nichols. 2024. Mixed stock analysis of Chinook salmon harvested in Southeast Alaska commercial troll and sport fisheries, 2020–2022. Alaska Department of Fish and Game, Fishery Data Series No. 24-20, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:

ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526 U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2517

TABLE OF CONTENTS

	Page
LIST OF TABLES	iii
LIST OF FIGURES	iii
LIST OF APPENDICES	v
ABSTRACT	1
INTRODUCTION	1
Chinook Salmon Fishery Management	1
Troll Fishery OverviewSport Fishery Overview	2
Summary of 2020 Season	3
Troll FisherySport Fishery	
Summary of 2021 Season	5
Troll Fishery	
Summary of 2022 Season	
Troll FisherySport Fishery	
Genetic MSA	9
OBJECTIVES	10
METHODS	11
Fishery Sampling	11
Troll FisherySport Fishery	
Mixed Stock Analysis	13
Laboratory AnalysisStatistical Analysis	14
Data Retrieval and Genotype Quality Assurance Troll Fishery Mixture Subsampling Sport Fishery Mixture Subsampling	14
BAYES Analysis	
RESULTS	16
Fishery Sampling	16
Troll Fishery	

TABLE OF CONTENTS (Continued)

	Page
Mixed Stock Analysis	18
Laboratory Analysis	18
2020	
Early Winter Troll Fishery	
Late Winter Troll Fishery	
Spring Troll Fishery	
Summer Troll Fishery, First Retention Period	
Summer Troll Fishery, Second Retention Period	
Ketchikan Area Sport Fishery	
Petersburg-Wrangell Area Sport Fishery	
Outside Area Sport Fishery	
2021	
Early Winter Troll Fishery	
Late Winter Troll Fishery	
Spring Troll Fishery	
Summer Troll Fishery, First Retention Period	
Summer Troll Fishery, Second Retention Period	23
Ketchikan Area Sport Fishery	
Petersburg-Wrangell Area Sport Fishery	
Northern Inside Area Sport Fishery	
Outside Area Sport Fishery	
2022	
Early Winter Troll Fishery	
Late Winter Troll Fishery	
Spring Troll Fishery	
Summer Troll Fishery, First Retention Period	
Ketchikan Area Sport Fishery	
Petersburg-Wrangell Area Sport Fishery	
Northern Inside Area Sport Fishery	
Outside Area Sport Fishery	
DISCUSSION	
Intra-Annual Variability	28
Temporal Variability	28
Spatial Variability	
Inter-Annual Trends	31
Applications to Pacific Salmon Treaty	32
CONCLUSIONS	33
ACKNOWLEDGEMENTS	35
REFERENCES CITED	36
TABLES AND FIGURES	39
APPENDIX A: BASELINE POPULATION	79
APPENDIX B: ESTIMATED CONTRIBUTION	91

LIST OF TABLES

Table	Page
1.	Relationship between populations and reporting groups for Chinook salmon used to report stock
	composition of Southeast Alaska troll and sport fishery harvests.
2.	Sampling goals and numbers of fish sampled from troll-caught Chinook salmon landings at processors
2	at ports in Southeast Alaska for mixed stock analysis, AY 2020
3.	Sampling goals and numbers of fish sampled from troll-caught Chinook salmon landings at processors
4	at ports in Southeast Alaska for mixed stock analysis, AY 2021
4.	Sampling goals and numbers of fish sampled from troll-caught Chinook salmon landings at processors
5	at ports in Southeast Alaska for mixed stock analysis, AY 2022
5.	Samples collected by quadrant for each seasonal Chinook salmon troll fishery in Southeast Alaska, 2020
6.	Samples collected by quadrant for each seasonal Chinook salmon troll fishery in Southeast Alaska,
0.	2021
7.	Samples collected by quadrant for each seasonal Chinook salmon troll fishery in Southeast Alaska,
/.	2022
8.	Sampling goals and numbers of fish sampled from sport fishery harvests of Chinook salmon at ports in
0.	Southeast Alaska for use in mixed stock analysis, AY 2020
9.	Sampling goals and numbers of fish sampled from sport fishery harvests of Chinook salmon at ports in
,.	Southeast Alaska for use in mixed stock analysis, AY 2021
10.	Sampling goals and numbers of fish sampled from sport fishery harvests of Chinook salmon at ports in
	Southeast Alaska for use in mixed stock analysis, AY 2022
11.	Selection criteria used to generate the Commercial Harvest Expansion Report on the ADF&G
	OceanAK Database
Ei annu	LIST OF FIGURES
Figure	
1.	Location of Southeast Alaska troll fishing quadrants and ports.
2. 3.	Location of primary sport fishing ports in Southeast Alaska
3.	Heat plot of mean contributions of driver stock reporting groups of Chinook salmon to the troll fishery harvest in Southeast Alaska for the northern quadrant and all quadrants by the seasonal fishery,
	AY 2020
4.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon
	to the regionwide and Northern Outside quadrant early winter troll fishery harvest in Southeast Alaska,
	AY 2020.
5.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon
	to the regionwide and Northern Outside quadrant late winter troll fishery harvest in Southeast Alaska,
	AY 202053
6.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon
	to the spring troll fishery harvest regionwide and in the Northern Outside, Southern Outside, and
7.	Southern Inside quadrants of Southeast Alaska, AY 2020.
	Southern Inside quadrants of Southeast Alaska, AY 2020
	Southern Inside quadrants of Southeast Alaska, AY 2020
8.	Southern Inside quadrants of Southeast Alaska, AY 2020
	Southern Inside quadrants of Southeast Alaska, AY 2020
	Southern Inside quadrants of Southeast Alaska, AY 2020
2	Southern Inside quadrants of Southeast Alaska, AY 2020
9.	Southern Inside quadrants of Southeast Alaska, AY 2020
	Southern Inside quadrants of Southeast Alaska, AY 2020
9. 10.	Southern Inside quadrants of Southeast Alaska, AY 2020
	Southern Inside quadrants of Southeast Alaska, AY 2020

LIST OF FIGURES (Continued)

Figure	Page
11.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the total season, early season, and late season Outside area sport fishery harvest in Southeast Alaska, AY 2020.
12.	Heat plot of mean contributions of driver stock reporting groups of Chinook salmon to the troll fishery harvest in Southeast Alaska for the northern quadrant and all quadrants by the seasonal fishery, AY 2021
13.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide and Northern Outside quadrant early winter troll fishery harvest in Southeast Alaska, AY 2021.
14.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide and Northern Outside quadrant late winter troll fishery harvest in Southeast Alaska, AY 2021.
15.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the spring troll fishery harvest regionwide and in the Northern Outside, Southern Outside, and Southern Inside quadrants of Southeast Alaska, AY 2021
	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide and Northern Outside quadrant first retention period of the summer troll fishery harvest in Southeast Alaska, AY 2021.
	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide and Northern Outside quadrant second retention period of the summer troll fishery harvest in Southeast Alaska, AY 2021.
18.	Heat plot of mean contributions of driver stock reporting groups of Chinook salmon to the sport fishery harvest in Southeast Alaska by area and time period, AY 2021
19.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the Ketchikan, Petersburg-Wrangell, and Northern Inside area sport fishery harvests in Southeast Alaska, AY 2021
20.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the total season, early season, and late season Outside area sport fishery harvest in Southeast Alaska, AY 2021.
21.	Heat plot of mean contributions of driver stock reporting groups of Chinook salmon to the troll fishery harvest in Southeast Alaska for the northern quadrant and all quadrants by the seasonal fishery, AY 2022
	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide and Northern Outside quadrant early winter troll fishery harvest in Southeast Alaska, AY 2022.
	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide and Northern Outside quadrant late winter troll fishery harvest in Southeast Alaska, AY 2022.
	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the spring troll fishery harvest regionwide and in the Northern Outside, Southern Outside, and Southern Inside quadrants of Southeast Alaska, AY 2022
	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide and Northern Outside quadrant first retention period of the summer troll fishery harvest in Southeast Alaska, AY 2022
26.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide and Northern Outside quadrant second retention period of the summer troll fishery harvest in Southeast Alaska, AY 2022.
27.	Heat plot of mean contributions of driver stock reporting groups of Chinook salmon to the sport fishery harvest in Southeast Alaska by area and time period, AY 2022
28.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the Ketchikan, Petersburg-Wrangell, and Northern Inside area sport fishery harvests in Southeast Alaska, AY 2022

LIST OF FIGURES (Continued)

Figur	e Page
29.	Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the total season, early season, and late season Outside area sport fishery harvest in Southeast Alaska, AY 2022.
30.	Mean contributions of driver stock reporting groups of Chinook salmon to the annual regionwide sport and troll fishery harvest in Southeast Alaska, AY 2009–2022
	LIST OF APPENDICES
Appei	ndix Page
A1.	Location and collection details for each population of Chinook salmon included in the coastwide
D. 4	baseline of microsatellite data.
B1.	Estimated contributions of broad-scale reporting groups of Chinook salmon to the Southeast Alaska troll fishery harvest, AY 2020
B2.	Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska troll fishery harvest by season and quadrant, AY 202093
В3.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the early winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 202095
B4.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the late
B5.	winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 202096 Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the spring troll fishery regionwide and in the Northern Outside, Southern Outside, and Southern Inside quadrants
	of Southeast Alaska, AY 2020
В6.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the first retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2020
B7.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the second retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of
B8.	Southeast Alaska, AY 2020
B9.	Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska sport fishery harvest by area and season, AY 2020
B10.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the sport fishery harvest in Ketchikan, Petersburg-Wrangell, Northern Inside, Craig, and Sitka areas of Southeast Alaska, AY 2020.
B11.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the total season, early season, and late season sport fishery harvest in outside waters of Southeast Alaska, AY 2020
B12.	Estimated contributions of broad-scale reporting groups of Chinook salmon to the Southeast Alaska troll fishery harvest, AY 2021
B13.	Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska troll fishery harvest by season and quadrant, AY 2021
B14.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the early winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2021 109
B15.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the late winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2021110
B16.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the spring troll fishery regionwide and in the Northern Outside, Southern Outside, and Southern Inside quadrants of Southeast Alaska, AY 2021.
B17.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the first retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of

LIST OF APPENDICES (Continued)

Apper	ndix P	'age
B18.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the second	
	retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of	
	Southeast Alaska, AY 2021	.114
B19.	Estimated contributions of broad-scale reporting groups of Chinook salmon to the Southeast Alaska	
	sport fishery harvest, AY 2021	.115
B20.	Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska	
	sport fishery harvest by area and season, AY 2021	.116
B21.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the sport fishery harvest	
	in Ketchikan, Petersburg-Wrangell, Northern Inside, Craig, and Sitka areas of Southeast Alaska,	
	AY 2021	.117
B22.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the total season, early	
	season, and late season sport fishery harvest in outside waters of Southeast Alaska, AY 2021	.119
B23.	Estimated contributions of broad-scale reporting groups of Chinook salmon to the Southeast Alaska	
	troll fishery harvest, AY 2022.	.120
B24.	Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska	
	troll fishery harvest by season and quadrant, AY 2022	.121
B25.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the early	
	winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2022	.123
B26.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the late	
	winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2022	.124
B27.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the spring	
	troll fishery regionwide and in the Northern Outside, Southern Outside, and Southern Inside quadrants	
	of Southeast Alaska, AY 2022.	.125
B28.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the first	
	retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of	
	Southeast Alaska, AY 2022.	.127
B29.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the second	
	retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of	
	Southeast Alaska, AY 2022.	.128
B30.	Estimated contributions of broad-scale reporting groups of Chinook salmon to the Southeast Alaska	
	sport fishery harvest, AY 2022	.129
B31.	Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska	
	sport fishery harvest by area and season, AY 2022	.130
B32.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the sport fishery harvest	
	in Ketchikan, Petersburg-Wrangell, Northern Inside, Craig, and Sitka areas of Southeast Alaska,	
	AY 2022	.131
B33.	Estimated contributions of fine-scale reporting groups of Chinook salmon to the total season, early	
	season, and late seasonsport fishery harvest in outside waters of Southeast Alaska, AY 2022	.133
B34.	Estimated contributions of driver stock reporting groups of Chinook salmon to the annual Southeast	
	Alaska troll fishery harvest, AY 2009–2022.	.134
B35.	Estimated contributions of driver stock reporting groups of Chinook salmon to the annual Southeast	
	Alaska sport fishery harvest, AY 2009–2022.	.136

ABSTRACT

Chinook salmon originating in Alaska, British Columbia, and the Pacific Northwest are harvested in Southeast Alaska (SEAK) commercial troll and sport fisheries. Owing to its mixed stock nature, the overall SEAK Chinook salmon fishery is managed as 1 of 3 aggregate abundance-based management (AABM) fisheries under provisions of the Pacific Salmon Treaty Agreement (PST). Alaska Department of Fish and Game has used genetic mixed stock analysis to estimate the stock composition of Chinook salmon harvests in the SEAK troll since 1998 and sport fisheries since 2004, allowing direct estimation of the major stock groups contributing to these fisheries. This project estimated the relative stock composition of troll and sport fishery harvests from fishery accounting years 2020-2022. The major contributors to the troll and sport fisheries ordered from north to south were Southeast Alaska/Transboundary River, North/Central British Columbia, West Coast Vancouver Island, South Thompson, Washington Coast, Interior Columbia River Summer/Fall, and Oregon Coast reporting groups. Collectively, these 7 stock aggregates, referred to as driver stocks, accounted for 90-91% of the troll harvest, and 92-95% of the sport harvest. The Interior Columbia River Summer/Fall driver stock was the largest contributor to the troll fishery for 2020-2022 (24-27% of the annual harvest). Conversely, the Southeast Alaska/Transboundary River and West Coast Vancouver Island driver stock groups were the largest contributors to the sport fishery (23–30% and 17–25% of the annual harvest, respectively). Results indicate considerable temporal and spatial variation in harvests within and across years. Stock composition data from this and other stock assessments are used to provide fisheries information, including stock-specific run reconstructions, forecasting of run sizes to transboundary rivers, and separate harvest estimates of SEAK and transboundary river wild and hatchery salmon.

Keywords: Chinook salmon, Southeast Alaska, troll fishery, sport fishery, mixed stock analysis, genetics, microsatellite. Pacific Salmon Treaty

INTRODUCTION

CHINOOK SALMON FISHERY MANAGEMENT

Chinook salmon Oncorhynchus tshawytscha is one of the fish species most sought after by sport anglers and the commercial troll fishing industry in Southeast Alaska (SEAK). In SEAK, Chinook salmon are harvested in State of Alaska and Federal Exclusive Economic Zone waters east of Cape Suckling and north of Dixon Entrance (CTC 2004; NPFMC 2012). This area is divided into 4 quadrants for stock assessment purposes for the commercial troll fishery: Northern Outside (NO), Northern Inside (NI), Southern Outside (SO), and Southern Inside (SI) (Figure 1). The sport fisheries predominantly occur around the ports of Juneau, Ketchikan, Sitka, Petersburg, Wrangell, Craig/Klawock, Yakutat, Gustavus, Elfin Cove, Skagway, and Haines (Figure 2). Both the troll and sport fisheries harvest mixed stocks¹ of Chinook salmon, including salmon originating from Alaska, British Columbia (BC), and the Pacific Northwest of the United States, and are therefore under the jurisdiction of the Pacific Salmon Treaty (PST, or Treaty). The PST calls for cooperative management and research on fisheries harvesting Chinook salmon from populations in Canada and the U.S. Under the 2019 PST Agreement, Chinook salmon fisheries are structured as either aggregate abundance-based management (AABM) or individual stock-based management (ISBM) fisheries. The SEAK Chinook salmon fishery is 1 of 3 mixed stock AABM fisheries (2019 PST Agreement, Annex IV, Chapter 3).

The annual all-gear harvest limit for Chinook salmon in SEAK is specified in Chapter 3, Annex IV of the PST, and for 2019–2022, was determined by the SEAK early winter District 113 troll fishery catch per unit effort (CPUE) metric estimated from data collected in statistical weeks (SW) 41–48. The majority of the PST harvest limit is allocated to the commercial troll and sport fisheries

_

In this report, population refers to a locally interbreeding group of salmon that is distinguished by a distinct combination of genetic, phenotypic, life-history, and habitat characteristics; and stock refers to an aggregation of one or more populations that occur in the same geographic area and are managed as a unit. Reporting groups refers to an aggregation of one or more stocks that can be identified using genetic mixed stock analysis.

under State of Alaska management plans established by the Alaska Board of Fisheries (BOF). The purse seine fishery is allocated 4.3% of the harvest, the gillnet fishery is allocated 2.9% of the harvest, and the setnet fishery is allocated 1,000 fish; the remaining portion of the annual harvest limit is allocated 80% to the troll fishery and 20% to the sport fishery. Thus, careful monitoring of the harvest in the troll and sport fisheries throughout the season is essential to prevent exceeding the annual harvest limit (Hagerman et al. 2021, 2022a, *In prep*; Jaenicke et al. 2022, 2023a, 2023b). Additionally, the PST requires that the fisheries be managed to achieve escapement goals for SEAK and Transboundary River (TBR) stocks. By regulation, legal-sized Chinook salmon in the troll and sport fisheries must be 71 cm (28 inches) or greater in total length (tip of snout to tail fork), except in special harvest areas—generally terminal in nature—that target Alaska hatcheryorigin stocks.

In addition to the provisions of the PST, these fisheries are also managed pursuant to Alaska's *Policy for the Management of Sustainable Salmon Fisheries* (5 AAC 39.222), wherein impacts of fishing on salmon escapement are assessed and considered in management decisions, and necessary conservation restrictions may be imposed in order to achieve escapement goals, rebuild, or, in some other way, conserve a specific salmon stock or group of stocks.

Troll Fishery Overview

The SEAK troll harvest of Chinook salmon occurs over 3 seasonal fisheries: winter, spring, and summer. By regulation, the winter fishery occurs from October 11 to April 30 of the following year, or until the guideline harvest level of 45,000 non-Alaska hatchery-produced Chinook salmon is reached. The fishery is split into "early winter" (October 11-December 31) and "late winter" (January 1-April 30) components, and the open fishing area is restricted to within the troll boundary of the outer coast surf line (Hagerman and Vaughn 2022). The spring troll fishery (May 1 or earlier, through June 30) is managed to target Chinook salmon produced from SEAK hatcheries, many of which are exempt from the annual harvest limit. The summer troll fishery accounts for most of the annual Chinook salmon commercial harvest and is closely monitored and managed to prevent exceeding the troll allocation of the annual harvest limit by allowing retention of Chinook salmon during 2 or more periods in most years. The first summer troll fishery opening, beginning July 1 by regulation, allows harvest in the waters of frequent high Chinook salmon abundance and is managed to not exceed 70% of the remaining troll allocation of the annual harvest limit. Once the July fishery is closed, Chinook salmon retention by the troll fleet is not allowed unless it is determined that additional openings will not result in exceeding the annual harvest limit. August (and sometimes September) openings are conducted in years when it is determined that the annual harvest limit will not be exceeded. Unlike the first retention period, if additional openings occur, the waters of frequent high Chinook salmon abundance remain closed to troll gear. However, if after 10 days, Alaska Department of Fish and Game (ADF&G) determines that the annual harvest limit for troll Chinook salmon may not be reached by September 20 with those waters closed, the waters of frequent high Chinook salmon abundance reopen.

Sport Fishery Overview

The sport fishery occurs throughout the region, with most of the harvest annually occurring in the outside areas, primarily in Sitka and Craig/Klawock, and in the inside areas, primarily associated with the ports of Ketchikan and Juneau (Figure 2). Most of the sport fishery effort for Chinook salmon in the region occurs from May through September when both resident and nonresident participation are at their highest levels. The objectives of the *Southeast Alaska King Salmon*

Management Plan were specified by the BOF and direct ADF&G (1) to manage the sport fishery to attain an average harvest of 20% of the all-gear harvest limit after accounting for commercial net harvests; (2) to allow uninterrupted sport fishing in salt waters for Chinook salmon, but not exceeding the sport fishery harvest limit; (3) to minimize regulatory restriction on resident anglers; and (4) to provide stability to the sport fishery by eliminating inseason regulatory changes, except those needed for conservation.

SUMMARY OF 2020 SEASON

The 2020 preseason early winter District 113 power troll Chinook salmon CPUE metric was estimated at 4.83 fish per boat day, resulting in an all-gear allowable catch limit of 205,165 Treaty Chinook salmon (Hagerman et al. 2021).

In 2017, 9 of the 11 Chinook salmon stocks that ADF&G monitors for escapement did not meet management objectives. Three Chinook salmon indicator stocks had missed the lower bound of their escapement objectives in at least 4 of the past 5 years. Given this "chronic inability, despite use of specific management measures, to maintain escapements within the bounds of the SEG [sustainable escapement goal], BEG [biological escapement goal], OEG [optimum escapement goal], or other specified management objectives for the fishery," ADF&G recommended that Unuk, Chilkat, and King Salmon Rivers be designated as stock(s) of management concern (SOC) pursuant to the Policy for the Management of Sustainable Salmon Fisheries (5 AAC 39.222). The BOF accepted ADF&G's recommendations and adopted SOC action plans for Unuk, Chilkat, and King Salmon Rivers that were designed to conserve these stocks of Chinook salmon (Lum and Fair 2018a, 2018b). The action plan to conserve Unuk River Chinook salmon directed ADF&G to consider management provisions for all Chinook salmon fisheries in the region; examples include: close the winter troll fishery on March 15 (the typical closing date is April 30), notwithstanding any remaining guideline harvest level, and limit spring troll areas to terminal harvest areas and outer coast spring troll areas with low proportional harvests of wild SEAK stocks; and to use ADF&G emergency order (EO) authority for establishing conservative regulations in the Ketchikan area sport fishery (Hagerman et al. 2021; Lum and Fair 2018a). Additionally, the action plan to conserve Chilkat and King Salmon River Chinook salmon directed ADF&G to close the waters of Upper Lynn Canal, modify time and area restrictions of the spring troll fishery, and use ADF&G EO authority to implement conservative Chinook salmon sport fishery regulations in Districts 11, 12, and 15 (Lum and Fair 2018b).

Troll Fishery

In accounting year² (AY) 2020, the troll fishery harvested 169,916 Chinook salmon, the 11th lowest on record since statehood through 2020 (CTC 2021a; Hagerman et al. 2021). The winter fishery harvest was 15,810 fish, of which 8,370 were caught in early winter and 7,440 were caught in late winter. The winter troll fishery closed on March 15 in accordance with new regulations adopted by the BOF from the *Unuk River King Salmon Stock Status and Action Plan* (Lum and Fair 2018a). In 2020, spring troll fisheries were conducted between May 1 and June 30; however, in accordance with the *Unuk River King Salmon Stock Status and Action Plan*, open areas were limited to 8 terminal harvest areas and 11 spring troll areas to conserve wild SEAK Chinook salmon (Lum and Fair 2018a). A total of 13,600 fish were harvested in the spring fishery, which includes harvest in hatchery terminal areas and wild terminal exclusion areas (CTC 2021a;

.

² The PST accounting year begins with the start of the winter fishery on October 11 of the previous calendar year and ends the following September, e.g., AY 2020 is October 1, 2019, through September 30, 2020. Note: all references to years in this report are accounting years.

Hagerman et al. 2021). The total summer fishery harvest was 140,506 fish, of which 71,494 were caught during the first retention period July 1–6, with 68,893 caught in the second retention period August 15–September 8, and the remainder caught in Annette Island troll or confiscated harvests (CTC 2021a; Hagerman et al. 2021).

Sport Fishery

The SEAK Chinook salmon sport fishery is managed under the directives of the *Southeast Alaska King Salmon Management Plan* (5 AAC 47.055). This plan prescribes management measures based on the SEAK early winter troll CPUE metric and the harvest management plan adopted by the BOF. In 2020, 37,900 Treaty Chinook salmon were allocated to the sport fishery. To avoid implementation of the payback provisions in the new 2019 PST Agreement, which requires the payback of any overages to the Alaska all-gear catch limit the following year, the sport fishery was managed conservatively with a harvest target of 37,100 Treaty Chinook salmon in 2020. As directed by the *Southeast Alaska King Salmon Management Plan*, if restrictions are necessary to keep the sport fishery within its harvest allocation, nonresident anglers will be restricted first, and ADF&G shall only restrict resident anglers if nonresident angler restrictions are insufficient to keep the sport harvest within the sport harvest allocation. The following regulations applied during the 2020 sport fishery as dictated by the *Southeast Alaska King Salmon Management Plan*:

Alaska Resident

- The resident bag and possession limit was 1 Chinook salmon, 28 inches or greater in length.
- In those inside waters where the sport fishery for Chinook salmon was closed to retention during the spring and early summer (Juneau area, Petersburg/Wrangell area, Ketchikan area), when those waters reopen, the resident bag and possession limit was 2 Chinook salmon 28 inches or greater in length through December 31, 2020.

Nonresident

- The nonresident bag and possession limit was 1 Chinook salmon 28 inches or greater in length.
- From January 1 through June 30, a nonresident's annual catch limit was 3 Chinook salmon 28 inches or greater in length.
- From July 1 through July 7, a nonresident's annual catch limit was 2 Chinook salmon 28 inches or greater in length.
- From July 1 through December 31, a nonresident's annual catch limit was 1 Chinook salmon 28 inches or greater in length, and any Chinook salmon 28 inches or greater in length harvested by a nonresident from January 1 through June 30 applied toward the 1 fish annual catch limit.

The sport fishery was monitored closely throughout the season to ensure it stayed below the PST catch limit and the conservative harvest target. In early June, COVID-19 impacts significantly reduced Chinook salmon harvest levels due to a reduction in nonresident angler effort. While continuing to closely monitor the sport fishery—including participation levels— ADF&G initiated a series of progressively liberalized regionwide regulations beginning in mid-June of 2020 in an effort to achieve—but not exceed—the sport harvest allocation. These more liberalized regulations included increases of bag and possession limits for resident anglers as well as increases in bag,

possession, and annual limits for nonresident anglers. Liberalized regionwide regulations were rescinded effective September 30, 2020, at which point on October 1, 2020, the original regionwide regulations applied at the beginning of the season took effect (noted explicitly above), per the *Southeast Alaska King Salmon Management Plan*. The 2020 sport fishery had an estimated total harvest of 35,100 Chinook salmon (CTC 2021a).

SUMMARY OF 2021 SEASON

The 2021 preseason early winter District 113 power troll Chinook salmon CPUE metric was estimated at 3.85 fish per day, resulting in an all-gear allowable catch limit of 205,165 Treaty Chinook salmon (Hagerman et al. 2022a).

Troll Fishery

In AY 2021, the troll fishery harvested 163,210 Chinook salmon, the 11th lowest on record since statehood through 2021 (CTC 2022; Hagerman et al. 2022a). The winter fishery harvest was 15,072 fish, of which 6,312 were caught in early winter and 8,760 were caught in late winter. The winter troll fishery closed on March 15 in accordance with new regulations adopted by the BOF from the *Unuk River King Salmon Stock Status and Action Plan* (Lum and Fair 2018a). In 2021, spring troll fisheries were conducted between May 1 and June 30; however, in accordance with the *Unuk River King Salmon Stock Status and Action Plan*, open areas were limited to 10 terminal harvest areas and 11 spring troll areas to conserve wild SEAK Chinook salmon (Lum and Fair 2018a). A total of 16,535 fish were harvested in the spring fishery, which includes harvest in hatchery terminal areas and wild terminal exclusion areas (CTC 2022; Hagerman et al. 2022a). The total summer fishery harvest was 131,603 fish, of which 70,465 were caught during the first retention period July 1–8, with 60,814 caught in the second retention period August 13–September 3, and the remainder caught in Annette Island troll or confiscated harvests (CTC 2022; Hagerman et al. 2022a).

Sport Fishery

In 2021, 37,900 Treaty Chinook salmon were allocated to the sport fishery. To avoid implementation of the payback provisions in the new 2019 PST Agreement, which requires the payback of any overages to the Alaska all-gear catch limit the following year, the sport fishery was managed conservatively with a harvest target of 37,100 Treaty Chinook salmon in 2021. As directed by the *Southeast Alaska King Salmon Management Plan*, if restrictions are necessary to keep the sport fishery within its harvest allocation, nonresident anglers will be restricted first, and the department shall only restrict resident anglers if nonresident angler restrictions are insufficient to keep the sport harvest within the sport harvest allocation. The following regulations applied during the 2021 sport fishery as dictated by the *Southeast Alaska King Salmon Management Plan*:

Effective through June 20, 2021:

Alaska Resident

• The resident bag and possession limit was 1 Chinook salmon 28 inches or greater in length.

Nonresident

- The nonresident bag and possession limit was 1 Chinook salmon 28 inches or greater in length.
- The nonresident annual limit is 4 Chinook salmon 28 inches or greater in length.

• Immediately upon landing and retaining a Chinook salmon, a nonresident must enter the species, date, and location on the back of their sport fishing license or on a nontransferable harvest record.

Effective June 21–July 31:

Alaska Resident

- The resident bag and possession limit was 2 Chinook salmon 28 inches or greater in length.
- From October 1, 2021, through March 31, 2022, a sport angler may use 2 rods when fishing for Chinook salmon; a person using 2 rods under this regulation may only retain salmon.

Nonresident

- The nonresident bag and possession limit is 1 Chinook salmon 28 inches or greater in length.
- From January 1 through June 30, a nonresident's total harvest limit is 3 Chinook salmon 28 inches or greater in length.
- From July 1 through July 7, a nonresident's total harvest limit is 2 Chinook salmon 28 inches or greater in length, and any Chinook salmon harvested by the nonresident from January 1 through June 30 will apply toward the 2 fish total harvest limit.
- From July 8 through December 31, a nonresident's total harvest limit is 1 Chinook salmon 28 inches or greater in length, and any Chinook salmon harvested by the nonresident from January 1 through July 7 will apply toward the 1 fish total harvest limit.

Effective August 1–31:

Alaska Resident

- The resident bag and possession limit is 1 Chinook salmon 28 inches or greater in length.
- From October 1, 2021, through March 31, 2022, a sport angler may use 2 rods when fishing for Chinook salmon; a person using 2 rods under this regulation may only retain salmon.

Nonresident

- From August 1 through August 31, 2021, nonresidents may not retain or possess Chinook salmon; any Chinook salmon caught must be released immediately and returned to the water unharmed.
- The nonresident bag and possession limit is 1 Chinook salmon 28 inches or greater in length.
- The nonresident total harvest limit is 1 Chinook salmon 28 inches or greater in length, and any Chinook salmon harvested by a nonresident from January 1 through July 31 will apply toward the 1 fish nonresident total harvest limit.

The sport fishery was monitored closely throughout the season to ensure it stayed below the PST catch limit and the conservative harvest target. Despite continued COVID-19 impacts reducing overall sport fishery effort levels, relative HPUE remained high, and ADF&G initiated a series of progressively restrictive management measures beginning in mid-June of 2021 in an effort to

achieve—but not exceed—the sport harvest allocation. These more restrictive regulations included a decreased bag and possession limits for resident anglers as well as drops in bag, possession, and annual limits for nonresident anglers. The 2021 sport fishery had an estimated total harvest of 41,982 Chinook salmon (CTC 2022).

SUMMARY OF 2022 SEASON

The 2022 preseason early winter District 113 power troll Chinook salmon CPUE metric was estimated at 7.02 fish per day, resulting in an all-gear allowable catch limit of 266,585 Treaty Chinook salmon (Hagerman et al. *In prep*).

Troll Fishery

In AY 2022, the troll fishery harvested 196,783 Chinook salmon, the 19th lowest on record since statehood through 2022 (CTC 2023; Hagerman et al. In prep). The winter fishery harvest was 28,238 fish, of which 6,149 were caught in early winter and 22,089 were caught in late winter. The winter fishery begins on October 11 and may continue through April 30, or until the GHL of 45,000 Treaty Chinook salmon is met. However, from 2018–2021, as adopted under the Unuk River Chinook salmon action plan (Lum and Fair 2018a), notwithstanding any remaining portion of the 45,000 non-Alaska hatchery-produced Chinook salmon GHL, the commercial winter troll fishery closed by emergency order on March 15 in all SEAK waters. In 2022, under newly adopted provisions of Alaska Board of Fisheries action plans to conserve SEAK and TBR wild Chinook salmon stocks, ADF&G was given direction to take necessary management actions under emergency order authority that provide for conservation of SEAK and TBR wild Chinook salmon stocks while continuing to identify harvest opportunities that maintain conservation of these stocks (Salomone et al. 2021; Hagerman et al. 2022b; Meredith et al. 2022). Accordingly, the 2021–2022 winter troll fishery was reopened from April 3 through 30, 2022. The reopening of the late winter fishery in select outer coastal areas provided additional harvest opportunities compared to the most recent 4 years but maintained conservation actions for SEAK and TBR wild Chinook salmon stocks. By regulation, the winter fishery is restricted to waters of Yakutat Bay and most waters east of the winter boundary line defined by established point to point landmarks between Cape Spencer and the International Boundary at Dixon Entrance (5 AAC 29.020[b]).

In 2022, spring troll fisheries were conducted between May 1 and June 30. Since 1986, when hatchery access fisheries were established, the number of spring fisheries increased considerably, with more than 30 spring fishery areas open to trolling as recently as 2017. As directed by SEAK Chinook salmon actions plans adopted by the BOF and under emergency order authority, the 2022 spring fisheries were limited to 10 Chinook salmon terminal harvest areas and 11 spring troll areas located on the outer coast or near hatchery release sites to conserve wild SEAK Chinook salmon (Meredith et al. 2022). A total of 15,699 fish were harvested in the spring fishery, which includes harvest in hatchery terminal areas and wild terminal exclusion areas (CTC 2023; Hagerman et al. *In prep*). The total summer fishery harvest was 152,721 fish, of which 93,336 were caught during the first retention period July 1–28, with 59,385 caught in the second retention period August 1–September 20, which includes confiscated harvests (CTC 2023; Hagerman et al. *In prep*).

Sport Fishery

In 2022, 48,290 Treaty Chinook salmon were allocated to the sport fishery. To avoid implementation of the payback provisions in the new 2019 PST Agreement, which requires the payback of any overages to the Alaska all-gear catch limit the following year, the sport fishery was

managed conservatively with a harvest target of 47,300 Treaty Chinook salmon in 2022. Chinook nonretention periods were implemented in 2022 for the inside waters of Southeast Alaska (Haines, Skagway, Juneau, Petersburg, Wrangell, Ketchikan) from early spring through mid-summer to protect Alaska wild stocks and transboundary river stocks. Additionally, longer periods of nonretention or closed waters were implemented to provide additional protection in select locations. Focused opportunity was provided to target Alaska hatchery-produced Chinook in select terminal areas and times. Management prescriptions were established at the beginning of the season and modified in July to align with modifications made to the *Southeast Alaska King Salmon Management Plan* during the 2022 Southeast Alaska Board of Fisheries meeting. The following regional regulations applied during the beginning of the 2022 sport fishery as dictated by the *Southeast Alaska King Salmon Management Plan* (Alaska State Legislature 2023a):

Alaska Resident

- The resident bag and possession limit is 2 Chinook salmon 28 inches or greater in length.
- From February 3 through March 31, 2022, and October 1, 2022, through March 31, 2023, a resident sport angler may use 2 rods when fishing for Chinook salmon, a person using 2 rods under this regulation may only retain salmon.

Nonresident

- The nonresident bag and possession limit is 1 Chinook salmon 28 inches or greater in length.
- The nonresident annual limit is 3 Chinook salmon 28 inches or greater in length.
- Immediately upon landing and retaining a Chinook salmon a nonresident must enter the species, date, and location on their sport fishing license or on a nontransferable harvest record.

The following regional regulations applied to the sport fishery effective July 1 through the remainder of the 2022 season as dictated by the revised *Southeast Alaska King Salmon Management Plan* adopted by the BOF (Alaska State Legislature 2023a):

Alaska Resident

- The resident bag and possession limit is 2 Chinook salmon 28 inches or greater in length.
- From October 1, 2022, through March 31, 2023, a resident sport angler may use 2 rods when fishing for Chinook salmon, a person using 2 rods under this regulation may only retain salmon.

Nonresident

• The nonresident bag and possession limit is 1 Chinook salmon 28 inches or greater in length.

The newly revised *Southeast Alaska King Salmon Management Plan* (Alaska State Legislature 2023a) provides stability to the sport fishery by eliminating the need for inseason management while maintaining the existing domestic allocation between sport and commercial troll fisheries over time. Under this plan, the sport fishery is expected to be under its allocation in high abundance years and above allocation in low abundance years. As expected, the sport fishery was under allocation in the 2022 season. In accordance with the newly revised management plan, the sport fishery took no inseason management action to harvest remaining PST allowable catch in the sport

fishery. The 2022 sport fishery had an estimated total harvest of 41,176 Chinook salmon (CTC 2023).

GENETIC MSA

The annual PST Chinook salmon harvest limit for SEAK under the 2019 PST is determined preseason based on the SEAK early winter District 113 troll fishery CPUE metric estimated from data collected in statistical weeks (SW) 41-48 (Hagerman et al. 2021, 2022a, *In prep*). This preseason winter troll CPUE metric is translated to the equivalent abundance index (AI) value, which is the projected abundance of Chinook salmon forecasted by the Chinook Technical Committee (CTC) using the PSC Chinook Model (CTC 2021a, 2022, 2023; Hagerman et al. 2021, 2022a, *In prep*). The PSC Chinook Model uses catch, escapement, coded wire tag (CWT) recovery, and recruitment information to forecast relative abundance of stocks in PST fisheries. Relative stock proportion information is an important component of the PSC Chinook Model, and currently CWT data are used for this purpose. However, reliance on stock composition estimates solely from CWT data can be problematic because CWTs are only applied to a subset of indicator stocks contributing to the fishery, most of which are hatchery stocks intended to represent wild stocks, and resulting escapement and terminal run size estimates are often not available or are poorly determined for many stocks outside of SEAK. Genetic mixed stock analysis (MSA) provides a complementary set of stock composition estimates for major contributors to fisheries. Where CWT methods are one of the only ways of detecting and estimating stocks of Chinook salmon that are minor contributors to a fishery (because the numeric tags minimize the problem of misclassification and more catch is sampled for CWTs on a coastwide basis [~20%] to recover these tags), genetic MSA is best suited for estimating contributions of major stocks, i.e., those contributing relatively large proportions (>5%) of the sample. However, genetic MSA cannot currently differentiate between hatchery and wild stocks representing the same brood source and does not include the age information provided by CWTs. Although both MSA and CWT assessments can provide stock composition estimates of harvest, the combination of the 2 methods is expected to be more useful.

Genetic MSA has been used extensively to estimate the relative contribution of genetic aggregates of Chinook salmon to mixed stock fisheries occurring throughout the PST area (unpublished data;³ Hess et al. 2011; Templin et al. 2011; Beacham et al. 2012). This method uses the genetic variation in allele frequencies at multiple loci among populations (baseline) to estimate the contribution of each stock to a mixture given the multilocus genotypes of fish in the mixture. ADF&G has used MSA based on coastwide baselines (allozymes: Teel et al. 1999; microsatellites: Seeb et al. 2007) to estimate the composition of Chinook salmon harvested in the commercial troll fishery since 1998, and the sport fishery since 2004 (Crane et al. 2000; Templin et al. 2011; Gilk-Baumer et al. 2013, 2017a, 2017b, 2017c, 2018; Shedd et al. 2021a, 2021b, 2022).

Genetic MSA is possible for PST fisheries due to the CTC-funded Genetic Analysis of Pacific Salmonids (GAPS) project, a cooperative project among 10 laboratories with the goal of developing a standardized DNA baseline for stock identification of Chinook salmon.⁴ This process

Blankenship, S., K. I. Warheit, J. Von Bargen, and D. A. Milward. Genetic stock identification determines inter-annual variation in stock composition for legal and sub-legal Chinook captured in the Washington Area-2 non-Treaty troll fishery. Unpublished Washington Department of Fish and Wildlife molecular genetics laboratory report submitted to the Pacific Salmon Commission-Chinook Technical Committee, 2007.

Moran, P., M. Banks, T. D. Beacham, C. Garza, S. Narum, M. Powell, L. W. Seeb, R. L. Wilmot, and S. Young. Genetic analysis of Pacific salmonids (GAPS): Development of a standardized microsatellite DNA database for stock identification of Chinook salmon. Chinook funding proposal submitted to the US Chinook Technical Committee for funding under the budget increment associated with the US Letter of Agreement, 2004.

began in 2002, and a standardized baseline was available during the summer of 2005 (Seeb et al. 2007). The baseline can be used to identify 44 reporting groups in mixtures with acceptable accuracy and precision (Seeb et al. 2007). For the SEAK fisheries, the 44 reporting groups were combined into 26 reporting groups based on management needs and stock presence (Table 1). The current baseline (version 3.0) contains allele frequencies from 357 populations contributing to PST fisheries, ranging from the Situk River in Alaska to the Central Valley of California (Appendix A1).

Stocks of Chinook salmon originating from streams and hatcheries along the Southeast Alaska, Northern/Central British Columbia, West Vancouver Island, Washington, and Oregon coasts, and in the South Thompson and Upper Columbia Rivers⁵ consistently contribute more than 5% to the troll and sport harvest in SEAK, and consequently are important stocks that help drive harvest allocations under the PST (Table 1; CTC 2021b). Collectively, these 7 aggregate stocks make up a large proportion (typically >90%; Gilk-Baumer et al. 2017a, 2017b; Shedd et al. 2021a, 2021b, 2022) of all Chinook salmon annually harvested in SEAK troll and sport fisheries, and thus genetic MSA is the preferred method for providing accurate and precise stock composition estimates for these "driver stocks" in SEAK fisheries (PSC 2008).

The information reported herein are the results of genetic MSA based on the CTC standardized baseline of microsatellites (GAPS version 3.0) to provide independent estimates of the stock composition of Chinook salmon harvested in the SEAK troll and sport fisheries in AY 2020–2022. Results focus primarily on the 7 driver stocks important for SEAK fisheries managed under the PST, although information at broader and finer scales is also provided for context.

OBJECTIVES

The goal of this genetic MSA program was to estimate the stock composition of Chinook salmon harvested in SEAK commercial troll and sport fisheries during AY 2020–2022. Project objectives were as follows:

- 1. Sample Chinook salmon from the SEAK troll and sport fishery harvests in a representative manner to provide stock composition estimates of the harvest within 5% of the true value 90% of the time.
- 2. Survey Chinook salmon sampled from the SEAK troll and sport fisheries for individual genotypes at the 13 microsatellite loci in the coastwide baseline (GAPS version 3.0).
- 3. Estimate the relative contribution of 26 fine-scale reporting groups for the following troll fisheries in AY 2020–2022:
 - a. early winter (October–December) and late winter (January–March) troll fisheries in the NO quadrant, and across all quadrants;
 - b. spring troll fisheries (May–June) with separate estimates for Chinook salmon harvested in the NO, SO, and SI quadrants; and
 - c. summer troll fisheries (July–September) with separate estimates for the first Chinook salmon opening and subsequent openings combined for Chinook salmon harvested across all quadrants and in the NO quadrant alone.
- 4. Estimate the relative contribution of 26 fine-scale reporting groups to SEAK sport fisheries in the following areas and time periods in AY 2020–2022:

_

⁵ All summer and fall Chinook salmon transiting Bonneville Dam from June 1 through November 15, 2018, destined for areas above McNary Dam and the Deschutes River.

- a. Ketchikan, total season estimate;
- b. Petersburg-Wrangell, total season estimate;
- c. NI (ports of Juneau, Haines, and Skagway), total season estimate; and
- d. Outside (ports of Craig/Klawock, Sitka, Yakutat, Elfin Cove, and Gustavus)
 - i. early season estimate (through biweek⁶ 13),
 - ii. late season estimate (after biweek 13), and
 - iii. total season estimate.

METHODS

FISHERY SAMPLING

The standard for precision and accuracy used by ADF&G for genetic MSA is to estimate a stock's proportional contribution within 5% of the true value, 90% of the time (Seeb et al. 2000). A sample size of 400 individuals will provide estimates with the target level of precision under the worst case scenario (3 stocks contributing equal proportions; Thompson 1987), and ADF&G applies this standard when developing sampling programs for MSA. However, sample sizes for some strata may not meet this target size due to harvest numbers, sampling success, or some combination of both. In cases where sample sizes are fewer than 400 and reduced precision is acceptable, estimates based on smaller sample sizes may be appropriate to inform PST-related questions. Sample sizes of 200 fish provide estimates within approximately 7% of the true value 90% of the time (Thompson 1987). Reducing sample sizes below this threshold increases uncertainty rapidly, so when strata are represented by between 100 and 199 samples, estimates are only reported for broad-scale and driver-stock reporting groups to compensate (JTC 1997). Uncertainty associated with genetic MSA results from sample sizes below 100 fish is considered too high to provide anything other than broad-scale reporting groups.

Troll Fishery

Sample sizes were set to target a minimum 400 samples per stratum for the following 11 troll fishery strata:

- 1. Early winter fishery (October–December)
 - a. NO quadrant
 - b. Regionwide
- 2. Late winter fishery (January–April)
 - a. NO quadrant
 - b. Regionwide
- 3. Spring fishery (May–June)
 - a. NO quadrant
 - b. SO quadrant
 - c. SI quadrant

Sport fishery biweeks run from Monday through Sunday, with biweek 1 beginning January 1, and biweek 2 beginning on the third Monday of the year. All biweeks except the first and last of the year are exactly 14 days long. Biweek calendars for each year are available at https://mtalab.adfg.alaska.gov/CWT/reports/sbp_calendar.aspx?value=biweek (accessed November 18, 2021).

- d. Regionwide
- 4. Summer fishery (July–September)
 - a. First retention period (July)
 - i. NO quadrant
 - ii. Regionwide
 - b. Second and subsequent retention periods (August–September)
 - i. NO quadrant
 - ii. Regionwide

When necessary, sample objectives were moved between ports within a stratum to achieve minimum sample sizes for some strata (Tables 2–4). Sample sizes in the NO quadrant were set so that stock contributions to the harvest in this quadrant could be estimated for each of the time periods in addition to an all-quadrant estimate. Objectives varied among ports depending on expectations for deliveries (processor availability), availability of port samplers, and the vagaries of each seasonal fishery.

Details regarding port sampling procedures are outlined in Reynolds-Manney et al. (2020). In short, Chinook salmon were targeted for sampling from landings at processors at various SEAK ports (Tables 2–4, Figure 1). Fish were selected for sampling without regard to size, sex, presence of an adipose fin, or position in the vessel hold or tote; sampling was conducted in such a manner to be as representative as possible of that week's commercial catch. A small piece of pelvic fin tissue (i.e., fin clip) was excised from each fish and dried on Whatman paper. Troll fishery participants were interviewed to determine the quadrant (NO, NI, SO, or SI; Tables 5–7) from which the Chinook salmon were harvested. At the end of each fishing period, samples were shipped via air cargo to the ADF&G Gene Conservation Laboratory in Anchorage for analysis. Associated data were archived as part of the age-sex-length database maintained by ADF&G.

Sport Fishery

Sample sizes were set to target a minimum of 400 samples per stratum for the following 6 sport fishery strata, with the intention of representing harvest by biweek at each port:

- 1. Ketchikan, total season;
- 2. Petersburg and Wrangell, total season;
- 3. NI (Juneau, Haines, Skagway), total season;
- 4. Outside (Craig/Klawock, Sitka, Yakutat, Elfin Cove, Gustavus)
 - a. early season (through biweek 13),
 - b. late season (after biweek 13), and
 - c. total season.

Chinook salmon were collected from boats exiting the sport fishery at major boat harbors and boat ramps at each of the ports selected for surveying (Tables 8–10, Figure 2). Sampling design and sampling details for each port are described in Jaenicke et al. (2022, 2023a, 2023b). A tissue section was dissected from the pelvic fin of each sampled Chinook salmon and dried on Whatman paper. Anglers were interviewed to determine the creel port from which the Chinook salmon were harvested. At the end of the season, samples were shipped back to the ADF&G Gene Conservation

Laboratory in Anchorage for analysis. Associated data were archived as part of an age-sex-length database maintained by ADF&G Division of Sport Fish.

MIXED STOCK ANALYSIS

Laboratory Analysis

Samples were assayed for 13 microsatellite loci developed by the GAPS group for use in PST fisheries (CTC standardized baseline loci; Seeb et al. 2007). Genomic DNA was extracted from tissue samples using a NucleoSpin 96 Tissue Kit by Macherey-Nagel (Düren, Germany). Polymerase chain reaction (PCR) was carried out in 10 μ l reaction volumes (10 mM Tris-HCl, 50 mM KCl, 0.2 mM each dNTP, 0.5 units Taq DNA polymerase [Promega, Madison, WI]) using an Applied Biosystems (AB, Foster City CA) thermocycler. Primer concentrations, MgCl₂ concentrations, and the corresponding annealing temperature for each primer are available in Seeb et al. (2007). PCR fragment analysis was done on an AB 3730 capillary DNA sequencer. A 96-well reaction plate was loaded with 0.5 μ l PCR product along with 0.5 μ l of GS500LIZ (AB) internal lane size standard and 9.0 μ l of Hi-Di (AB). PCR bands were visualized and separated into bin sets using AB GeneMapper software v4.0. All laboratory analyses followed protocols accepted by the CTC.

Genetic data were collected as individual multilocus genotypes. According to the convention implemented by the CTC, at each locus a standardized allele is one that has a recognized holotype specimen from which the standardized allele can be reproduced using commonly applied fragment analysis techniques. By the process of sizing the alleles from the holotype specimens, any individual laboratory should be able to convert allele sizes obtained in the ADF&G laboratory to standardized allele names. Nontarget species, such as coho salmon *O. kisutch*, were identified during scoring and removed from further analysis. Genotype data were stored as GeneMapper (*.fsa) files on a network drive that was backed up nightly. Long-term storage of the data was in an *Oracle* database (LOKI) on a network drive maintained by ADF&G computer services.

Several measures were implemented to ensure the quality of data produced. First, each individual tissue sample was assigned a unique accession identifier. At the time DNA was extracted or analyzed from each sample, a sample sheet was created that linked each individual sample's code to a specific well number in a uniquely numbered 96-well plate. This sample sheet then followed the sample through all phases of the project, minimizing the risk of misidentification of samples through human-induced errors. Second, genotypes were assigned to individuals using a system in which 2 people score the genotype data independently. Discrepancies between the 2 sets of scores were then resolved with 1 of 2 possible outcomes: (1) 1 score was accepted and the other rejected, or (2) both scores were rejected, and no score was retained. Lastly, 8 samples from each 96-well DNA extraction plate were reanalyzed for all loci for quality control (QC). This enabled detection and correction of laboratory mistakes and allowed for estimation of genotyping error rates. Error rates were calculated as the number of conflicting genotypes, divided by the total number of genotypes examined.

Statistical Analysis

Data Retrieval and Genotype Quality Assurance

Genotypes from LOKI were retrieved and imported into R (R Core Team 2020).⁷ All subsequent analyses were performed in R unless otherwise noted. Prior to MSA, 2 statistical quality control analyses were conducted to ensure that only quality genotypic data was included in the estimation of stock compositions. First, individuals were removed that were missing substantial genotypic data from further analyses. Individuals missing genotypes for 20% or more of loci were excluded, because these samples are likely to have poor quality DNA. The inclusion of individuals with poor quality DNA could introduce genotyping errors and reduce accuracy and precision of MSA. Second, individuals with duplicate genotypes were identified and removed from further analyses. Duplicate genotypes can occur because of sampling or extracting the same individual twice and were defined as pairs of individuals sharing the same genotype in 95% of markers screened. The individual with the most missing data from each duplicate pair was removed from further analyses.

Troll Fishery Mixture Subsampling

Representative mixtures of individuals for MSA were created by subsampling individuals from the collected tissue samples in proportion to harvest by statistical week for each quadrant, or by statistical area in the case of the spring troll fishery. The harvest of Chinook salmon in each quadrant for a given troll fishery opening was obtained from the ADF&G Mark, Tag, and Age Laboratory website (https://mtalab.adfg.alaska.gov/CWT/reports/default.aspx) using the criteria in Table 11. The relative proportion of the total period harvest that was caught in each quadrant was then calculated for each fishery opening.

Eleven mixtures were necessary to generate stock composition estimates for the strata described above. For each fishery/quadrant stratum, individual samples were randomly selected from each statistical week in proportion to harvest. When a stratum was composed of multiple quadrants, individual samples were randomly selected from the entire set of samples in proportion to harvest in each quadrant. For regionwide (all quadrant) estimates, separate mixtures were made to estimate stock contributions for both the NO quadrant and all other quadrants combined. These separate estimates were then pooled into regionwide, stratified estimates by weighting by harvest (Templin et al. 2011). When sufficient samples were available, the target sample size for each mixture was 400; however, fine-scale estimates were generated down to a minimum sample size of 200. Estimates were generated for samples of 100–199 fish, but only for the broad-scale and driver stock reporting groups outlined in Table 1. Only broad-scale estimates were generated for sample sizes fewer than 100.

Sport Fishery Mixture Subsampling

Representative mixtures of individuals for MSA were created by subsampling individuals from the collected tissue samples in proportion to harvest by time and sample location (e.g., biweek and port). The inseason estimated Chinook salmon harvest for each biweek and port for a given fishing area was obtained from onsite sampling of sport harvested Chinook salmon by the Division of Sport Fish Southeast Alaska Marine Harvest Studies program (Jaenicke et al. 2022, 2023a, 2023b). The total harvest for each port is estimated by the Marine Harvest Studies program. The relative

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.r-project.org/.

proportion of the total harvest that was caught during each biweek and in each port was then calculated for each fishing area.

A total of 5 mixtures were necessary to generate stock composition estimates for the 6 sport fishery strata described previously. For each time period/port stratum, individual samples were randomly selected from the entire set of samples from that biweek and port. When a stratum was composed of multiple time periods or ports, individual samples were randomly selected in proportion to the harvest in each period or port. For the total season estimate for Outside ports, separate mixtures were made to estimate stock contributions for the early (through biweek 13) and late (after biweek 13) periods. These estimates were then combined into total season, stratified estimates by weighting by harvest each time period's harvest. When sufficient samples were available, the target sample size for each mixture was capped at 400. When the available samples from a given biweek and port were fewer than needed to adequately represent the quadrant in a mixture of 400, the total sample size was reduced to the point where each biweek and port was represented in proportion to harvest.

BAYES Analysis

The stock composition of fishery mixtures was estimated using the program BAYES (Pella and Masuda 2001). The Bayesian method of MSA is used to estimate the proportion of stocks caught within each fishery using 4 pieces of information: (1) a baseline of allele frequencies for each population, (2) the grouping of populations into the reporting groups desired for MSA, (3) prior information about the stock proportions of the fishery, and (4) the genotypes of fish sampled from the fishery.

The baseline of allele frequencies for Chinook salmon populations was obtained from the GAPS database. Results from 100% proof tests indicate that the fine-scale reporting groups used herein can be identified in mixtures with a 91% correct allocation or better (Gilk-Baumer et al. 2017a, 2017b).

The choice of prior information about stock proportions in a fishery (the prior probability distribution hereafter referred to as the *prior*) is important for increasing MSA accuracy (Habicht et al. 2012a). In this analysis, the estimated stock proportions from the previous year in each stratum were used as the prior for that stratum (i.e., 2019 estimates were used as prior parameters when generating 2020 estimates). The prior information about stock proportions was incorporated in the form of a Dirichlet probability distribution. The sum of all prior parameters was set to 1 (prior weight), which is equivalent to adding 1 fish to each mixture (Pella and Masuda 2001).

For each fishery mixture, 5 independent Markov Chain Monte Carlo (MCMC) chains of 40,000 iterations were run with different starting values and the first 20,000 iterations were discarded to remove the influence of the start values. We assessed the within- and among-chain convergence of estimates using the Raftery-Lewis (within-chain) and Gelman-Rubin (among-chain) diagnostics. These values measure the convergence of each chain to stable estimates (Raftery and Lewis 1996) and measure the variation of estimates within a chain to the total variation among chains (Gelman and Rubin 1992), respectively. If a Gelman-Rubin diagnostic for any stock group in a mixture was greater than 1.2, the mixture was reanalyzed with 80,000 iterations. If a mixture

Moran, P., M. Banks, T. D. Beacham, C. Garza, S. Narum, M. Powell, L. W. Seeb, R. L. Wilmot, and S. Young. Genetic analysis of Pacific salmonids (GAPS): Development of a standardized microsatellite DNA database for stock identification of Chinook salmon. Chinook funding proposal submitted to the US Chinook Technical Committee for funding under the budget increment associated with the US Letter of Agreement, 2004.

still had a diagnostic greater than 1.2 after the reanalysis, results from the 5 chains were averaged and a note was made in the results. We combined the second half of the 5 chains to form the posterior distribution and tabulated mean estimates, 90% credibility intervals, and standard deviations from a total of 100,000 iterations. In addition, we report the marginal median of the posterior distribution as a measure of central tendency for stock proportions (Pella and Masuda 2001). Misallocations to reporting groups that are either absent or at low proportions within mixtures can occur in MSA when the discriminant methods do not produce perfect identifiability (Pella and Milner 1987; Pella and Masuda 2001). Previous work has shown that the posterior distribution of these misallocations can be highly skewed, and the mean is much more sensitive to extreme values than the median (e.g., Habicht et al. 2012b). Both means and medians are reported in appendix tables, and means are reported in figures and in the text. Means reported in the text are rounded from the raw stock composition data not the rounded values found in appendix tables.

For regionwide estimates for the winter and summer troll fisheries, estimates from the NO quadrant and all other quadrants combined were pooled into total area estimates by weighing each quadrant's estimate by their respective harvests (stratified estimator). Similarly, for sport fishery total season estimates from the Outside area, early-season and late-season estimates were pooled into yearly estimates by weighing each season's estimate by their respective harvest proportions (stratified estimator). This analysis is described in detail in Templin et al. (2011).

To better describe annual trends across a longer time frame for the stocks that make up the largest proportion of the SEAK Chinook salmon harvest (i.e., the driver stocks), the 26 fine-scale reporting groups were condensed into 8 reporting groups that consisted of 7 driver stocks and an *Other* group (Table 1). Where possible, these reporting groups were aligned with stock groups used by the CTC for the PSC Chinook Model, and these groups perform well in genetic MSA. Further, the fine-scale groups were combined into 4 broad-scale reporting groups for describing trends on a large geographic scale (Table 1). When reporting groups were combined, credibility intervals were calculated from the raw BAYES output using the new groupings to accurately reflect uncertainty in the estimates.

These reporting groups are large and, in some situations, do not provide the desired resolution. To enable accurate and precise investigation at a finer scale and to improve visualization of results, proportional contributions are also provided graphically for a subset of the fine-scale reporting groups estimated that consistently contribute at least 5% to the harvest in at least 1 seasonal fishery per year. Again, all other stocks are included in an additional *Other* group, and credibility intervals were calculated from the raw BAYES output using the new groupings.

RESULTS

FISHERY SAMPLING

Troll Fishery

A total of 9,010 tissue samples were collected across all seasonal troll fisheries in AY 2020 (Table 2), which is well above the sampling goal of 6,880. A total of 8,937 tissue samples were collected across all seasonal troll fisheries in AY 2021 (Table 3), also above the sampling goal of 6,880. A total of 12,203 tissue samples were collected across all seasonal troll fisheries in AY 2022 (Table 4). Goals were generally met for all fishery periods, with the exception of late winter in AY 2021, but some samples were missed at some ports (Table 3).

Each accounting year, sampling of Chinook salmon during the winter fisheries began with the early winter opening on October 11 and continued until the late winter fishery closed by EO. The late winter fishery closed on March 15 in AY 2020 and AY 2021, to protect SEAK wild stocks. In AY 2022, the late winter fishery closed on March 15; however, it reopened in outside waters from April 3–30 (Hagerman and Vaughn 2022). The sampling goals for winter fisheries by port are heavily weighted towards Sitka (48%) and Craig (24%) where most of the seasonal harvest occurs. In 2020, a total of 1,555 samples (goal 830) were collected from the early winter troll fishery and 1,249 samples (goal 990) were collected from the late winter troll fishery, and 929 samples (goal 990) were collected from the early winter troll fishery, and 929 samples (goal 990) were collected from the late winter troll fishery. In 2022, a total of 1,005 samples (goal 830) were collected from the early winter troll fishery, and 2,942 samples (goal 990) were collected from the late winter troll fishery. In all years, sample goals were missed in Craig and Ketchikan in the early winter largely due to low harvest. In all years, sample goals were missed in Craig and Ketchikan in the late winter period.

Sampling of Chinook salmon during the spring troll fishery occurred during May and June. Sample goals were vastly exceeded in 2020, 2021, and 2022, with most of the samples collected from Sitka (Tables 2–4). There were no open spring troll areas in the NI quadrant; therefore, no samples were collected (Tables 5–7).

Sampling of Chinook salmon during the first retention period of the summer troll fishery occurred during July 1–6 in 2020, July 1–8 in 2021, and July 1–28 in 2022. Sample collection goals were largely met or exceeded, with the exception of Craig, Port Alexander, and Wrangell in 2020 and 2021.

Sampling of Chinook salmon during the second retention period of the summer troll fishery occurred during August 15–September 8 in 2020, August 13–September 3 in 2021, and August 1–September 20 in 2022. Sample goals were vastly exceeded in all years, with most of the samples collected from Sitka.

Sport Fishery

Sampling of Chinook salmon from SEAK sport fisheries began in April and ended in September of each year. The winter sport fishery experiences limited effort, primarily by Alaska residents, and was not sampled. A total of 3,552 tissue samples were collected in the 2020 sport fishing season, and 3,943 tissue samples were collected in the 2021 season, which are slightly below the sampling objective of 4,075. In 2022, a total of 4,198 tissue samples were collected which exceeded the sample objective. With few exceptions, objectives were generally met for outside ports, but not for the inside ports of Juneau, Petersburg-Wrangell, and Ketchikan (Tables 8–10).

In Ketchikan, the total sample sizes of 513 in 2020, and 584 in 2021 did not meet the objective of 600 samples. However, this sample size was sufficient to generate estimates to the fine-scale reporting groups for the Ketchikan area. In 2022, the total sample size of 756 exceeded the objective.

In Petersburg-Wrangell, the total samples collected during 2020–2022 did not meet the annual 650-sample objective. The tissues collected were sufficient to generate estimates to the fine-scale reporting groups for the Petersburg-Wrangell area.

The sampling objectives for NI fisheries by port are heavily weighted towards Juneau (95%), where the vast majority of the fishing effort is concentrated. The total sample size of 339 in 2020,

375 in 2021, and 498 in 2022 are all below the sampling objective of 600 but sufficient to generate estimates to the fine-scale reporting groups. No samples were taken in Haines or Skagway given restrictions in Section 15-A to conserve Chilkat River Chinook.

For Outside fisheries in 2020, a total of 1,109 samples (objective 1,375) were collected from biweeks 9–13, and 1,467 samples (objective 815) were collected from biweeks 14–18 (Table 8). For Outside fisheries in 2021, a total of 1,936 samples were collected from biweeks 9–13, and 895 samples were collected from biweeks 14–18 (Table 9). For Outside fisheries in 2022, a total of 1,988 samples were collected from biweeks 9–13, and 841 samples were collected from biweeks 14–18 (Table 10). The only objective not met was for Outside fisheries biweeks 9–13 in 2020, when the Sitka samples collected fell below the 1,000-sample objective for that port.

MIXED STOCK ANALYSIS

Laboratory Analysis

Quality control analyses demonstrated a low error rate for all samples analyzed. A total of 1,738 fish, or 22,594 genotype comparisons, were examined for quality control for 2020–2022. The discrepancy rate was 0.32% over all projects. This translates to an estimated error rate of 0.16%, assuming that laboratory errors are equally likely to occur in projects and quality control evaluations.

2020

Early Winter Troll Fishery

For broad-scale reporting groups, *Canada* was the highest contributor during the regionwide early winter troll fishery in AY 2020 (50%), followed by *Alaska* (26%), *US South* (24%), and *Transboundary* (*TBR*; 0.1%) reporting groups (Appendix B1).

For driver stock reporting groups, the largest contributor to the regionwide early winter troll fishery was *Other* (34%), followed by *SEAK/TBR* (26%), *North/Central British Columbia (NCBC*; 20%), *Interior Columbia River Su/F* (11%), and *West Vancouver* (8%) reporting groups (Figure 3, Appendix B2).

For the fine-scale reporting groups, the largest contributors to the regionwide early winter troll fishery were *East Vancouver* (19%), *S Southeast Alaska* (18%), *BC Coast/Haida Gwaii* (18%), *Interior Columbia River Su/F* (11%), *Puget Sound* (11%), *West Vancouver* (8%), and *Andrew* (7%) reporting groups (Figure 4, Appendix B3).

When considering harvest from the NO quadrant only, the contributions for driver stock reporting groups were somewhat different, with *Other* remaining the largest contributor (28 %), followed by *Interior Columbia River Su/F* (23%), *NCBC* (22%), *West Vancouver* (18%), and *SEAK/TBR* (7%) reporting groups (Figure 3, Appendix B2).

Late Winter Troll Fishery

For broad-scale reporting groups, *Canada* was the highest contributor during this fishery (46%), followed by *US South* (38%), and *Alaska* (15%) reporting groups. The *TBR* group had a low contribution (1%; Appendix B1).

For driver stock reporting groups, the largest contributor to the regionwide late winter troll fishery was *Other* (25%), followed by *West Vancouver* (22%), *Interior Columbia River Su/F* (19%), *SEAK/TBR* (16%), and *NCBC* (13%) reporting groups (Figure 3, Appendix B2).

For the fine-scale reporting groups, the largest contributor to the regionwide late winter troll fishery was *West Vancouver* (22%), followed by *Interior Columbia Su/F* (19%), *S Southeast Alaska* (12%), *BC Coast/Haida Gwaii* (12%), *East Vancouver* (8%), *Willamette Sp* (7%), and *Puget Sound* (5%) reporting groups (Figure 5, Appendix B4).

When considering harvest from the NO quadrant only, the contributions for driver stock reporting groups were similar to regionwide estimates with *Other* (27%), followed by *Interior Columbia River Su/F* (26%), *West Vancouver* (25%), *NCBC* (11%), and *SEAK/TBR* (5%) reporting groups (Figure 3, Appendix B2).

Spring Troll Fishery

During the spring troll fisheries, contributions of the broad-scale reporting groups were highly variable across the 3 quadrants analyzed. In the NO quadrant, *Canada* was the highest contributor (47%), followed by *Alaska* (30%), and *US South* (22%) reporting groups (Appendix B1). In the SO quadrant, *Canada* contributed much of the harvest (70%), followed by *Alaska* (23%), and *US South* (6%) reporting groups. In the SI quadrant *Alaska* contributed most of the harvest (84%) followed by *Canada* (10%). The *TBR* group made a low contribution (<5%) across all quadrants. There were no open spring troll areas in the NI quadrant in AY 2020.

For the driver stock reporting groups, contributions were also variable among quadrants during the spring troll fisheries. The largest contributor to the NO quadrant harvest was *SEAK/TBR* (31%), followed by *West Vancouver* (24%), *South Thompson* (16%), *Other* (11%), and *Interior Columbia Su/F* (10%) reporting groups (Figure 3, Appendix B2). In the SO quadrant, *West Vancouver* had the largest contribution (54%), followed by *SEAK/TBR* (23%), *NCBC* (7%), *Other* (6%), and *South Thompson* (6%) reporting groups. In the SI quadrant, harvest was dominated by *SEAK/TBR* (89%), with *Other* (6%) the only other reporting group greater than 5%.

For the fine-scale reporting groups, similar variability between quadrants was observed. In the NO quadrant, the highest proportion of Chinook salmon was from *Andrew* (27%), followed by *West Vancouver* (24%), *South Thompson* (16%), *Interior Columbia Su/F* (10%), and *Lower Columbia F* (6%; Figure 6, Appendix B5). In the SO quadrant, most of the harvest was from *West Vancouver*(54%), followed by *S Southeast Alaska* (22%), *BC Coast/Haida Gwaii* (7%), *South Thompson* (6%). Sample sizes in the SI quadrant were insufficient for fine-scale reporting groups.

Summer Troll Fishery, First Retention Period

For the broad-scale reporting groups during the first retention period of the summer troll fishery, *US South* accounted for the majority of the regionwide harvest (61%), followed by *Canada* (36%) and *Alaska* (3%) reporting groups. The *TBR* group had a low contribution (~0.1%; Appendix B1).

For driver stock reporting groups, the greatest contributor to the regionwide harvest during the first retention of the summer troll fishery was *South Thompson* (27%), followed by *Interior Columbia Su/F* (22%), *Oregon Coast* (20%), *Washington Coast* (13%), *Other* (7%), and *West Vancouver* (5%) reporting groups (Figure 3, Appendix B2).

For the fine-scale reporting groups, the first retention period of the summer troll fishery was led by South Thompson (27%), followed by Interior Columbia Su/F (22%), North Oregon Coast

(19%), Washington Coast (13%), Lower Colubnia F (6%), and West Vancouver (5%) reporting groups (Figure 7, Appendix B6).

Stock composition in the NO quadrant during the first retention period was similar to estimates for the entire area at the driver stock level of reporting groups, with harvests led by *Oregon Coast* (22%), followed by *South Thompson* (22%), *Interior Columbia Su/F* (22%), *Washington Coast* (15%), *Other* (8%), and *West Vancouver* (6%) reporting groups (Figure 3, Appendix B2).

Summer Troll Fishery, Second Retention Period

For the broad-scale reporting groups during the second retention period of the summer troll fishery, *US South* accounted for most of the regionwide harvest (73%), followed by *Canada* (20%), and *Alaska* (7%) reporting groups. The *TBR* group had a low contribution (~0.2%; Appendix B1).

For driver stock reporting groups, the greatest contributor to the regionwide harvest during the second retention of the summer troll fishery was *Interior Columbia Su/F* (36%), followed by *Oregon Coast* (17%), *Washington Coast* (16%), *West Vancouver* (11%), *SEAK/TBR* (8%), *Other* (5%), and *South Thompson* (5%) reporting groups (Figure 3, Appendix B2).

For the fine-scale reporting groups, the second retention period of the summer troll fishery was led by *Interior Columbia Su/F* (36%), followed by *Washington Coast* (16%), *North Oregon Coast* (12%), *West Vancouver* (11%), *South Thompson* (5%), *S Southeast Alaska* (5%), and *Mid Oregon Coast* (5%) reporting groups (Figure 8, Appendix B7).

Stock composition in the NO quadrant during the second retention period was similar to estimates for the entire area at the driver stock level of reporting groups, with harvests led by *Interior Columbia Su/F* (39%), followed by the *Washington Coast* (18%), *Oregon Coast* (16%), *West Vancouver* (12%), *SEAK/TBR* (5%), and *South Thompson* (5%) reporting groups (Figure 3, Appendix B2).

Ketchikan Area Sport Fishery

For the broad-scale reporting groups, *Alaska* was the largest contributor to the Ketchikan area sport fishery harvest (44%), followed by *Canada* (40%), and *US South* (16%) reporting groups. The *TBR* group was not detected (Appendix B8).

For driver stock reporting groups, the greatest contributor to the Ketchikan area sport fishery harvest was *SEAK/TBR* (44%), followed by *West Vancouver* (15%), *Other* (14%), *South Thompson* (11%), and *Interior Columbia Su/F* (8%) reporting groups (Figure 9, Appendix B9).

Stock contribution in the Ketchikan area sport fishery harvest for the fine-scale reporting groups was led by *S Southeast Alaska* (44%), followed by *West Vancouver* (15%), *South Thompson* (11%), *East Vancouver* (10%), and *Interior Columbia Su/F* (8%) reporting groups (Figure 10, Appendix B10).

Petersburg-Wrangell Area Sport Fishery

For the broad-scale reporting groups, *Alaska* was the largest contributor to the Petersburg-Wrangell area sport fishery harvest (73%), followed by *Canada* (20%), and *US South* (5%) reporting groups (Appendix B8). The *TBR* reporting group had a low contribution (~2%). Sample sizes were insufficient for both the driver stock and fine-scale reporting groups.

Northern Inside Area Sport Fishery

For the broad-scale reporting groups, *Alaska* was the largest contributor to the NI area sport fishery harvest (84%), followed by *Canada* (10%). The *TBR* (3%) and the *US South* (2%) aggregates each had low contributions (Appendix B8).

For driver stock reporting groups, the greatest contributor to the NI area sport fishery harvest was *SEAK/TBR* (88%; Figure 9, Appendix B9). The only other stock present at greater than 5% in this fishery was *NCBC* (8%).

Local stocks dominated sport fishery harvests in the NI area at the fine-scale (Figure 10, Appendix B10). The largest contributor was *Andrew* (79%), which is the broodsource for DIPAC Macaulay Hatchery located in Juneau. The only other stock present at greater than 5% in this fishery was *BC Coast/Haida Gwaii* (5%).

Outside Area Sport Fishery

For the broad-scale reporting groups, *Canada* was the largest contributor to the Outside area all season sport fishery harvest (51%), followed by *US South* (42%) and *Alaska* (7%) reporting groups (Appendix B8). In the early season, *Canada* was the largest contributor (49%), followed by *US South* (36%) and *Alaska* (15%) reporting groups. In the late season, the pattern was similar with *Canada* remaining the largest contributor (52%), followed by *US South* (45%), with a decrease in Alaska (3%). The *TBR* group had low contributions for all time periods analyzed (<1%).

The largest driver stock contributor to the sport fishery over the entire season to the Outside area was West Vancouver (32%) followed by Interior Columbia Su/F (20%), Washington Coast (11%), South Thompson (10%), Other (8%), SEAK/TBR (8%), Oregon Coast (6%), and NCBC (6%) reporting groups (Figure 9; Appendix B9).

For fine-scale reporting groups, the greatest contributor to the Outside area sport fishery harvest was *West Vancouver* (32%) followed by *Interior Columbia Su/F* (20%), *Washington Coast* (11%), and *South Thompson* (10%), and *North Oregon Coast* (5%) reporting groups (Figure 11; Appendix B11).

Comparing early and late season driver stock estimates in the Outside area for the driver stocks shows temporal changes in stock composition. In the early season, *West Vancouver* led the harvest (25%), followed by *SEAK/TBR* (16%), *Interior Columbia Su/F* (15%), *South Thompson* (13%), *Washington Coast* (10%), *NCBC* (8%), *Other* (8%), and *Oregon Coast* (6%) reporting groups (Figure 9; Appendix B9). During the late season, *West Vancouver* (36%) and *Interior Columbia Su/F* (23%) increased, *Washington Coast* (11%), *Other* (8%), and *Oregon Coast* (6%) remained similar, and *South Thompson* (8%), *NCBC* (4%), and *SEAK/TBR* (3%) decreased.

2021

Early Winter Troll Fishery

For broad-scale reporting groups, *Canada* was the highest contributor during the regionwide early winter troll fishery in AY 2021 (47%), followed by *Alaska* (31%), *US South* (21%), and *Transboundary* (0.3%) reporting groups (Appendix B12).

For driver stock reporting groups, the largest contributor to the regionwide early winter troll fishery was *SEAK/TBR* (32%), followed by *Other* (31%), *NCBC* (22%), *Interior Columbia River Su/F* (10%), and *West Vancouver* (5%) reporting groups (Figure 12; Appendix B13).

For the fine-scale reporting groups, the largest contributors to the regionwide early winter troll fishery were *S Southeast Alaska* (23%), *BC Coast/Haida Gwaii* (19%), *East Vancouver* (19%), *Interior Columbia Su/F* (10%), *Puget Sound* (9%), *Andrew* (8%), and *West Vancouver* (5%) reporting groups (Figure 13; Appendix B14).

When considering harvest from the NO quadrant only, the contributions for driver stock reporting groups had a lower contribution from *SEAK/TBR* with *Other* (34%) being the largest contributor followed by *NCBC* (21%), *Interior Columbia Su/F* (17%), *SEAK/TBR* (16%), and *West Vancouver* (11%) reporting groups (Figure 12; Appendix B13).

Late Winter Troll Fishery

For broad-scale reporting groups, *Canada* was the highest contributor during this fishery (62%), followed by *US South* (23%), and *Alaska* (16%) reporting groups. The *TBR* group had a low contribution (0.1%; Appendix B12).

For driver stock reporting groups, the largest contributor to the regionwide late winter troll fishery was *West Vancouver* (30%), followed by *Other* (21%), *NCBC* (17%), *SEAK/TBR* (16%), and *Interior Columbia River Su/F* (13%) reporting groups (Figure 12; Appendix B13).

For the fine-scale reporting groups, the largest contributor to the regionwide late winter troll fishery was *West Vancouver* (30%) followed by *BC Coast/Haida Gwaii* (14%), *Interior Columbia Su/F* (13%), *East Vancouver* (12%), *S Southeast Alaska* (11%), and *Willamette Sp* (5%) reporting groups (Figure 14; Appendix B15).

When considering harvest from the NO quadrant only, the contributions for driver stock reporting groups were similar to regionwide estimates with a lower contribution from *SEAK/TBR*. *West Vancouver* was the largest contributor (36%) followed by *Other* (17%), *NCBC* (17%), *Interior Columbia Su/F* (17%), and *SEAK/TBR* (7%) reporting groups (Figure 12; Appendix B13).

Spring Troll Fishery

During the spring troll fisheries, contributions of the broad-scale reporting groups were highly variable across the 3 quadrants analyzed. In the NO quadrant, *Canada* was the highest contributor (46%), followed by *Alaska* (34%) and *US South* (20%) reporting groups (Appendix B12). In the SO quadrant, *Canada* contributed most of the harvest (77%), followed by *Alaska* (19%) and *US South* (4%) reporting groups. In the SI quadrant *Alaska* contributed almost all the harvest (95%) followed by *Canada* (4%). The *TBR* group made a low contribution (<1%) across all quadrants. There were no open spring troll areas in the NI quadrant in AY2021.

For the driver stock reporting groups, contributions were similarly variable among quadrants. The largest contributor to the NO quadrant harvest was *SEAK/TBR* (34%), followed by *West Vancouver* (27%), *South Thompson* (13%), *Interior Columbia Su/F* (11%), *Other* (7%), and *NCBC* (5%) reporting groups (Figure 12; Appendix B13). In the SO quadrant, *West Vancouver* had the largest contribution (67%), followed by *SEAK/TBR* (19%), and *NCBC* (6%) reporting groups. In the SI quadrant, almost all the harvest was *SEAK/TBR* (96%).

For the fine-scale reporting groupsin the NO quadrant, the highest proportion of Chinook salmon was from *Andrew* (31%), followed by *West Vancouver* (27%), *South Thompson* (13%), and *Interior Columbia Su/F* (11%; Figure 15; Appendix B16). In the SO quadrant, the highest proportion of Chinook salmon was from *West Vancouver* (67%), followed by *S Southeast Alaska*

(18%), and *BC Coast/Haida Gwaii* (5%). Sample sizes in the SI quadrant were insufficient for fine-scale reporting groups.

Summer Troll Fishery, First Retention Period

For the broad-scale reporting groups during the first retention period of the summer troll fishery, *US South* accounted for the majority of the regionwide harvest (51%), followed by *Canada* (43%) and *Alaska* (5%) reporting groups. The *TBR* group had a low contribution (~0.7%; Appendix B12).

For driver stock reporting groups, the greatest contributor to the regionwide harvest during the first retention of the summer troll fishery was *South Thompson* (31%), followed by *Interior Columbia Su/F* (24%), *Oregon Coast* (11%), *Washington Coast* (10%), *West Vancouver* (8%), *Other* (7%), and *SEAK/TBR* (6%) reporting groups (Figure 12; Appendix B13).

For the fine-scale reporting groups, the first retention period of the summer troll fishery was led by *South Thompson* (31%), followed by *Interior Columbia Su/F* (24%), *North Oregon Coast* (11%), *Washington Coast* (10%), and *West Vancouver* (8%) reporting groups (Figure 16; Appendix B17).

Stock composition in the NO quadrant during the first retention period was similar to estimates for the entire area at the driver stock level of reporting groups, but with a lower proportion of *South Thompson*. Harvests were led by *Interior Columbia Su/F* (24%), followed by *South Thompson* (21%), *Washington Coast* (14%), *West Vancouver* (13%), *Oregon Coast* (13%), *Other* (7%), and *SEAK/TBR* (6%) reporting groups (Figure 12; Appendix B13).

Summer Troll Fishery, Second Retention Period

For the broad-scale reporting groups during the second retention period of the summer troll fishery, *US South* accounted for most of the regionwide harvest (72%), followed by *Canada* (22%) and *Alaska* (6%) reporting groups—an increase in *US South* and corresponding decrease in *Canada* relative to the first retention period. The *TBR* group had a low contribution (~0.1%; Appendix B12).

For driver stock reporting groups, the greatest contributor to the regionwide harvest during the second retention of the summer troll fishery was *Interior Columbia Su/F* (30%), followed by *Washington Coast* (18%), *Oregon Coast* (17%), *West Vancouver* (12%), *Other* (8%), *SEAK/TBR* (6%), and *South Thompson* (6%) reporting groups (Figure 12; Appendix B13).

Stock composition for fine-scale reporting groups was largely like the driver stock groups. Contributions to the second retention period were led by *Interior Columbia Su/F* (30%) followed by *Washington Coast* (18%), *North Oregon Coast* (15%), *West Vancouver* (12%), *South Thompson* (6%), and *Lower Columbia F* (5%) reporting groups (Figure 17; Appendix B18).

Stock composition in the NO quadrant during the second retention period was like estimates for the entire area at the driver stock level of reporting groups, with harvests led by *Interior Columbia Su/F* (33%), followed by the *Washington Coast* (21%), *Oregon Coast* (15%), *West Vancouver* (13%), *Other* (7%), and *South Thompson* (6%) reporting groups (Figure 12; Appendix B13).

Ketchikan Area Sport Fishery

For the broad-scale reporting groups, *Canada* was the largest contributor to the Ketchikan area sport fishery harvest (46%), followed by *Alaska* (43%) and *US South* (11%) reporting groups. The *TBR* group had a low contribution (<0.1%; Appendix B19).

For driver stock reporting groups, the greatest contributor to the Ketchikan area sport fishery harvest was *SEAK/TBR* (43%), followed by *West Vancouver* (25%), *South Thompson* (12%), *Other* (8%), *Interior Columbia Su/F* (6%), and *NCBC* (5%) reporting groups (Figure 18; Appendix B20).

Stock contribution in the Ketchikan area sport fishery harvest for the fine-scale reporting groups was dominated by *S Southeast Alaska* (42%). *West Vancouver* (25%), *South Thompson* (12%), and *Interior Columbia Su/F* (6%) reporting groups were the only other stocks present at greater than 5% in this fishery (Figure 19; Appendix B21).

Petersburg-Wrangell Area Sport Fishery

For the broad-scale reporting groups, *Alaska* contributed the most to the Petersburg-Wrangell area sport fishery harvest (84%), followed by *Canada* (15%), and *US South* (1%) reporting groups (Appendix B23). The *TBR* group had a low contribution (<0.1%; Appendix B19).

For driver stock reporting groups, the greatest contributor to the Petersburg-Wrangell area sport fishery harvest was *SEAK/TBR* (85%), followed by the *NCBC* (7%) reporting group (Figure 18; Appendix B20).

Sample sizes were insufficient for fine-scale reporting groups.

Northern Inside Area Sport Fishery

For the broad-scale reporting groups, *Alaska* contributed the most to the NI area sport fishery harvest (80%), followed by *Canada* (10%), *TBR* (8%), and *US South* (2%) reporting groups (Appendix B19).

For driver stock reporting groups, the greatest contributors to the NI area sport fishery harvest were *SEAK/TBR* (88%) and *NCBC* (10%; Figure 18; Appendix B20).

Sport fishery harvests in the NI area at the fine-scale were dominated by local stocks (Figure 19; Appendix B21). The largest contributor was *Andrew* (78%), which is the broodsource for DIPAC Macaulay Hatchery located in Juneau. The only other stock present at greater than 5% in this fishery was *BC Coast/Haida Gwaii* (8%).

Outside Area Sport Fishery

For the broad-scale reporting groups, Canada was the largest contributor to the Outside area all-season sport fishery harvest (54%), followed by US South (35%), and Alaska (11%) reporting groups (Appendix B19). In the early season, Canada was the largest contributor (51%), followed by US South (35%), and Alaska (14%) reporting groups. In the late season, the proportion of Canada increased and the proportion of Alaska decreased, with Canada accounting for the majority of the harvest (62%), followed by US South (36%), and Alaska (2%) reporting groups. The TBR group had low contributions for all time periods analyzed (<0.1%).

The largest driver stock contributor to the sport fishery over the entire season to the Outside area was *West Vancouver* (26%), followed by *South Thompson* (18%), *Interior Columbia Su/F* (18%), *SEAK/TBR* (11%), *Washington Coast* (8%), *NCBC* (7%), and *Other* (7%) reporting groups (Figure 18, Appendix B20).

For fine-scale reporting groups, the greatest contributor to the Outside area sport fishery harvest was *West Vancouver* (26%), followed by *South Thompson* (18%), *Interior Columbia Su/F* (18%), *Washington Coast* (8%), *Andrew* (6%), and *S Southeast Alaska* (5%) reporting groups (Figure 20, Appendix B22).

Comparing early and late season driver stock estimates in the Outside area for the driver stocks shows temporal changes in stock composition. In the early season, *West Vancouver* led the harvest (24%), followed by *Interior Columbia Su/F* (18%), *South Thompson* (17%), *SEAK/TBR* (14%), *Washington Coast* (7%), *Other* (7%), *NCBC* (6%), and *Oregon Coast* (6%) reporting groups (Figure 18, Appendix B20). During the late season, *West Vancouver* (31%), *South Thompson* (20%), *Washington Coast* (12%), and *NCBC* (9%) increased, while *Interior Columbia Su/F* (18%) remained similar relative to early season. Whereas, during the late season, *SEAK/TBR* (2%), *Other* (5%), and *Oregon Coast* (3%) decreased in stock composition.

2022

Early Winter Troll Fishery

For broad-scale reporting groups, *Canada* was the highest contributor during the regionwide early winter troll fishery in AY 2022 (34%), followed by *US South* (33%), *Alaska* (32%), and *Transboundary* (*TBR*; 1%) reporting groups (Appendix B23).

For driver stock reporting groups, the largest contributor to the regionwide early winter troll fishery was *SEAK/TBR* (33%), followed by *Other* (22%), *NCBC* (19%), and *Interior Columbia Su/F* (18%) reporting groups (Figure 21, Appendix B24).

For the fine-scale reporting groups, the largest contributors to the regionwide early winter troll fishery were *S Southeast Alaska* (23%), *Interior Columbia Su/F* (18%), *BC Coast/Haida Gwaii* (16%), *Puget Sound* (9%), *Andrew* (9%), and *East Vancouver* (8%) reporting groups (Figure 22, Appendix B25).

When considering harvest from the NO quadrant only, the contributions for driver stock reporting groups were somewhat different than the regionwide estimates. *Interior Columbia Su/F* was the largest contributor (35%), followed by *Other* (23%), *NCBC* (19%), *SEAK/TBR* (9%), and *West Vancouver* (8%) reporting groups (Figure 21, Appendix B24).

Late Winter Troll Fishery

For broad-scale reporting groups, *Canada* was the highest contributor during this fishery (47%), followed by *US South* (36%), and *Alaska* (14%) reporting groups. The *TBR* group had a low contribution (2%; Appendix B23).

For driver stock reporting groups, the largest contributor to the regionwide late winter troll fishery was *West Vancouver* (28%), followed by *Other* (20%), *SEAK/TBR* (17%), *Interior Columbia River Su/F* (16%), and *NCBC* (10%) reporting groups (Figure 21, Appendix B24).

For the fine-scale reporting groups, the largest contributor to the regionwide late winter troll fishery was *West Vancouver* (28%), followed by *Interior Columbia Su/F* (16%), *BC Coast/Haida Gwaii* (9%), *Willamette Sp* (8%), *S Southeast Alaska* (8%), and *Andrew* (7%) reporting groups (Figure 23, Appendix B26).

When considering harvest from the NO quadrant only, the contributions for driver stock reporting groups were similar to regionwide estimates with *West Vancouver* being the largest contributor (24%), followed by *Other* (21%), *Interior Columbia Su/F* (20%), *SEAK/TBR* (16%), *NCBC* (9%), and *South Thompson* (5%) reporting groups (Figure 21, Appendix B24).

Spring Troll Fishery

During the spring troll fisheries, contributions of the broad-scale reporting groups were highly variable across the 3 quadrants analyzed. In the NO quadrant, stock composition was split evenly among Canada (35%), Alaska (34%), and US South (31%) reporting groups (Appendix B23). In the SO quadrant, Canada contributed most of the harvest (62%), followed by Alaska (29%), and US South (6%) reporting groups. In the SI quadrant, Alaska contributed almost all of the harvest (92%), followed by Canada (5%). The TBR group had a low contribution (<2%) across all quadrants.

For the driver stock reporting groups, contributions were also variable among quadrants during the spring troll fisheries. The largest contributor to the NO quadrant harvest was SEAK/TBR (34%), followed by West Vancouver (25%), Interior Columbia Su/F (18%), Other (7%), Washington Coast (6%), and South Thompson (5%) reporting groups (Figure 21, Appendix B24). In the SO quadrant, West Vancouver had the largest contribution (50%), followed by SEAK/TBR (32%), NCBC (7%), and Other (7%) reporting groups. In the SI quadrant, SEAK/TBR (94%) contributed almost all the harvest.

For the fine-scale reporting groups, similar variability between quadrants was observed. In the NO quadrant, the highest proportion of Chinook salmon was from *Andrew* (31%), followed by *West Vancouver* (25%), *Interior Columbia Su/F* (18%), *Washington Coast* (6%), and *South Thompson* (5%) reporting groups (Figure 24, Appendix B27). In the SO quadrant, the highest proportion was from *West Vancouver* (50%), followed by *S Southeast Alaska* (21%), *Andrew* (8%), and *BC Coast/Haida Gwaii* (7%) reporting groups. In the SI quadrant, harvests were dominated by *S Southeast Alaska* (92%).

Summer Troll Fishery, First Retention Period

For the broad-scale reporting groups during the first retention period of the summer troll fishery, *US South* accounted for most of the regionwide harvest (69%), followed by *Canada* (24%), and *Alaska* (7%) reporting groups. The *TBR* group had a low contribution (<0.1%; Appendix B23).

For driver stock reporting groups, the greatest contributor to the regionwide harvest during the first retention of the summer troll fishery was *Interior Columbia Su/F* (30%), followed by *Washington Coast* (16%), *Oregon Coast* (16%), *South Thompson* (11%), *Other* (8%), *West Vancouver* (8%), and *SEAK/TBR* (7%) reporting groups (Figure 21, Appendix B24).

For the fine-scale reporting groups, the first retention period of the summer troll fishery was led by *Interior Columbia Su/F* (30%), followed by *Washington Coast* (16%), *North Oregon Coast* (15%), *South Thompson* (11%), *West Vancouver* (8%), and *Lower Columbia F* (6%) reporting groups (Figure 25, Appendix B28).

Stock composition in the NO quadrant during the first retention period was very similar to estimates for the entire area at the driver stock level of reporting groups, with harvests led by *Interior Columbia Su/F* (31%), followed by *Washington Coast* (17%), *Oregon Coast* (16%), *South Thompson* (9%), *Other* (9%), *West Vancouver* (8%), and *SEAK/TBR* (6%) reporting groups (Figure 21, Appendix B24).

Summer Troll Fishery, Second Retention Period

For the broad-scale reporting groups during the second retention period of the summer troll fishery, *US South* accounted for most of the regionwide harvest (73%), followed by *Canada* (19%), and

Alaska (7%) reporting groups—very similar to the first retention period. The *TBR* group had a low contribution (~1%; Appendix B23).

For driver stock reporting groups, the greatest contributor to the regionwide harvest during the second retention of the summer troll fishery was *Interior Columbia Su/F* (30%), followed by *Washington Coast* (21%), *Oregon Coast* (16%), *West Vancouver* (10%), *SEAK/TBR* (9%), and *Other* (8%) reporting groups (Figure 21, Appendix B24).

For the fine-scale reporting groups, the second retention period of the summer troll fishery was led by *Interior Columbia Su/F* (30%), followed by *Washington Coast* (21%), *North Oregon Coast* (15%), *West Vancouver* (10%), and *S Southeast Alaska* (6%) reporting groups (Figure 26, Appendix B29).

Stock composition in the NO quadrant during the second retention period was similar to estimates for the entire area at the driver stock level of reporting groups, with harvests led by *Interior Columbia Su/F* (31%), followed by the *Washington Coast* (23%), *Oregon Coast* (14%), *West Vancouver* (11%), *Other* (8%), and *SEAK/TBR* (7%) reporting groups (Figure 21, Appendix B24).

Ketchikan Area Sport Fishery

For the broad-scale reporting groups, *Alaska* accounted for the majority of the Ketchikan area sport fishery harvest (57%), followed by *Canada* (25%), and *US South* (17%) reporting groups. The *TBR* group had a low contribution (<0.2%; Appendix B30).

For driver stock reporting groups, the greatest contributor to the Ketchikan area sport fishery harvest was *SEAK/TBR* (58%), followed by *West Vancouver* (13%), *Interior Columbia Su/F* (9%), *Other* (5%), and *South Thompson* (5%) reporting groups (Figure 27, Appendix B31).

Stock contribution in the Ketchikan area sport fishery harvest for the fine-scale reporting groups was mostly *S Southeast Alaska* (53%), followed by *West Vancouver* (13%), *Interior Columbia Su/F* (9%), and *South Thompson* (5%) reporting groups (Figure 28, Appendix B32).

Petersburg-Wrangell Area Sport Fishery

For the broad-scale reporting groups, *Alaska* was the largest contributor to the Petersburg-Wrangell area sport fishery harvest (87%), followed by *Canada* (10%), and *US South* (4%) reporting groups (Appendix B30). The *TBR* reporting group was present at low levels (<0.2%). Sample sizes were insufficient for both the driver stock and fine-scale reporting groups.

Northern Inside Area Sport Fishery

For the broad-scale reporting groups, *Alaska* was the largest contributor to the NI area sport fishery harvest (83%), followed by *Canada* (13%). The *TBR* (4%) and the *US South* (0.5%) aggregates each had low contributions (Appendix B30).

For driver stock reporting groups, the greatest contributor to the NI area sport fishery harvest was *SEAK/TBR* (86%; Figure 27, Appendix B31). The only other stock present at greater than 5% in this fishery was *NCBC* (12%).

Sport fishery harvests in the NI area at the fine scale were dominated by local stocks (Figure 28, Appendix B32). The largest contributor was *Andrew* (74%), which is the broodsource for DIPAC Macaulay Hatchery located in Juneau. The only other stock present at greater than 5% in this fishery are *BC Coast/Haida Gwaii* (9%), and *S Southeast Alaska* (8%).

Outside Area Sport Fishery

For the broad-scale reporting groups, *US South* was the largest contributor to the Outside area all season sport fishery harvest (49%), followed by *Canada* (38%), and *Alaska* (12%) reporting groups (Appendix B30). In the early season, *US South* was the largest contributor (49%), followed by *Canada* (36%), and *Alaska* (15%) reporting groups. In the late season, the pattern was similar with *US South* (52%) and *Canada* (44%) increasing, while Alaska (4%) decreased. The *TBR* group had low contributions for all time periods analyzed (<1%).

The largest driver stock contributor to the sport fishery over the entire season to the Outside area was *West Vancouver* (22%), followed by *Interior Columbia Su/F* (22%), *Washington Coast* (15%), *SEAK/TBR* (12%), *South Thompson* (8%), *Oregon Coast* (8%), *NCBC* (7%), and *Other* (6%) reporting groups (Figure 27, Appendix B31).

For fine-scale reporting groups, the greatest contributor to the Outside area sport fishery harvest was *West Vancouver* (22%), followed by *Interior Columbia Su/F* (22%), *Washington Coast* (15%), *South Thompson* (8%), *Andrew* (7%), and *North Oregon Coast* (7%) reporting groups (Figure 29, Appendix B33).

Comparing early and late season driver stock estimates in the Outside area for the driver stocks shows temporal changes in stock composition. In the early season, *Interior Columbia Su/F* led the harvest (22%), followed by *West Vancouver* (20%), *SEAK/TBR* (15%), *Washington Coast* (14%), *South Thompson* (9%), *Oregon Coast* (8%), *NCBC* (6%), and *Other* (6%) reporting groups (Figure 27, Appendix B31). During the late season, *West Vancouver* (27%), *Washington Coast* (18%), and *NCBC* (9%) increased, while *Interior Columbia Su/F* (23%), *Oregon Coast* (7%), and *Other* (6%) remained similar relative to early season. Whereas, during the late season, *SEAK/TBR* (5%) and *South Thompson* (6%) decreased in stock composition.

DISCUSSION

Genetic MSA has been successfully used to estimate the composition of Chinook salmon harvested in the commercial troll fishery since 1998 and the sport fishery since 2004 (Crane et al. 2000; Templin et al. 2011; Gilk-Baumer et al. 2013, 2017a, 2017b, 2017c, 2018; Shedd et al. 2021a, 2021b, 2022). Because the 7 aggregate driver stocks make up the vast majority (>90%) of all Chinook salmon annually harvested in SEAK troll and sport fisheries, these stock aggregates influence the harvest allocations under the PST. Genetic MSA is the preferred method to provide accurate and precise harvest estimates for these large aggregates of driver stocks. These estimates indicate that the composition of the harvest varies spatially and by seasonal fishery, but essentially the same constituent stocks are present year to year.

INTRA-ANNUAL VARIABILITY

Temporal Variability

Comparing the harvest composition among seasonal troll fisheries in AY 2020, AY 2021, and AY2022 reveals considerable variability (Figures 3, 12, and 21). The composition of early and late winter fisheries includes a mixture of more stocks than other seasonal fisheries; the 7 driver stocks account for 66% of the early and 75% of the late winter harvest in 2020, 69% of the early and 79% of the late winter harvest in 2021, and 78% of the early and 80% of the late winter harvest in 2022 (Appendices B2, B13, and B24). The early winter fishery was largely composed of *SEAK/TBR*, *NCBC*, and *Other* driver stocks in 2020 and 2021, while in 2022, the early winter fishery was

composed largely of SEAK/TBR, NCBC, Interior Columbia Su/F, and Other driver stocks. The fine-scale reporting group breakdown shows that most of the Other driver stock group came from East Vancouver and Puget Sound in all 3 years (Appendices B3, B14, and B25). The late winter fishery was led by contributions from West Vancouver in 2021 and 2022, followed by Other, SEAK/TBR, NCBC, and Interior Columbia Su/F driver stocks. In the late winter 2020 fishery, Other was the main contributing stock group, followed by West Vancouver, Interior Columbia Su/F, SEAK/TBR, and NCBC. The fine-scale reporting group breakdown shows that most of the Other driver stock group came from East Vancouver, Puget Sound, and Willamette Sp (Appendices B4, B15, and B26). By contrast, during the spring troll fishery, when fishing effort is directed at harvesting SEAK-origin hatchery stocks, the contribution of SEAK-origin Chinook salmon (hatchery-origin plus natural-origin) is typically considerably higher than at other times of the year. In 2020, the SEAK/TBR driver stock contributed 33%, followed by West Vancouver at 28%, and South Thompson at 13%. In 2021, SEAK/TBR contributed 38%, and West Vancouver contributed 32% to the spring troll fishery; and in 2022, SEAK/TBR contributed 45%, West Vancouver contributed 24%, and Interior Columbia Su/F contributed 13%. Roughly 90%, 94%, and 94% of the spring harvest composition was accounted for by the 7 driver stocks in 2020, 2021, and 2022, respectively.

In 2020, the harvest composition in the first retention period of the summer troll fishery was led by South Thompson (27%), Interior Columbia Su/F (22%), and Oregon Coast (20%) driver stocks; overall, 93% of harvest was contributed by driver stocks. In 2021, the harvest composition in the first retention period of the summer troll fishery was led by South Thompson (31%), Interior Columbia Su/F (24%), Oregon Coast (11%), and Washington Coast (10%) driver stocks; overall, 92% of harvest was contributed by driver stocks. In 2022, the harvest composition in the first retention period of the summer troll fishery was led by *Interior Columbia Su/F* (30%), *Washington* Coast (16%), Oregon Coast (16%), and South Thompson (11%) driver stocks; overall, 91% of harvest was contributed by driver stocks. In the second retention of the summer troll fishery in 2020, the harvest composition shifted to *Interior Columbia Su/F* (37%), *Oregon Coast* (17%), Washington Coast (16%), and West Vancouver (11%) driver stocks; overall, 95% of the harvest was contributed by driver stocks. In 2021, in the second retention of the summer troll fishery, the harvest composition was very similar to 2020 with contributions from Interior Columbia Su/F (30%), Washington Coast (18%), Oregon Coast (17%), and West Vancouver (12%) driver stocks; overall, 92% of the harvest was contributed by driver stocks. This composition was similar in the 2022 second retention of the summer troll fishery with contributions from *Interior Columbia Su/F* (30%), Washington Coast (21%), and Oregon Coast (16%) driver stocks; overall, 92% of the harvest was contributed by driver stocks.

Similarly, the stock composition of the Outside area sport fishery harvest shows some seasonal variability (Figures 9, 18, and 27). In the 2020 early season, *West Vancouver* reporting group contributed the largest amount (25%), followed by *SEAK/TBR* (15%), *Interior Columbia Su/F* (15%), and *South Thompson* (13%) reporting groups (Appendices B9, B20, and B31). In the 2021 early season, *West Vancouver* was the largest reporting group (24%), followed by *Interior Columbia Su/F* (18%), *South Thompson* (17%), and *SEAK/TBR* (14%). In the 2022 early season, *Interior Columbia Su/F* was the largest reporting group (22%), followed by *West Vancouver* (20%), *SEAK/TBR* (15%), and *Washington Coast* (14%). The largest contributors to the late season sport fishery were a bit different; *West Vancouver* was again the primary contributor, with 36%, 31%, and 27% in 2020, 2021, and 2022, respectively; but it was followed by *Interior Columbia Su/F* in both 2020 and 2022 (both 23%), and *South Thompson* (20%) in 2021. For both the early

and late season fishery in AY 2020, 92% of the harvest is attributable to driver stocks; whereas the early season fishery in AY 2021, 93% of the harvest was attributable to driver stocks, and the late season fishery harvest was composed of 94% driver stocks. In AY 2022, for both the early and late season fishery, harvest was 94% attributable to driver stocks.

Although the 7 driver stocks accounted for most of the harvests in AY 2020–2022, the proportional contribution of each stock varied across seasons. The *SEAK/TBR* driver stock aggregate was a primary contributor to both spring troll fisheries and all non-Outside sport fisheries (Ketchikan, Petersburg-Wrangell, and Northern Inside), and present in low proportions for other seasonal fisheries (Figures 3, 9, 12, 18, 21, and 27). This reporting group was also more prevalent in early season (biweeks 9–13) than late season (biweeks 14–18) Outside area sport fisheries (Figures 9, 18, and 27).

Interior Columbia Su/F accounted for the largest portion of the annual troll harvest (24–27%) in all 3 years, was most pronounced in the second retention of the summer troll fisheries (30–37%), and was present in Outside sport fisheries in all years (18–22%). In contrast to Interior Columbia Su/F, the NCBC driver stock aggregate only contributed substantially to winter troll fisheries and were largely absent from the spring and summer periods, contributing only a small percentage to the annual troll (4–5%) and sport (6–7%) harvests, a trend seen in previous years as well (Shedd et al. 2020). West Vancouver accounted for a relatively large portion of the harvest during the late winter (22–30%) and spring (24–31%) troll fisheries, as well as to the Craig (39–47%), Ketchikan (13–25%), Sitka (20–23%), and Outside (22–32%) sport fisheries, being slightly more prevalent during the late Outside period (27–36%) than the early Outside period (22–25%).

South Thompson, Washington Coast, and Oregon Coast stocks were only present in small amounts from the winter and spring troll fisheries and only contributed significantly to the summer troll openers. South Thompson contributed more to the first summer retention period in 2020 and 2021 (27% and 31%, respectively), and was only present 6% or less in the second summer retention in all 3 years. Washington Coast contributed to nearly all summer troll fisheries at greater than 15%, and Oregon Coast was present in summer troll fisheries in 2020 in both first and second retention periods, in 2021 only in the second retention regionwide, and in both first and second retentions in 2022, with the exception of the northern Outside second retention period.

Spatial Variability

Variation in stock composition also occurs spatially among the troll fishery quadrants. In general, stock contribution estimates based on samples from the NO quadrant had the most diverse stock compositions and the highest proportion of stocks originating south of Alaska (Figures 4–8, 13–17, and 22–26). This was most pronounced in the spring fishery where the SI quadrant had the highest proportion of *Alaska* and *TBR* stocks (making up 89–96% of the harvest), and the proportion of those stocks in the NO quadrant was 31–34% (Appendices B1, B12, and B23). In the winter troll fisheries, stock contribution estimates for the NO quadrant were often similar to the regionwide estimates, except that the proportion of *SEAK/TBR* was much lower in the NO quadrant, except for late winter in 2022 (17% regionwide, 16% NO). For summer fisheries, stock contribution estimates based on samples from the NO quadrant were similar in most cases to estimates based on samples from all quadrants (Figures 4–8, 13–17, and 22–26). This reflects the high proportion of fish harvested in this quadrant relative to the other quadrants.

The stock composition of sport fishery harvests also varies greatly by area. The fisheries located in inside waters were composed primarily of *Alaska* and *TBR* stocks (NI: 86–88%; Petersburg-

Wrangell: 75–87%; Ketchikan: 43–58%; Figures 10, 19, and 28; Appendices B8, B19, and B30). Local stocks were the major contributors to fisheries in each of these areas, with more northern (Alaska and TBR) stocks present in the NI fishery, and the prevalence of nonlocal stocks originating from south of the Alaska/Canada border increasing in the more southern areas of Southeast Alaska. The NI fishery takes place near the ports of Juneau, Haines, and Skagway, which are proximal to the origin of stocks that make up the N Southeast Alaska and Taku reporting groups. In addition, the Andrew reporting group is the primary broodstock for hatcheries in northern and central SEAK, including the DIPAC Macaulay Hatchery located in Juneau and release sites near Petersburg, Wrangell, and Sitka. Andrew was the largest contributor to the NI fishery harvest (74–79%), whereas a smaller share of the harvest was contributed by BC Coast/Haida Gwaii (6%; Figures 10, 19, and 28; Appendices B8, B19, and B30). The largest contributor to the Ketchikan fishery was S Southeast Alaska (42–53%), which is composed of 14 nearby populations, including the Chickamin River, which is the primary broodstock for hatcheries in southern SEAK, including releases near Ketchikan and Craig. Additional contributions to the Ketchikan fishery were from the West Vancouver (13-25%) and South Thompson (5-12%) reporting groups (Figures 10, 19, and 28; Appendices B8, B19, and B30). Generally, few non-Alaska or non-transboundary groups were represented in these inside fisheries.

In contrast to inside areas, Chinook salmon sport fishery harvests that took place in the Outside area were composed of a greater variety of stocks with many more fish from non-Alaska reporting groups (Figures 11, 20, and 29; Appendices B8, B19, and B30). This is similar to the spatial pattern of catch composition observed in troll fisheries occurring in outside quadrants (Figures 3, 9, 12, 18, 21, and 27). Although the sport fishery is more protracted when compared to each seasonal commercial troll fishery and occurs closer to shore, there is overlap in timing and location with the spring and summer commercial troll fisheries that allows comparison of represented reporting groups. Both the Outside area sport fishery and the NO quadrant troll fishery harvest a variety of stocks, and the same reporting groups (SEAK/TBR, NCBC, West Vancouver, South Thompson, Washington Coast, Interior Columbia Su/F, and Oregon Coast) are prevalent in both fisheries. In all 3 years, the Ketchikan area sport fishery and SI quadrant spring troll fishery had the same largest contributor (SEAK/TBR), but the sport fishery also had substantial contributions from West Vancouver in all years, and South Thompson in 2020 and 2021 (Figures 3, 9, 12, 18, 21, and 27). The NO quadrant spring troll fishery had much higher proportions of local stocks than the early season (biweeks 9–13) outside waters sport fishery: SEAK/TBR (31–34% troll, 15–16% sport), whereas the sport fishery had similar proportions of West Vancouver (25–27% troll, 22–32% sport) and South Thompson (5-16% troll, 8-18% sport), and higher proportions in Washington Coast (3–6% troll, 7–15% sport), *Interior Columbia Su/F* (10–18% troll, 18–22% sport; Appendices B5, B11, B16, B22, B27, and B33).

Similar to the early season, the late season (biweeks 14–18) Outside area sport fishery harvested a higher proportion of fish from *West Vancouver* (6–13% troll, 27–36% sport) compared to the first retention period of the NO quadrant summer troll fishery. These differences are probably due to where these fisheries take place—sport anglers typically fish closer to the coastline and commercial trollers sometimes operate well offshore.

INTER-ANNUAL TRENDS

Some interesting trends can be observed regarding the stock composition of SEAK troll and sport fisheries under the current PST fishing regime from the data reported herein and from similar

studies dating back to AY 2009 (Gilk-Baumer et al. 2013, 2017a, 2017b, 2017c, 2018; Shedd et al. 2021a, 2021b, 2022). When making inferences on the relative contributions of each stock group to the overall harvest by fishery, it is important to note that the troll fishery harvests substantially more fish than the sport fishery on an annual basis. It is also important to evaluate fishery management trends, which changed substantially starting in 2018 in response to poor productivity of SEAK and TBR wild stocks and the 2017 and 2020 BOF SOC action plans (Lum and Fair 2018a, 2018b; Hagerman et al. 2022b, Meredith et al. 2022, Salomone et al. 2022). Additional changes took place in 2019 with the implementation of the revised PST Agreement, which reduced the overall harvest limit for the SEAK AABM fishery (2019 PST Agreement, Annex IV, Chapter 3).

From 2014 through 2016, *Interior Columbia Su/F* stocks experienced extraordinarily high productivity; this has been reflected in their contribution to SEAK fisheries—up to 44% in the troll fisheries and 32% in sport fisheries (Figure 30, Appendices B34–B35). During this period, overall coastwide abundance was high, and corresponding harvest limits were high. Accordingly, this super dominance of *Interior Columbia Su/F* overshadowed the relative contributions of other stocks, particularly those originating from the US South (i.e., *Washington Coast* and *Oregon Coast*), which were also experiencing a period of high productivity. However, from 2017 through 2019, coastwide abundance has been lower and thus harvest limits in SEAK fisheries have been reduced (CTC 2020; Hagerman et al. 2020). However, coastwide abundance has been steadily increasing over 2020–2022 (CTC 2023). *Interior Columbia Su/F* again contributed higher proportions of the harvest in 2020 through 2022 with 24–27% contributions to annual troll fisheries harvests, and 14–17% to annual sport fisheries harvests.

In general, there was a slight increasing contribution in the proportion of *SEAK/TBR* across most fisheries from 2020 through 2022, despite a decrease in productivity for *SEAK/TBR* stocks and decreased contributions relative to 2019 (Figure 30, Appendices B34–B35). Beginning in 2016, and ramping up with the 2017/2018 BOF SOC action plans, conservative management restrictions in time and area have been implemented to shape fisheries away from *SEAK/TBR* wild stocks, reducing the overall harvest of *SEAK/TBR* stocks (including Alaska hatchery fish), despite the *SEAK/TBR* stock proportion. This has been most pronounced during the spring troll fishery and other troll fisheries occurring in the NO quadrant, and the Outside area of the sport fishery (Appendices B2, B9, B13, B20, B24, and B31). The conservative management measures put in place to protect wild *SEAK/TBR* stocks in the late winter and spring troll fisheries have shifted more harvest to the summer troll fisheries, changing the mixture of stocks harvested.

Specific comparisons between analyses using the most recent microsatellite baseline (GAPS version 3.0; Gilk-Baumer et al. 2017a, 2017b, 2018; Shedd et al. 2021a, 2021b, 2022; this report), those using older microsatellite baselines (GAPS version 2.2: 2004–2009; Gilk-Baumer et al. 2013), and those using allozyme baselines (1999–2003; Templin et al. 2011) can be made, but they must be interpreted carefully because both the number of populations and reporting groups changed between the studies. Because of these changes in the genetic baselines, comparisons across years prior to 2010 are more reliable at the broadscale level than at the fine-scale level.

APPLICATIONS TO PACIFIC SALMON TREATY

These results provide a comprehensive assessment using genetic MSA to estimate the stock composition of Chinook salmon harvested in SEAK troll and sport fisheries. Stock composition data from this program has been used in several other studies with a broad array of applications:

- 1. These genetic MSA stock composition estimates have already proven valuable for fishery management in terminal and near-terminal areas, and are being used in run reconstructions to generate more accurate stock assessments for transboundary rivers under Chapter One of the PST.
- 2. These MSA stock composition estimates can be combined with individual assignment, otolith mark, CWT, age, and harvest information to provide independent abundance estimates of some PSC Chinook Model stocks to assist in evaluating the PSC Chinook Model. The current PSC Chinook Model does not reliably determine the composition of the harvest in SEAK because, at a minimum, the model is based on "Treaty Chinook," which excludes nearly all the Southeast Alaska hatchery-produced Chinook salmon harvested in SEAK fisheries; further genetic MSA provides greater clarity than the PSC Chinook model in terms of temporal and spatial representation. For domestic applications, the preferred way to estimate the composition of the SEAK Chinook salmon harvest is to apply fishery stock composition data from genetic MSA to harvest data. This approach has been successfully applied to the SEAK commercial troll fishery since 1998 (Crane et al. 2000; Templin et al. 2011; Gilk-Baumer et al. 2013, 2017a, 2017b, 2017c, 2018; Shedd et al. 2021a, 2021b), and SEAK sport fishery since 2004 (Gilk-Baumer et al. 2017c, 2018; Shedd et al. 2021a, 2021b, 2022).
- 3. Bernard et al. (2014) investigated using genetic analysis in combination with CWTs to estimate terminal run size of Chinook salmon in 2011 from 4 large stock groups that are major contributors to SEAK troll and sport fisheries: West Coast Vancouver Island, Washington Coast, North Oregon Coast, and Upper Columbia River Falls. This "driver stock" method has proven successful for estimating the terminal run size of several of the stocks that are major contributors to the SEAK fishery.

CONCLUSIONS

- 1. The driver stock reporting group that contributed the highest proportion of Chinook salmon harvest to the SEAK troll fishery in AY 2020–2022 was *Interior Columbia Su/F*. In AY 2020, the next largest contributors were *Oregon Coast*, *South Thompson*, *Washington Coast*, *West Vancouver*, *SEAK/TBR*, *Other*, and *NCBC*. In AY 2021, largest contributors other than *Interior Columbia Su/F* were *South Thompson*, *West Vancouver*, *Washington Coast*, *Oregon Coast*, *SEAK/TBR*, *Other*, and *NCBC*. In AY 2022, largest contributors other than *Interior Columbia Su/F* were *Washington Coast*, *Oregon Coast*, *SEAK/TBR*, *West Vancouver*, *Other*, *South Thompson*, and *NCBC*.
- 2. The 7 driver stocks (SEAK/TBR, NCBC, South Thompson, West Vancouver, Washington Coast, Interior Columbia Su/F, and Oregon Coast) collectively contributed 91%, 91%, and 90% of the regionwide troll harvest, and 92%, 94%, and 95% of the season total sport fishery harvest in AY 2020, AY 2021, and AY 2022, respectively.
- 3. The driver stock reporting groups that contributed the highest proportion of harvest to the SEAK sport fishery in 2020 from largest to smallest were *West Vancouver*, *SEAK/TBR*, *Interior Columbia Su/F*, *Washington Coast*, *South Thompson*, *Other*, *NCBC*, and *Oregon Coast*. The driver stock reporting groups that contributed the highest proportion of harvest to the SEAK sport fishery in 2021 from largest to smallest are *SEAK/TBR*, *West Vancouver*, *South Thompson*, *Interior Columbia Su/F*, *NCBC*, *Washington Coast*, *Other*, and *Oregon Coast*. The driver stock reporting groups that contributed the highest proportion of harvest to the SEAK sport fishery in 2022 from largest to smallest are *SEAK/TBR*, *West Vancouver*,

- Interior Columbia Su/F, Washington Coast, NCBC, South Thompson, Oregon Coast, and Other.
- 4. The winter troll fishery encountered the greatest diversity of stocks, with 34% of the early winter fishery and 25% of the late winter fishery composed of the *Other* driver stock group in AY 2020, 31% of the early winter fishery and 21% of the late winter fishery in AY 2021, and 22% of the early winter fishery and 20% of the late winter fishery in AY 2022, which was largely made up of *East Vancouver*, *Puget Sound*, and *Willamette Sp* fine-scale stocks in all 3 years.
- 5. Stocks from SEAK and the associated transboundary rivers were the largest contributors to the spring troll fishery harvest, particularly in the SI quadrant, and to sport fisheries conducted in SEAK inside waters (NI, Petersburg-Wrangell, and Ketchikan areas). Most of this harvest was SEAK hatchery-origin fish in all 3 years.
- 6. Summer and fall-run Chinook salmon originating from the Upper Columbia River were dominant contributors to SEAK fisheries from AY 2013 through AY 2016. Between AY 2017 and AY 2019, the relative contribution of these stocks decreased to historical averages. From AY 2020 to AY 2022, the contribution of Interior Columbia summer- and fall-run Chinook increased again, although not as high as was seen from AY 2013 through AY 2016.
- 7. Stocks from the West Coast of Vancouver Island (*West Vancouver*) were tied with *SEAK/TBR* for the largest contributor to the sport fishery in 2020 and 2021, each accounting for 22–25% of the harvest. In 2022, *SEAK/TBR* stocks contributed more than *West Vancouver*, 30% and 17% of each stock, respectively.
- 8. Troll (NO quadrant) and sport (Outside area) fisheries conducted in outside waters harvested a greater variety of stocks—including those from British Columbia and the Pacific Northwest—than fisheries occurring in inside waters.

ACKNOWLEDGEMENTS

We thank the following current and former members of the Gene Conservation Laboratory team: Heather Hoyt, Jodi Estrada, Judy Berger, Eric Lardizabal, Zac Grauvogel, Erica Chenoweth, Zach Pechacek, Tanya Johnson, and Mariel Terry. We wish to thank the ADF&G, Division of Commercial Fisheries, Southeast Alaska port sampling staff: Southeast Alaska Port Supervisor (Anne Reynolds-Manney) and port sampling and Regional Scale Aging Laboratory staff (Iris Frank and Heidi Ingram); Petersburg/Wrangell Port Supervisor (Jeff Rice) and port sampling staff; Ketchikan/Craig Port Supervisor (Jill Walker) and port sampling staff; and the Sitka Port Supervisor (Willa Johnson) and port sampling staff. We also wish to thank the ADF&G, Division of Sport Fish, Southeast Alaska Marine Harvest Studies sampling staff Mike Jaenicke and Diana Tersteeg, as well as technicians and port supervisors across the region. Thanks to Grant Hagerman for input concerning troll management. Darion Jones helped format tables, figures, and appendices. Lisa Fox provided insightful review and comment leading to a greatly improved report. This project was partially funded by the Federal Aid in Sport Fish Restoration Act under Project F-10-33, Job No. S-1-1.

REFERENCES CITED

- Beacham, T. D., K. Jonsen, and C. Wallace. 2012. A comparison of stock and individual identification for Chinook salmon in British Columbia provided by microsatellites and single-nucleotide polymorphisms. Marine and Coastal Fisheries 4(1):1–22.
- Bernard, D. R., S. Gilk-Baumer, D. Evenson, W. D. Templin, R. L. Peterson, and R. Briscoe. 2014. Feasibility of estimating the 2011 terminal run sizes for Chinook salmon driver stocks harvested in Southeast Alaska troll and sport fisheries. Alaska Department of Fish and Game, Fishery Manuscript No. 14-09, Anchorage.
- Crane, P. A., W. D. Templin, D. M. Eggers, and L. W. Seeb. 2000. Genetic stock identification of Southeast Alaska Chinook salmon fishery catches. Final Report of the Alaska Department of Fish and Game to US Chinook Technical Committee, US Letter of Agreement Award No. NA87FPO408. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 5J00-01, Anchorage.
- CTC (Chinook Technical Committee) 2004. Standardized fishery regimes for Southeast Alaska Chinook fisheries. Pacific Salmon Commission Joint Chinook Technical Committee Report TCCHINOOK (04)-3. Vancouver, BC.
- CTC (Chinook Technical Committee). 2017. Annual report of catch and escapement for 2016. Pacific Salmon Commission Joint Chinook Technical Committee Report TCCHINOOK (17)-02, Vancouver, BC.
- CTC (Chinook Technical Committee). 2020. Annual report of catch and escapement for 2019. Pacific Salmon Commission Joint Chinook Technical Committee Report TCCHINOOK (20)-01, Vancouver, BC.
- CTC (Chinook Technical Committee). 2021a. Annual report of catch and escapement for 2020. Pacific Salmon Commission Joint Chinook Technical Committee Report TCCHINOOK (21)-03, Vancouver, BC.
- CTC (Chinook Technical Committee). 2021b. 2019 Exploitation rate analysis and model calibration Volume 1. Pacific Salmon Commission Joint Chinook Technical Committee Report TCCHINOOK (21)-01 V1, Vancouver, BC.
- CTC (Chinook Technical Committee). 2022. Annual report of catch and escapement for 2021. Pacific Salmon Commission Joint Chinook Technical Committee Report TCCHINOOK(22)-04, Vancouver, BC.
- CTC (Chinook Technical Committee). 2023. Annual report of catch and escapement for 2022. Pacific Salmon Commission Joint Chinook Technical Committee Report TCCHINOOK(23)-02, Vancouver, BC.
- Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7:457–511.
- Gilk-Baumer, S., D. F. Evenson, and W. D. Templin. 2017a. Mixed stock analysis of Chinook salmon harvested in Southeast Alaska commercial troll fisheries, 2010–2014. Alaska Department of Fish and Game, Fishery Data Series No. 17-37, Anchorage.
- Gilk-Baumer, S., D. F. Evenson, K. Shedd, and W. D. Templin. 2017b. Mixed stock analysis of Chinook salmon harvested in Southeast Alaska commercial troll fisheries, 2015. Alaska Department of Fish and Game, Fishery Data Series No. 17-41, Anchorage.
- Gilk-Baumer, S., W. D. Templin, D. F. Evenson, and E. L. Jones. 2017c. Mixed stock analysis of Chinook salmon harvested in the Southeast Alaska sport fishery, 2004–2015. Alaska Department of Fish and Game, Fishery Data Series No. 17-43, Anchorage.
- Gilk-Baumer, S., D. F. Evenson, K. Shedd, and E. L. Jones. 2018. Mixed stock analysis of Chinook salmon harvested in Southeast Alaska commercial troll and sport fisheries, 2016. Alaska Department of Fish and Game, Fishery Data Series No. 18-01, Anchorage.
- Gilk-Baumer, S., W. D. Templin, and L. W. Seeb. 2013. Mixed stock analysis of Chinook salmon harvested in Southeast Alaska commercial troll fisheries, 2004–2009. Alaska Department of Fish and Game, Fishery Data Series No. 13-26, Anchorage.

REFERENCES CITED (Continued)

- Habicht, C., W. D. Templin, and J. R. Jasper. 2012a. Western Alaska Salmon Stock Identification Program Technical Document 16: Prior sensitivity using the chum salmon baseline. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 5J12-23, Anchorage.
- Habicht, C., T. T. Baker, E. L. Chenoweth, T. H. Dann, D. M. Eggers, K. G. Howard, J. R. Jasper, H. L. Liller, A. R. Munro, S. D. R. Olive, and W. D. Templin. 2012b. Harvest and harvest rates of sockeye salmon stocks in fisheries of the Western Alaska Salmon Stock Identification Program (WASSIP), 2006–2008. Alaska Department of Fish and Game, Special Publication No. 12-24, Anchorage.
- Hagerman, G., M. Vaughn, and J. Priest. 2020. Annual management report for the 2019 Southeast Alaska/Yakutat salmon troll fisheries. Alaska Department of Fish and Game, Fishery Management Report No. 20-21, Anchorage.
- Hagerman, G., M. Vaughn, and J. Priest. 2021. Annual management report for the 2020 Southeast Alaska/Yakutat salmon troll fisheries. Alaska Department of Fish and Game, Fishery Management Report No. 21-17, Anchorage.
- Hagerman, G., M. Vaughn, and J. Priest. 2022a. Annual management report for the 2021 Southeast Alaska/Yakutat salmon troll fisheries. Alaska Department of Fish and Game, Fishery Management Report No. 22-23, Anchorage.
- Hagerman, G. T., D. K. Harris, J. T. Williams, D. J. Teske, B. W. Elliott, N. L. Zeiser, and R. S. Chapell. 2022b. Northern Southeast Alaska Chinook salmon stock status and action plan, 2022. Alaska Department of Fish and Game, Regional Information Report No. 1J22-17, Douglas, Alaska.
- Hagerman, G., and M. Vaughn. 2022. 2022/2023 Winter troll fishery management plan. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J22-21, Douglas.
- Hagerman, G., M. Vaughn, and J. Priest. *In prep*. Annual management report for the 2022 Southeast Alaska/Yakutat salmon troll fisheries. Alaska Department of Fish and Game, Fishery Management Report, Anchorage.
- Hess, J. E., A. P. Matala, and S. R. Narum. 2011. Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin. Molecular Ecology Resources 11(S1):137–149.
- Jaenicke, M., D. Tersteeg, and J. Huang. 2022. Operational Plan: Southeast Alaska marine boat sport fishery harvest studies, 2022. Alaska Department of Fish and Game, Division of Sport Fish, Regional Operational Plan No. ROP.SF.1J.2022.02, Anchorage.
- Jaenicke, M., D. Tersteeg, and J. Huang. 2023a. Operational Plan: Southeast Alaska marine boat sport fishery harvest studies, 2020. Alaska Department of Fish and Game, Division of Sport Fish, Regional Operational Plan No. ROP.SF.1J.2023.08, Anchorage.
- Jaenicke, M., D. Tersteeg, and J. Huang. 2023b. Operational Plan: Southeast Alaska marine boat sport fishery harvest studies, 2021. Alaska Department of Fish and Game, Division of Sport Fish, Regional Operational Plan No. ROP.SF.1J.2023.10, Anchorage.
- JTC (Joint Technical Committee). 1997. Review of stock identification studies on the Yukon River. The United States and Canada Yukon River Joint Technical Committee, Whitehorse, Yukon Territory.
- Lum, J. L., and L. Fair. 2018a. Unuk River king salmon stock status and action plan, 2018. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J18-04, Douglas.
- Lum, J. L., and L. Fair. 2018b. Chilkat River and King Salmon River king salmon stock status and action plan, 2018. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J18-05, Douglas.
- Meredith, B. L., N. D. Frost, K. S. Reppert, and G. T. Hagerman. 2022. Unuk and Chickamin Chinook salmon stock status and action plan, 2022. Alaska Department of Fish and Game, Alaska Department of Fish and Game, Regional Information Report No. 1J22-13, Douglas.
- NPFMC (North Pacific Fishery Management Council). 2012. Fishery management plan for the salmon fisheries in the EEZ off Alaska. North Pacific Fishery Management Council, Anchorage.

REFERENCES CITED (Continued)

- PSC (Pacific Salmon Commission). 2008. Recommendations for application of genetic stock identification (GSI) methods to management of ocean salmon fisheries: Special report of the Genetic Stock Identification Steering Committee and the Pacific Salmon Commission's Committee on Scientific Cooperation. Pacific Salmon Commission Technical Report No. 23.
- Pella, J. J., and G. B. Milner. 1987. Use of genetic marks in stock composition analysis. Pages 247–276 [*In*] N. Ryman and F. Utter, editors. Population genetics and fisheries management. University of Washington Press, Seattle.
- Pella, J., and M. Masuda. 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fishery Bulletin 99:151–167.
- Peterson, R. L., R. A. Clark, and D. F. Evenson. 2016. Does the Queets exploitation rate indicator stock represent the distribution of fishery impacts of Washington coast Chinook salmon stocks in Pacific Salmon Treaty fisheries? Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 5J16-06, Juneau.
- Raftery, A. E., and S. M. Lewis. 1996. Implementing MCMC. Pages 115–130 [*In*] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov chain Monte Carlo in practice. Chapman and Hall, Inc., London.
- Reynolds-Manney, A. M, J. A. Jones, J. R. Rice, and J. C. Walker. 2020. Operational Plan: Southeast Alaska and Yakutat salmon commercial port sampling 2020–2023. Alaska Department of Fish and Game, Regional Operational Plan No. ROP.CF.1J.2020.04, Douglas.
- Salomone, P. G., K. Courtney, G. T. Hagerman, P. A. Fowler, and P. J. Richards. 2022. Stikine River and Andrew Creek Chinook salmon stock status and action plan, 2021. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J22-15, Douglas.
- Seeb, L. W., C. Habicht, W. D. Templin, K. E. Tarbox, R. Z. Davis, L. K. Brannian, and J. E. Seeb. 2000. Genetic diversity of sockeye salmon of Cook Inlet, Alaska, and its application to management of populations affected by the Exxon Valdez oil spill. Transactions of the American Fisheries Society 129:1223–1249.
- Seeb, L. W., A. Antonovich, M. Banks, T. Beacham, R. Bellinger, S. Blankenship, M. Campbell, N. DeCovich, J. C. Garza, C. Guthrie, T. Lundrigan, P. Moran, S. Narum, J. Stephenson, J. Supernault, D. Teel, W. D. Templin, J. K. Wenburg, S. Young, and C. T. Smith. 2007. Development of a standardized DNA database for Chinook salmon. Fisheries 32:540–552.
- Shedd, K. R., D. F. Evenson, and J. V. Nichols. 2021a. Mixed stock analysis of Chinook salmon harvested in Southeast Alaska commercial troll and sport fisheries, 2017. Alaska Department of Fish and Game, Fishery Data Series No. 21-02, Anchorage.
- Shedd, K. R., D. L. Leonard, and J. V. Nichols. 2021b. Mixed stock analysis of Chinook salmon harvested in Southeast Alaska commercial troll and sport fisheries, 2018. Alaska Department of Fish and Game, Fishery Data Series No. 21-23, Anchorage.
- Shedd, K. R., D. L. Leonard, and J. V. Nichols. 2022. Mixed stock analysis of Chinook salmon harvested in Southeast Alaska commercial troll and sport fisheries, 2019. Alaska Department of Fish and Game, Fishery Data Series No. 22-20, Anchorage.
- Teel, D. J., P. A. Crane, C. M. Guthrie III, A. R. Marshall, D. M. Van Doornik, W. D. Templin, N. V. Varnavskaya, and L. W. Seeb. 1999. Comprehensive allozyme database discriminates Chinook salmon around the Pacific Rim. NPAFC document 440.
- Templin, W. D., J. M. Berger, and L. W. Seeb. 2011. Mixed stock analysis of Chinook salmon harvested in the Southeast Alaska commercial troll fishery, 1999–2003. Alaska Department of Fish and Game, Fishery Manuscript No. 11-03, Anchorage.
- Thompson, S. K. 1987. Sample size for estimating multinomial proportions. The American Statistician 41:42–46.

TABLES AND FIGURES

Table 1.—Relationship between populations and reporting groups for Chinook salmon used to report stock composition of Southeast Alaska troll and sport fishery harvests.

Reporting group no.	Population	Fine-scale	Driver stocks ^a	Broad-scale
1	1	Situk	SEAK/TBR	Alaska
2	2–5	Alsek	SEAK/TBR	TBR
3	6–10	N Southeast Alaska	SEAK/TBR	Alaska
4	11–17	Taku	SEAK/TBR	TBR
5	18–21	Andrew	SEAK/TBR	Alaska
6	22–28	Stikine	SEAK/TBR	TBR
7	29–42	S Southeast Alaska	SEAK/TBR	Alaska
8	43–51	Nass	NCBC	Canada
9	52–78	Skeena	NCBC	Canada
10	79–97	BC Coast/Haida Gwaii	NCBC	Canada
11	98–113	West Vancouver	West Vancouver	Canada
12	114–123	East Vancouver	Other	Canada
13	124–157	Fraser	Other	Canada
14	158–166	Lower Thompson	Other	Canada
15	167–172	North Thompson	Other	Canada
16	173–180	South Thompson	South Thompson	Canada
17	181–212	Puget Sound	Other	US South
18	213–223	Washington Coast	Washington Coast	US South
19	224–226	West Cascades Sp	Other	US South
20	227–240	Lower Columbia F	Other	US South
21	241–246	Willamette Sp	Other	US South
22	247–302	Columbia Sp	Other	US South
23	303-320	Interior Columbia Su/F	Interior Columbia Su/F	US South
24	321–331	North Oregon Coast	Oregon Coast	US South
25	332–339	Mid Oregon Coast	Oregon Coast	US South
26	340-357	S Oregon/California	Other	US South

Note: Population numbers are listed in Appendix A1. Populations were combined into (1) 26 fine-scale reporting groups; (2) 8 driver stock reporting groups, including an "Other" group; and (3) 4 broad-scale reporting groups.

^a Driver stocks are aggregate stocks that consistently make up a large proportion (>5%) of all Chinook salmon harvested annually in Southeast Alaska fisheries, and thus are important stocks that help drive catch allocations under the Pacific Salmon Treaty.

Table 2.—Sampling goals and numbers of fish sampled from troll-caught Chinook salmon landings at processors at ports in Southeast Alaska for mixed stock analysis, AY 2020.

Fishery	Period	Port	Quadrants represented ^a	Sample goal	Samples collected
1 101101	1 0110 0	Craig	SO, SI, NI	100	58
		Juneau	NI, NO	90	110
	Early winter	Ketchikan	SI	120	95
	(Oct 11–Dec 31)	Petersburg/Wrangell	NI, SI	70	130
		Sitka	NO	450	1,162
Winter				830	1,555
(Oct-Apr)		Craig	SO, SI, NI	330	94
		Juneau	NI, NO	70	91
	Late winter	Ketchikan	SI	80	56
	(Jan 1–Mar 15)	Petersburg	NI, SI	80	80
		Sitka	NO	430	928
				990	1,249
		Craig	SO	400	553
		Juneau	NI, NO	_	9
		Ketchikan	SI, NI	400	262
Spring		Petersburg	NI, SI	_	_
(May–Jun)		Wrangell	SI, NI	_	_
		Sitka	NO	1,000	1,501
		Yakutat	NO	_	_
				1,800	2,325
		Craig	SO, NI	550	477
		Hoonah	NO, SO	_	_
		Ketchikan	SI, SO, NI	150	224
	D -44::- 1 1	Tender Rider	NO, NI	160	_
	Retention period 1 (Jul 1–6)	Pelican/Elfin Cove	NO	_	_
	(341 1-0)	Petersburg	NI, SI, NO	250	200
		Port Alexander	NI	100	_
		Sitka	NO, SO	450	866
Summer		Wrangell	SI	100	76
(Jul–Sep)				1,760	1,843
(Jul Bep)		Craig	SO	420	398
		Hoonah	NO, NI	_	_
		Ketchikan	SI, SO	200	273
	D -44::- 1 2	Tender Rider	NO, NI	80	_
	Retention period 2 (Aug 15–Sep 8)	Pelican	NO	_	_
	(Aug 13–3ch 6)	Petersburg	NI, SI	180	254
		Port Alexander	NI	50	_
		Sitka	NO	450	982
		Wrangell	SI	120	131
				1,500	2,038
		Total		6,880	9,010

Note: AY 2020 = Accounting year 2020 = October 1, 2019–September 30, 2020. En dashes = no data.

^a Quadrant names are abbreviated as follows: Northern Outside (NO), Northern Inside (NI), Southern Outside (SO), and Southern Inside (SI).

Table 3.—Sampling goals and numbers of fish sampled from troll-caught Chinook salmon landings at processors at ports in Southeast Alaska for mixed stock analysis, AY 2021.

F'.1	D 1	D 4	Quadrants	Sample	Samples
Fishery	Period	Port	represented ^a SO	goal 100	collected
		Craig		90	30
	Early winter (Oct 11–Dec 31)	Juneau Ketchikan	NI, NO SI	90 120	90 76
		Petersburg	NI, SI	70	108
		Sitka	NO, NI	450	570
Winter				830	874
(Oct-Apr)		Craig	SO	330	56
	Late winter	Juneau	NO, NI	70	108
	(Jan 1–Mar 15)	Ketchikan	SI	80	33
	,	Petersburg	NI, SI	80	66
		Sitka	NO, NI	430	666
				990	929
		Craig	SO	400	343
		Ketchikan	SI	400	413
Spring		Wrangell	SI	_	10
(May–Jun)		Sitka	NO	1,000	1,754
		Yakutat	NO	_	592
				1,800	3,112
		Craig	SO, SI	550	455
		Ketchikan	SI, SO	150	199
		Tender Rider	_	160	_
	Retention period 1	Petersburg	NI, SI	250	351
	(Jul 1–8)	Port Alexander	_	100	_
		Sitka	NO, SO, NI, SI	450	863
		Wrangell	SO, SI	100	79
Summer		Yakutat	NO	_	27
(Jul-Sep)				1,760	1,974
-		Craig	SO, SI	420	386
		Ketchikan	SI, SO	200	202
		Tender Rider	NO	80	80
	Retention period 2	Petersburg	NI, SI	180	205
	(Aug 13–Sep 3)	Port Alexander	_	50	
		Sitka	NO	450	981
		Wrangell	SI, SO, NI	120	194
			-, ,	1,500	2,048
		Total		6,880	8,937

Note: AY 2021 = Accounting year 2021 = October 1, 2020–September 30, 2021. En dashes = no data.

^a Quadrant names are abbreviated as follows: Northern Outside (NO), Northern Inside (NI), Southern Outside (SO), and Southern Inside (SI).

Table 4.—Sampling goals and numbers of fish sampled from troll-caught Chinook salmon landings at processors at ports in Southeast Alaska for mixed stock analysis, AY 2022.

D' 1	D : 1	D	Quadrants	Sample	Samples
Fishery	Period	Port	represented ^a	goal	collected
		Craig	SO NI NO	100	39
	F 1 ' .	Juneau	NI, NO	90	154
	Early winter (Oct 11–Dec 31)	Ketchikan	SI NI CI	120	109
	(Oct 11–Dec 31)	Petersburg	NI, SI	70 450	79 552
		Sitka	NO, NI	450	553
Winter		Wrangell	SI	020	71
(Oct-Apr)	-	G :	CO CLAH	830	1,005
		Craig	SO, SI, NI	330	833
	Late winter	Juneau	NO, NI	70	93
	(Jan 1-Apr 30)	Ketchikan	SI	80	57
	` '	Petersburg	SI, NI	80	155
		Sitka	NO, NI	430	1,804
				990	2,942
		Craig	SO	400	373
		Ketchikan	SI	400	525
Spring		Wrangell	SI	_	35
(May–Jun)		Sitka	NO	1,000	1,918
		Yakutat	NO	_	318
				1,800	3,169
		Craig	SO, NI, SI	550	592
		Ketchikan	SI, SO	150	283
		Tender Rider	_	160	_
	Retention period 1	Petersburg	NI, SI	250	308
	(Jul 1–28)	Port Alexander	_	100	_
		Sitka	NO, NI, SO, SI	450	1,405
		Wrangell	SI, SO, NI	100	182
C		Yakutat	_	_	_
Summer (Jul–Sep)				1,760	2,770
(Jui-Sep)		Craig	SO, NI, SI	420	553
		Ketchikan	SI, SO, NI	200	214
		Tender Rider	NO, NI	80	123
	Retention period 2	Petersburg	NI, SI, SO	180	170
	(Aug 1–Sep 20)	Port Alexander	_	50	_
		Elfin Cove	NO	_	20
		Sitka	NO, NI	450	1,201
		Wrangell	SI	120	36
		<u> </u>		1,500	2,317
		Total		6,880	12,203

Note: AY 2022 = Accounting year 2022 = October 1, 2021–September 30, 2022. En dashes = no data.

^a Quadrant names are abbreviated as follows: Northern Outside (NO), Northern Inside (NI), Southern Outside (SO), and Southern Inside (SI).

Table 5.-Samples collected by quadrant for each seasonal Chinook salmon troll fishery in Southeast Alaska, 2020.

		Quadra	nt ^a		
Fishery	NO	SO	NI	SI	Total
Early winter	1,111	58	211	175	1,555
Late winter	867	57	192	133	1,249
Spring	1,510	557	_	258	2,325
Summer retention 1	866	544	230	203	1,843
Summer retention 2	982	318	304	434	2,038

Note: En dash = no data.

Table 6.-Samples collected by quadrant for each seasonal Chinook salmon troll fishery in Southeast Alaska, 2021.

		Quadrai	nt ^a		
Fishery	NO	SO	NI	SI	Total
Early winter	589	30	124	131	874
Late winter	681	56	116	76	929
Spring	2,346	343	_	423	3,112
Summer retention 1	862	571	248	293	1,974
Summer retention 2	1,061	450	146	391	2,048

Note: En dash = no data.

Table 7.–Samples collected by quadrant for each seasonal Chinook salmon troll fishery in Southeast Alaska, 2022.

		Quadra	nt ^a		
Fishery	NO	SO	NI	SI	Total
Early winter	567	39	188	211	1,005
Late winter	1,848	498	227	369	2,942
Spring	2,236	373	_	560	3,169
Summer retention 1	1,269	694	396	411	2,770
Summer retention 2	1,291	586	182	258	2,317

Note: En dash = no data.

^a Quadrant names are abbreviated as follows: Northern Outside (NO), Southern Outside (SO), Northern Inside (NI), and Southern Inside (SI).

^a Quadrant names are abbreviated as follows: Northern Outside (NO), Southern Outside (SO), Northern Inside (NI), and Southern Inside (SI).

^a Quadrant names are abbreviated as follows: Northern Outside (NO), Southern Outside (SO), Northern Inside (NI), and Southern Inside (SI).

Table 8.—Sampling goals and numbers of fish sampled from sport fishery harvests of Chinook salmon at ports in Southeast Alaska for use in mixed stock analysis, AY 2020.

		AY 2	2020	
Area/Time	Port	Sample objective	Samples collected	
Ketchikan	Ketchikan	600	513	
		600	513	
Petersburg-Wrangell	Petersburg	450	16	
	Wrangell	200	108	
	_	650	124	
Northern Inside	Juneau	600	339	
	Haines	15	_	
	Skagway	20	_	
		635	339	
Outside/Biweeks 9–13	Craig/Klawock	250	281	
	Sitka	1,000	779	
	Yakutat	50	31	
	Gustavus	50	18	
	Elfin Cove	25	_	
		1,375	1,109	
Outside/Biweeks 14–18	Craig/Klawock	250	467	
	Sitka	500	919	
	Yakutat	25	48	
	Gustavus	15	33	
	Elfin Cove	25	_	
		815	1,467	
	Total	4,075	3,552	

Note: AY 2020 = Accounting year 2020 = October 1, 2019–September 30, 2020. En dashes = no data.

Table 9.—Sampling goals and numbers of fish sampled from sport fishery harvests of Chinook salmon at ports in Southeast Alaska for use in mixed stock analysis, AY 2021.

		AY 2	2021	
Area/Time	Port	Sample objective	Samples collected	
Ketchikan	Ketchikan	600	584	
		600	584	
Petersburg-Wrangell	Petersburg	450	68	
	Wrangell	200	85	
		650	153	
Northern Inside	Juneau	600	375	
	Haines	15	_	
	Skagway	20	_	
		635	375	
Outside/Biweeks 9–13	Craig/Klawock	250	687	
	Sitka	1,000	1,169	
	Yakutat	50	56	
	Gustavus	50	24	
	Elfin Cove	25	_	
		1,375	1,936	
Outside/Biweeks 14–18	Craig/Klawock	250	317	
	Sitka	500	557	
	Yakutat	25	12	
	Gustavus	15	9	
	Elfin Cove	25		
		815	895	
	Total	4,075	3,943	

Note: AY 2021 = Accounting year 2021 = October 1, 2020–September 30, 2021. En dashes = no data.

Table 10.—Sampling goals and numbers of fish sampled from sport fishery harvests of Chinook salmon at ports in Southeast Alaska for use in mixed stock analysis, AY 2022.

		AY	2022
Area/Time	Port	Sample objective	Samples collected
Ketchikan	Ketchikan	600	756
		600	756
Petersburg-Wrangell	Petersburg	450	86
2 2	Wrangell	200	29
	C	650	115
Northern Inside	Juneau	600	498
	Haines	15	_
	Skagway	20	_
		635	498
Outside/Biweeks 9–13	Craig/Klawock	250	346
	Sitka	1,000	1,192
	Yakutat	50	184
	Gustavus	50	136
	Elfin Cove	25	130
		1,375	1,988
Outside/Biweeks 14–18	Craig/Klawock	250	195
	Sitka	500	544
	Yakutat	25	52
	Gustavus	15	14
	Elfin Cove	25	36
		815	841
	Total	4,075	4,198

Note: AY 2022 = Accounting year 2022 = October 1, 2021–September 30, 2022. En dashes = no data.

Table 11.—Selection criteria used to generate the Commercial Harvest Expansion Report on the ADF&G OceanAK Database.

Criteria	Values
Years	2020, 2021, 2022
Species	410
Gear class codes	5
Harvest codes	11, 13
Time code	P
Time value range	1, 54
Area code	Q- Quadrants
Districts	ALL
Quadrants	NE, NW, SE, SW (correspond to NI, NO, SI, and SO, respectively)
Stat area values	ALL

Source: Data are available at https://mtalab.adfg.alaska.gov/CWT/reports/default.aspx

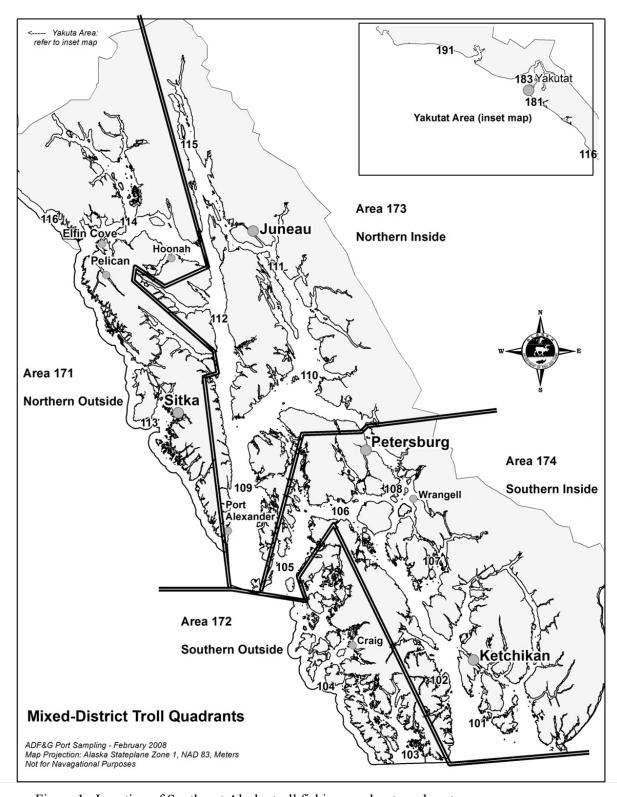


Figure 1.-Location of Southeast Alaska troll fishing quadrants and ports.

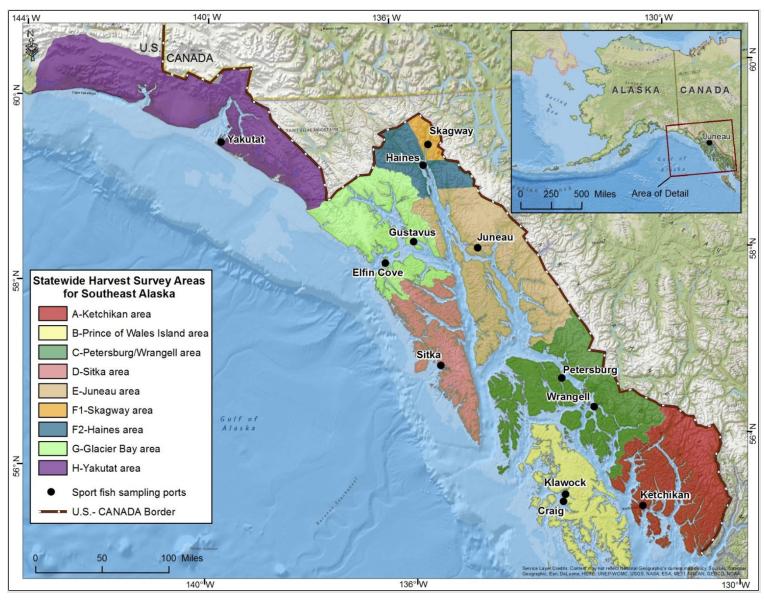


Figure 2.–Location of primary sport fishing ports in Southeast Alaska.

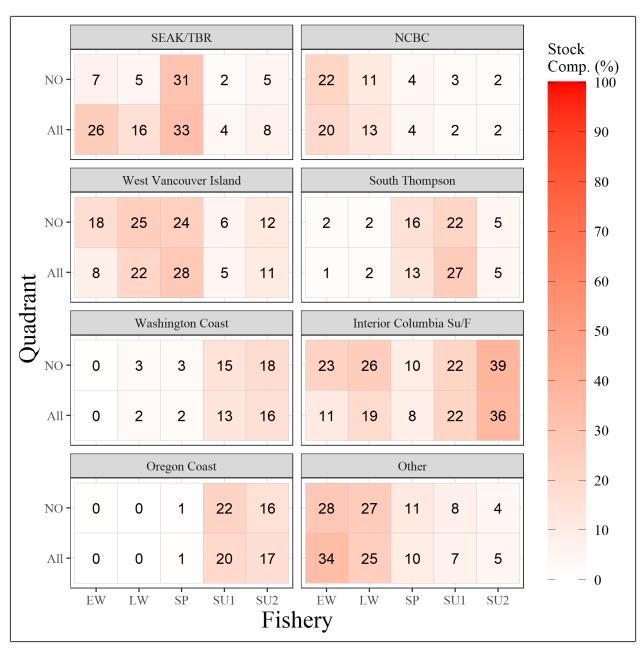


Figure 3.—Heat plot of mean contributions (%) of driver stock reporting groups of Chinook salmon to the troll fishery harvest in Southeast Alaska for the northern quadrant (NO) and all quadrants by the seasonal fishery (All), AY 2020.

Note: Reporting groups are described in Table 1. Driver stocks are aggregate stocks that consistently make up a large proportion (>5%) of all Chinook salmon harvested annually in Southeast Alaska fisheries, and thus are important stocks that help drive catch allocations under the Pacific Salmon Treaty.

Note: Fishery names are abbreviated as follows: early winter (EW), late winter (LW), spring (SP), summer retention period 1 (SU1), and summer retention period 2 (SU2).

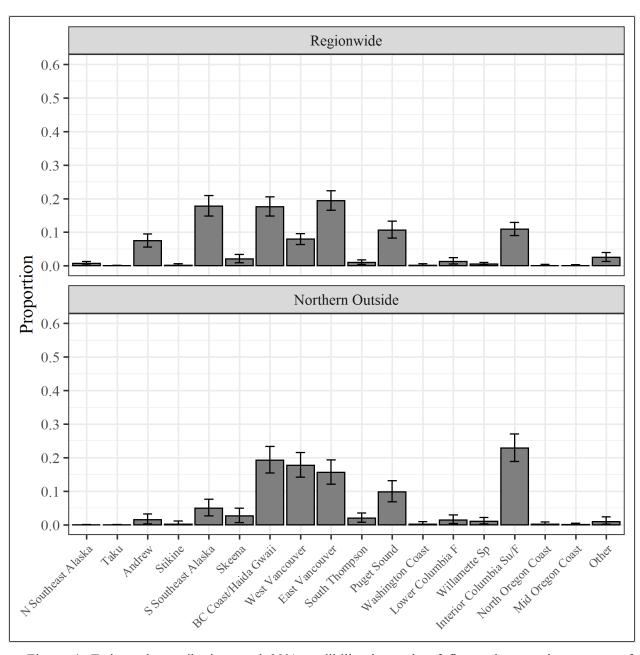


Figure 4.–Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) early winter troll fishery harvest in Southeast Alaska, AY 2020.

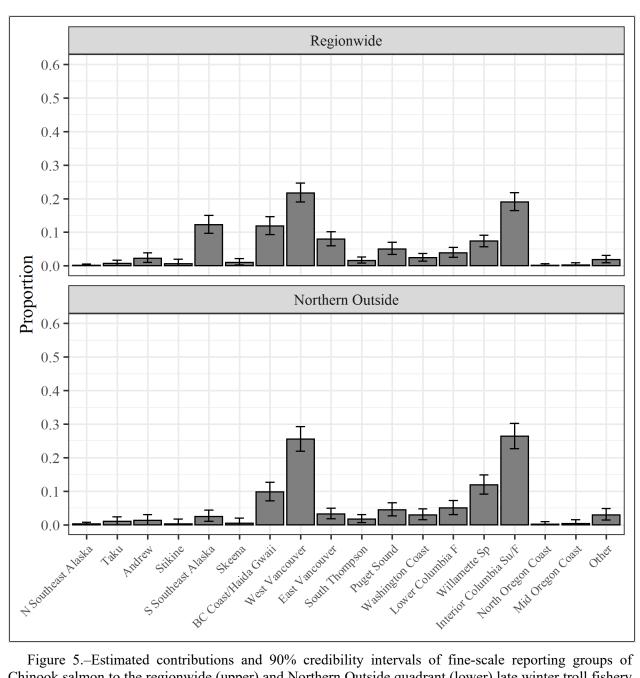


Figure 5.-Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) late winter troll fishery harvest in Southeast Alaska, AY 2020.

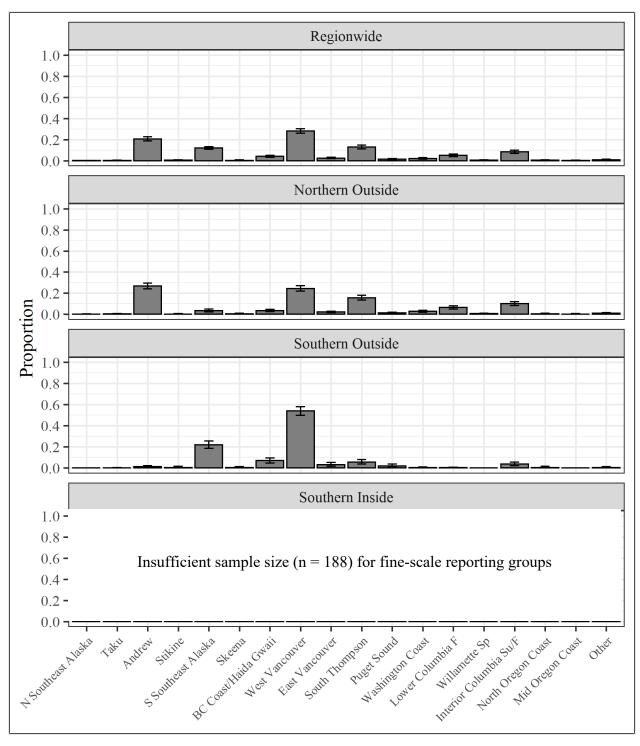


Figure 6.–Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the spring troll fishery harvest regionwide and in the Northern Outside, Southern Outside, and Southern Inside quadrants of Southeast Alaska, AY 2020.

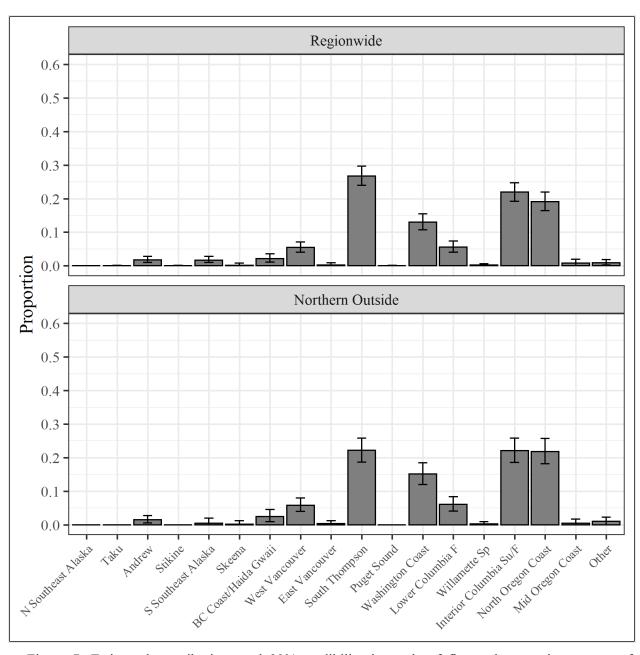


Figure 7.—Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) first retention period of the summer troll fishery harvest in Southeast Alaska, AY 2020.

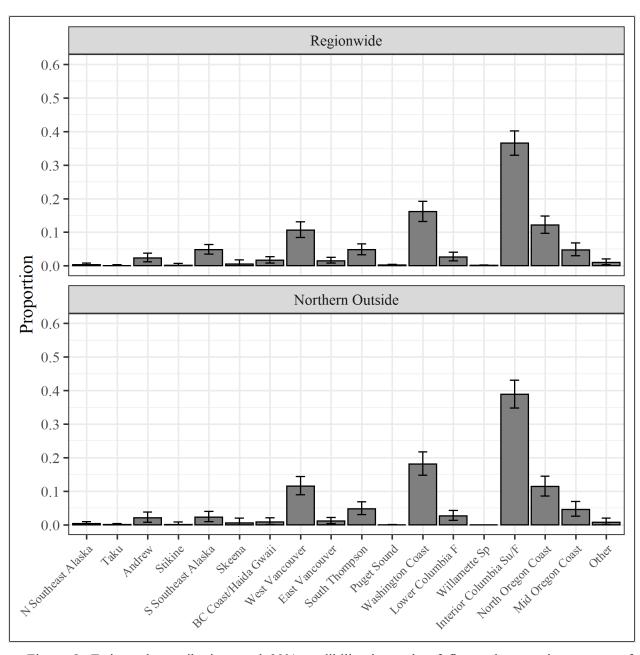


Figure 8.–Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) second retention period of the summer troll fishery harvest in Southeast Alaska, AY 2020.

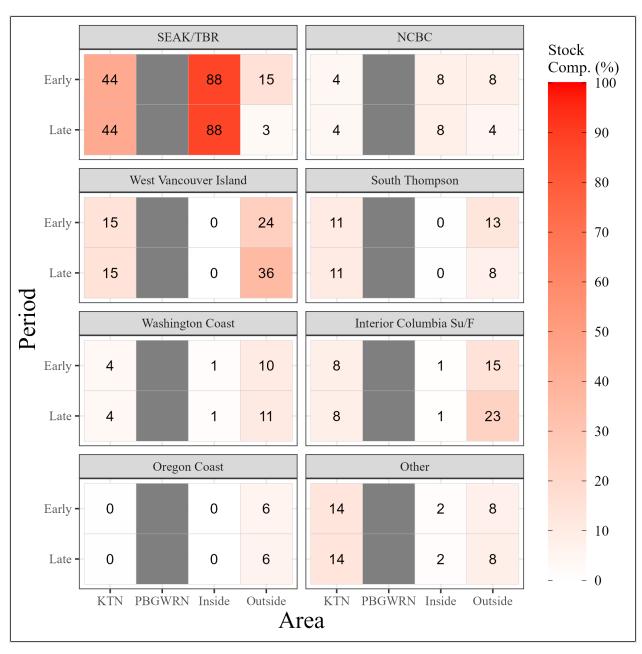


Figure 9.—Heat plot of mean contributions (%) of driver stock reporting groups of Chinook salmon to the sport fishery harvest in Southeast Alaska by area and time period (for the Outside area only), AY 2020.

Note: Reporting groups are described in Table 1. Driver stocks are aggregate stocks that consistently make up a large proportion (>5%) of all Chinook salmon harvested annually in Southeast Alaska fisheries, and thus are important stocks that help drive catch allocations under the Pacific Salmon Treaty.

Note: Area names are abbreviated as follows: Ketchikan (KTN) and Petersburg-Wrangell (PBGWRN).

Note: Period names for the Outside area are Early (biweeks 9–13) and Late (biweeks 14–18).

Note: There was insufficient sample size (n = 97) for driver stock reporting groups for Petersburg-Wrangell (PBGWRN).

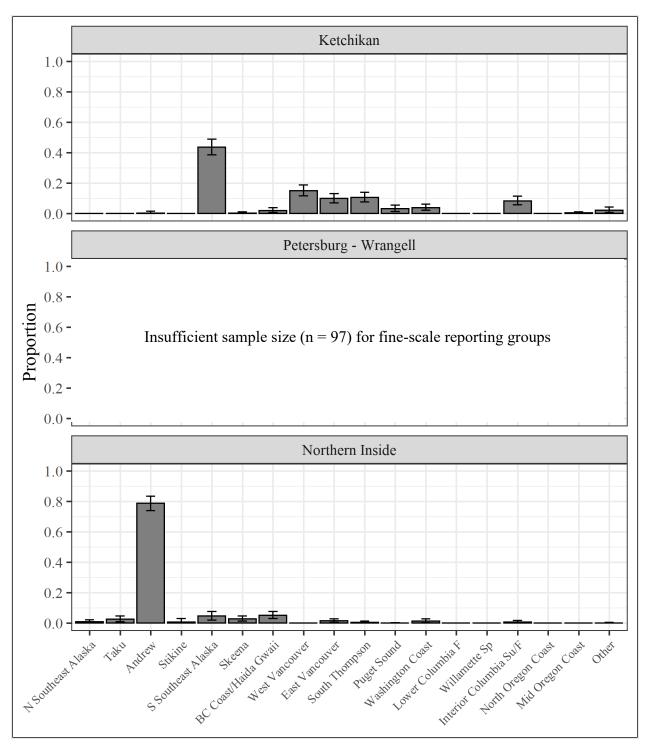


Figure 10.—Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the Ketchikan, Petersburg-Wrangell, and Northern Inside (Juneau, Haines, and Skagway) area sport fishery harvests in Southeast Alaska, AY 2020.

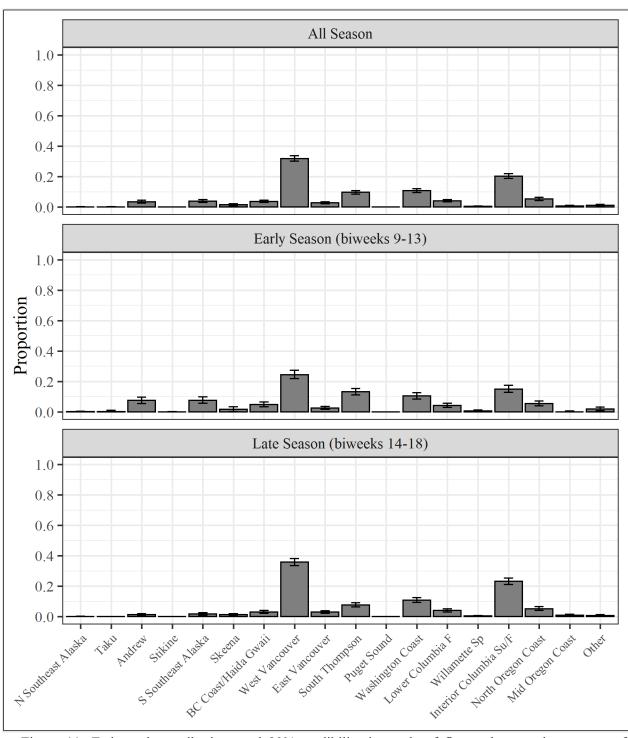


Figure 11.—Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the total season, early season (biweeks 9–13), and late season (biweeks 14–18) Outside area sport fishery harvest in Southeast Alaska, AY 2020.

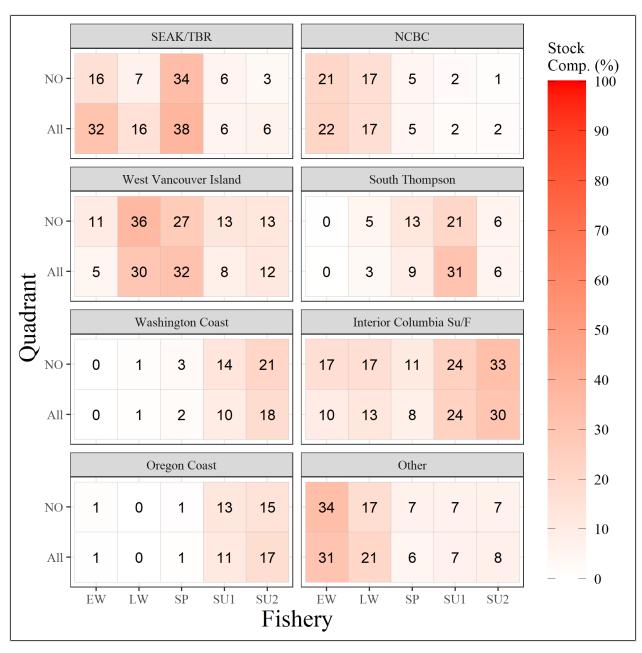


Figure 12.—Heat plot of mean contributions (%) of driver stock reporting groups of Chinook salmon to the troll fishery harvest in Southeast Alaska for the northern quadrant (NO) and all quadrants by the seasonal fishery (All), AY 2021.

Note: Reporting groups are described in Table 1. Driver stocks are aggregate stocks that consistently make up a large proportion (>5%) of all Chinook salmon harvested annually in Southeast Alaska fisheries, and thus are important stocks that help drive catch allocations under the Pacific Salmon Treaty.

Note: Fishery names are abbreviated as follows: early winter (EW), late winter (LW), spring (SP), summer retention period 1 (SU1), and summer retention period 2 (SU2).

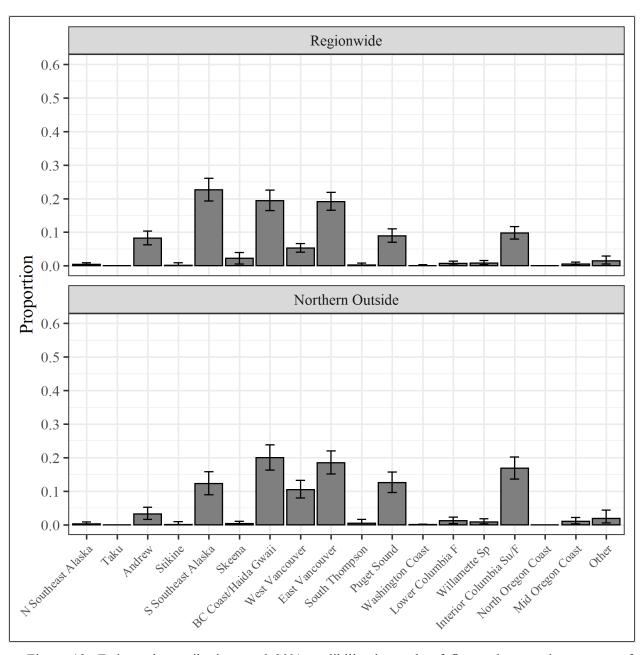


Figure 13.–Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) early winter troll fishery harvest in Southeast Alaska, AY 2021.

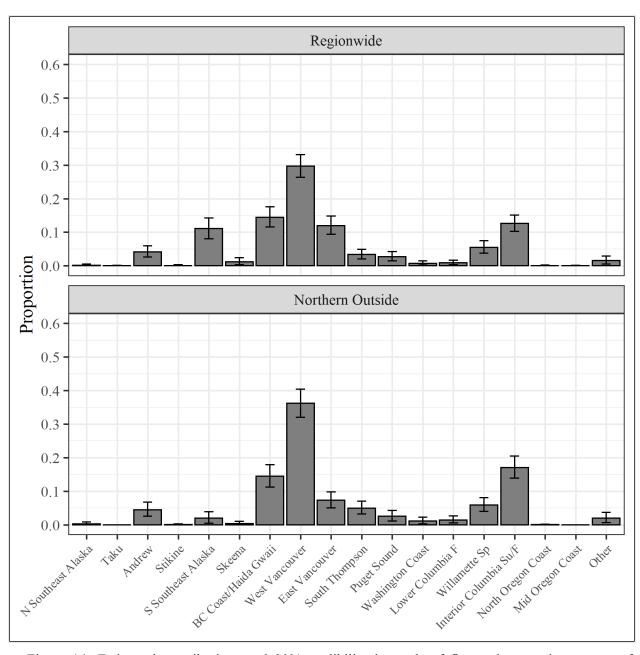


Figure 14.–Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) late winter troll fishery harvest in Southeast Alaska, AY 2021.

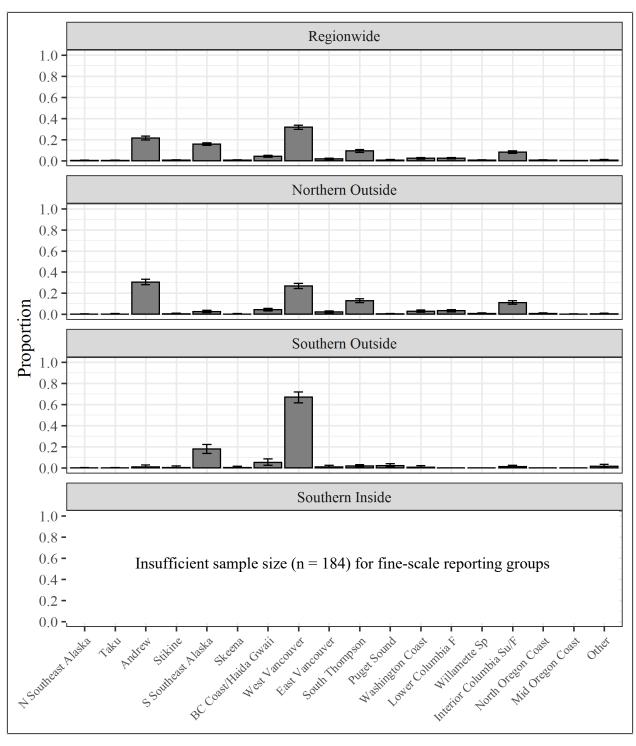


Figure 15.—Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the spring troll fishery harvest regionwide and in the Northern Outside, Southern Outside, and Southern Inside quadrants of Southeast Alaska, AY 2021.

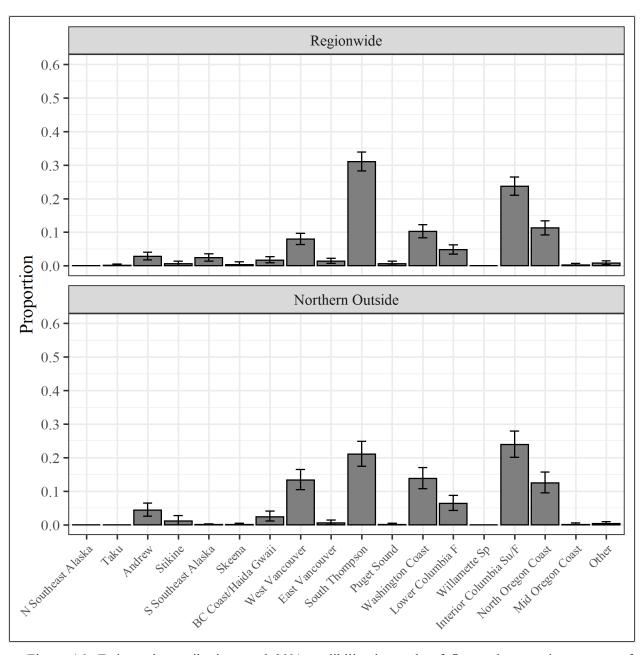


Figure 16.—Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) first retention period of the summer troll fishery harvest in Southeast Alaska, AY 2021.

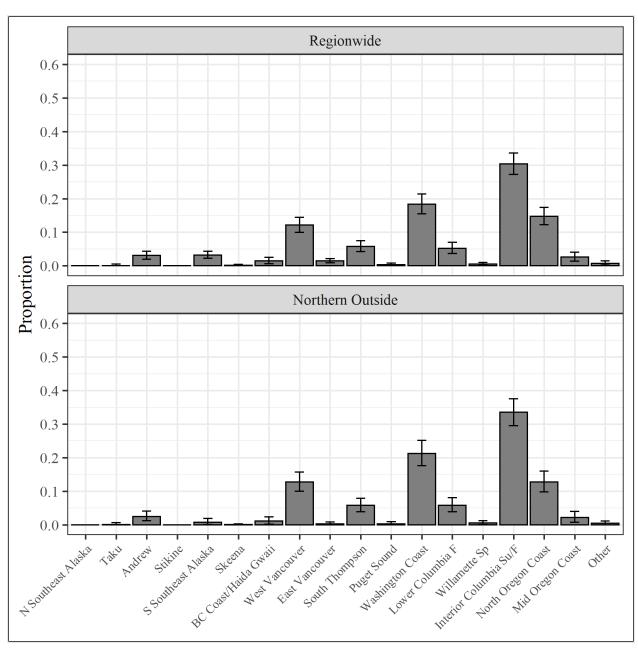


Figure 17.—Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) second retention period of the summer troll fishery harvest in Southeast Alaska, AY 2021.

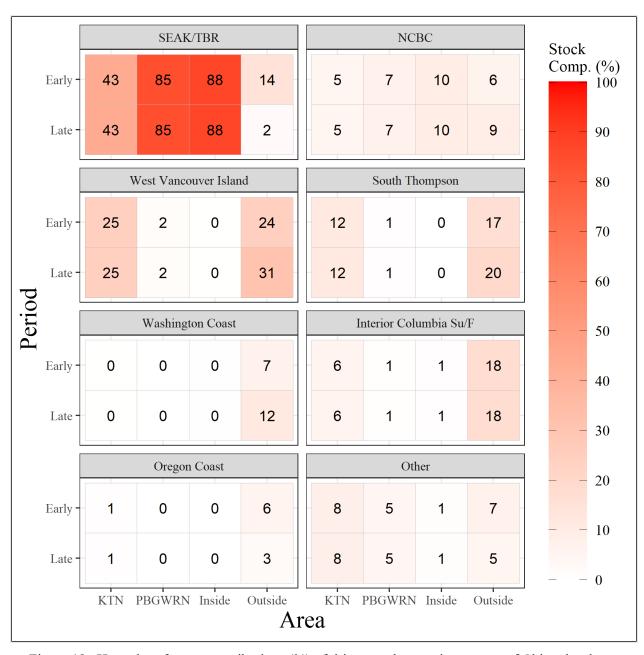


Figure 18.—Heat plot of mean contributions (%) of driver stock reporting groups of Chinook salmon to the sport fishery harvest in Southeast Alaska by area and time period (for the Outside area only), AY 2021.

Note: Reporting groups are described in Table 1. Driver stocks are aggregate stocks that consistently make up a large proportion (>5%) of all Chinook salmon harvested annually in Southeast Alaska fisheries, and thus are important stocks that help drive catch allocations under the Pacific Salmon Treaty.

Note: Area names are abbreviated as follows: Ketchikan (KTN) and Petersburg-Wrangell (PBGWRN).

Note: Period names for the Outside area are Early (biweeks 9–13) and Late (biweeks 14–18).

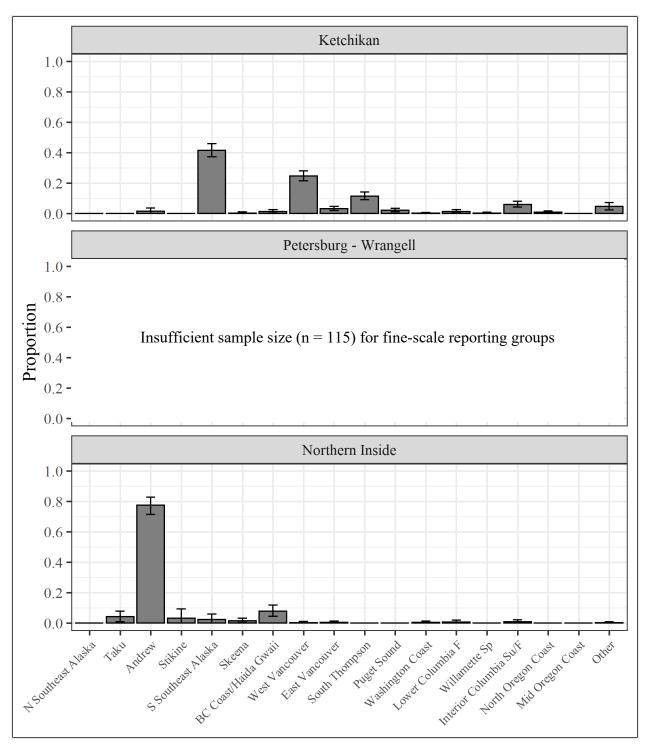


Figure 19.—Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the Ketchikan, Petersburg-Wrangell, and Northern Inside (Juneau, Haines, and Skagway) area sport fishery harvests in Southeast Alaska, AY 2021.

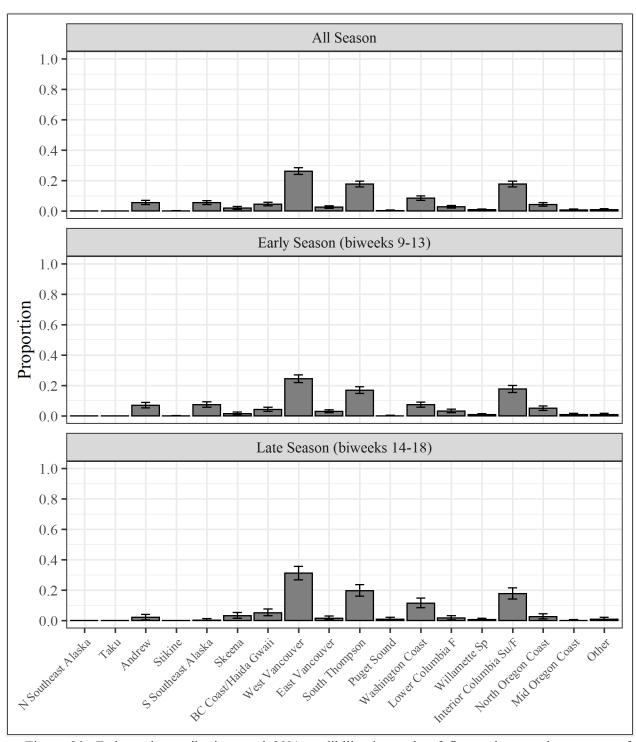


Figure 20.—Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the total season, early season (biweeks 9–13), and late season (biweeks 14–18) Outside area sport fishery harvest in Southeast Alaska, AY 2021.

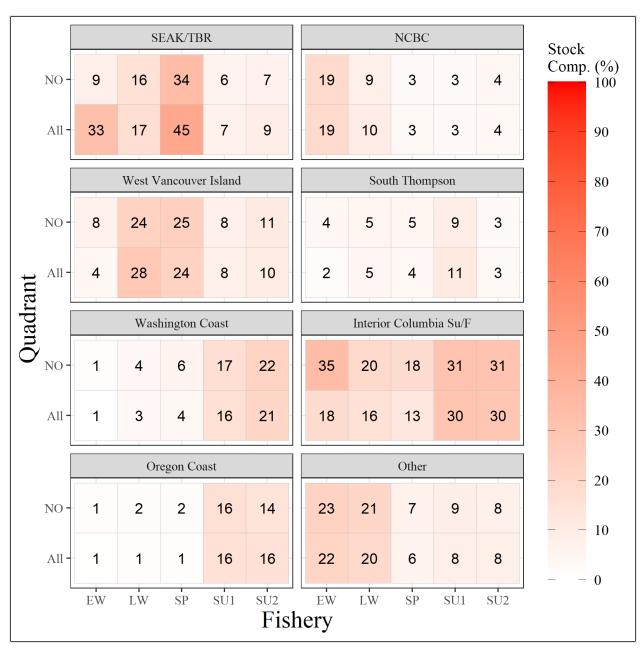


Figure 21.—Heat plot of mean contributions (%) of driver stock reporting groups of Chinook salmon to the troll fishery harvest in Southeast Alaska for the northern quadrant (NO) and all quadrants by the seasonal fishery (All), AY 2022.

Note: Reporting groups are described in Table 1. Driver stocks are aggregate stocks that consistently make up a large proportion (>5%) of all Chinook salmon harvested annually in Southeast Alaska fisheries, and thus are important stocks that help drive catch allocations under the Pacific Salmon Treaty.

Note: Fishery names are abbreviated as follows: early winter (EW), late winter (LW), spring (SP), summer retention period 1 (SU1), and summer retention period 2 (SU2).

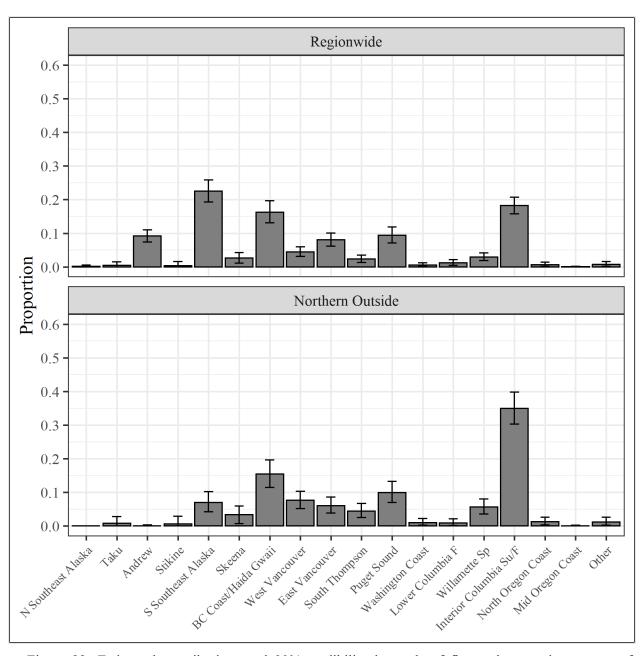


Figure 22.–Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) early winter troll fishery harvest in Southeast Alaska, AY 2022.

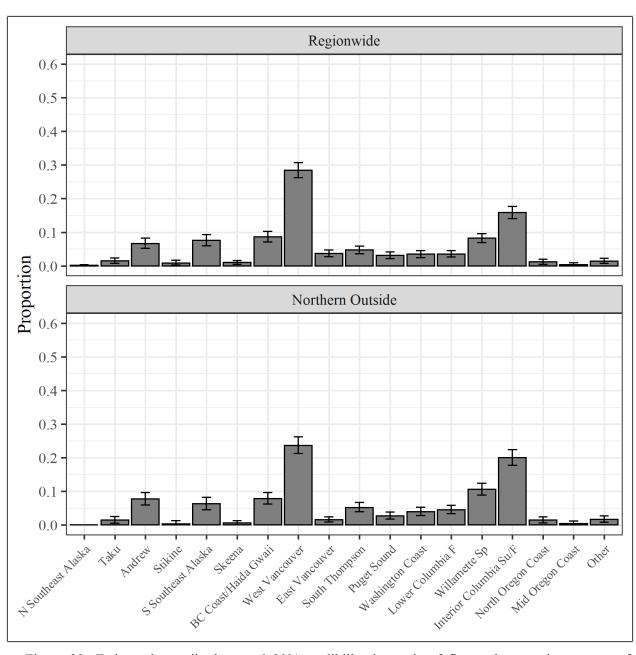


Figure 23.–Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) late winter troll fishery harvest in Southeast Alaska, AY 2022.

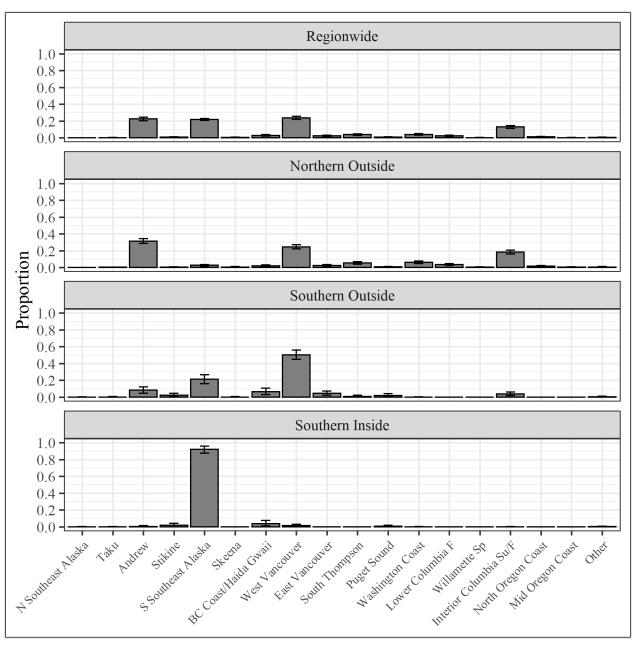


Figure 24.—Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the spring troll fishery harvest regionwide and in the Northern Outside, Southern Outside, and Southern Inside quadrants of Southeast Alaska, AY 2022.

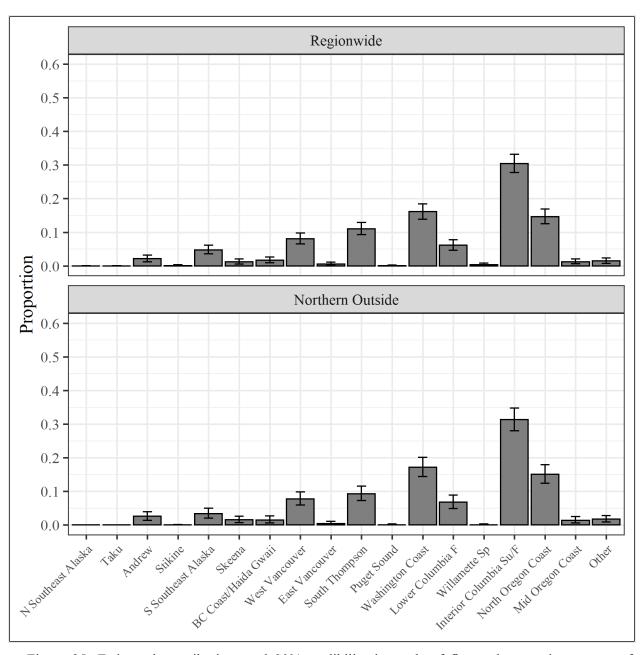


Figure 25.–Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) first retention period of the summer troll fishery harvest in Southeast Alaska, AY 2022.

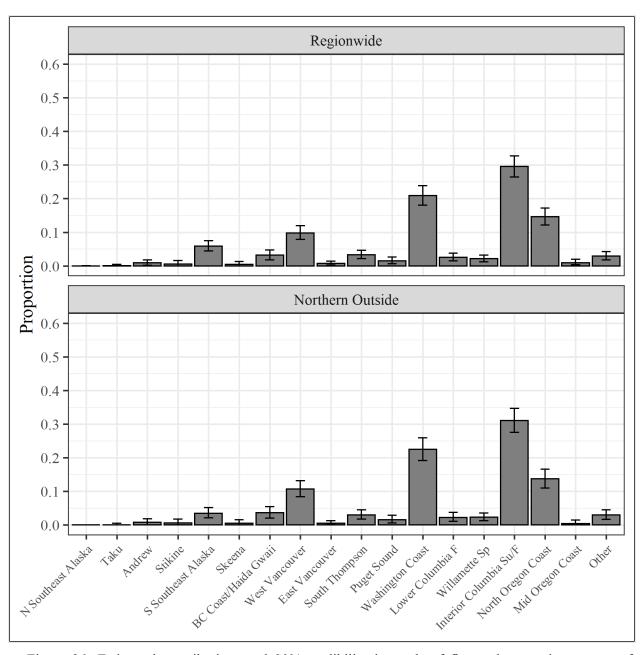


Figure 26.–Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the regionwide (upper) and Northern Outside quadrant (lower) second retention period of the summer troll fishery harvest in Southeast Alaska, AY 2022.

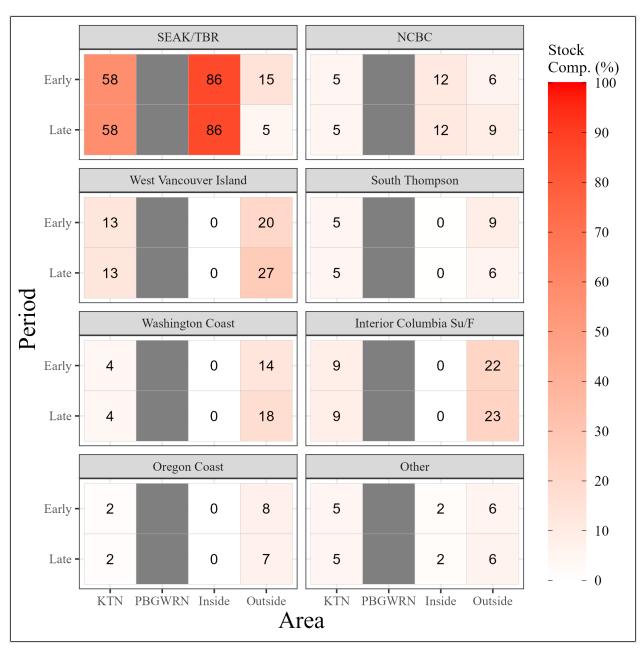


Figure 27.—Heat plot of mean contributions (%) of driver stock reporting groups of Chinook salmon to the sport fishery harvest in Southeast Alaska by area and time period (for the Outside area only), AY 2022.

Note: Reporting groups are described in Table 1. Driver stocks are aggregate stocks that consistently make up a large proportion (>5%) of all Chinook salmon harvested annually in Southeast Alaska fisheries, and thus are important stocks that help drive catch allocations under the Pacific Salmon Treaty.

Note: Area names are abbreviated as follows: Ketchikan (KTN) and Petersburg-Wrangell (PBGWRN).

Note: Period names for the Outside area are Early (biweeks 9–13) and Late (biweeks 14–18).

Note: There was insufficient sample size (n = 79) for driver stock reporting groups for Petersburg-Wrangell (PBGWRN).

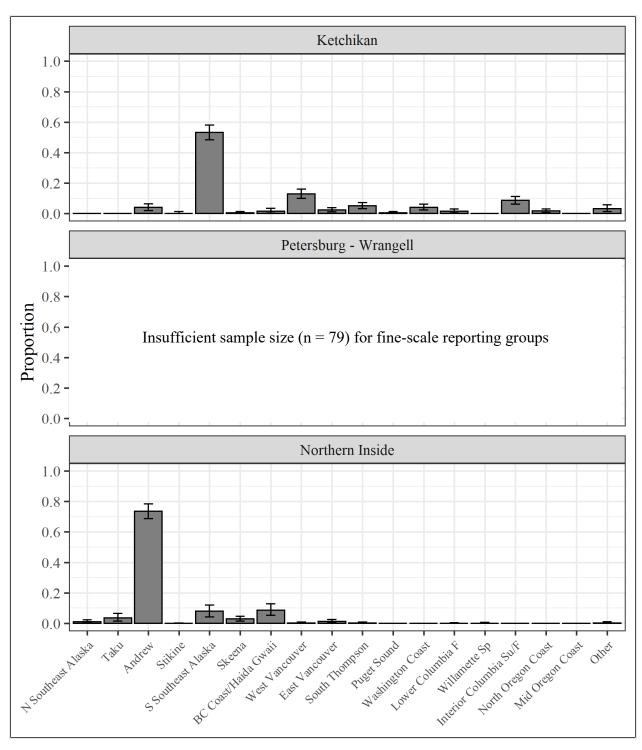


Figure 28.–Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the Ketchikan, Petersburg-Wrangell, and Northern Inside (Juneau, Haines, and Skagway) area sport fishery harvests in Southeast Alaska, AY 2022.

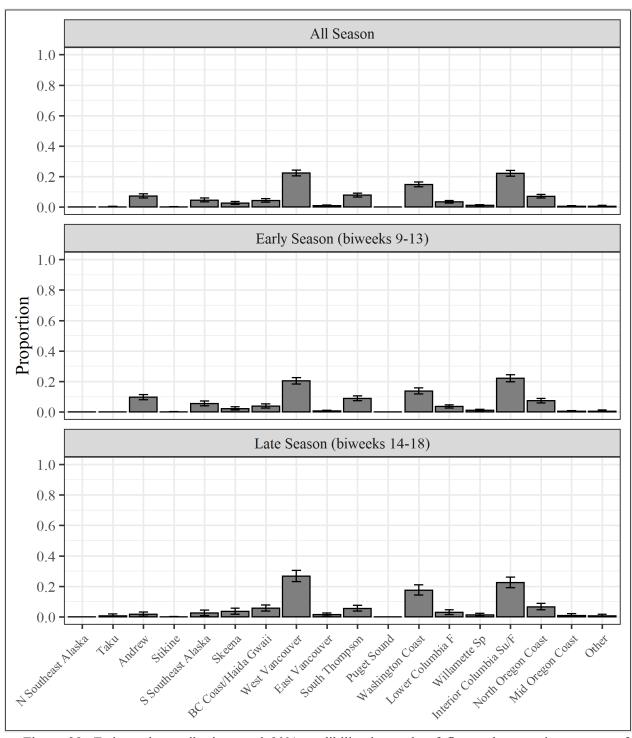


Figure 29.—Estimated contributions and 90% credibility intervals of fine-scale reporting groups of Chinook salmon to the total season, early season (biweeks 9–13), and late season (biweeks 14–18) Outside area sport fishery harvest in Southeast Alaska, AY 2022.

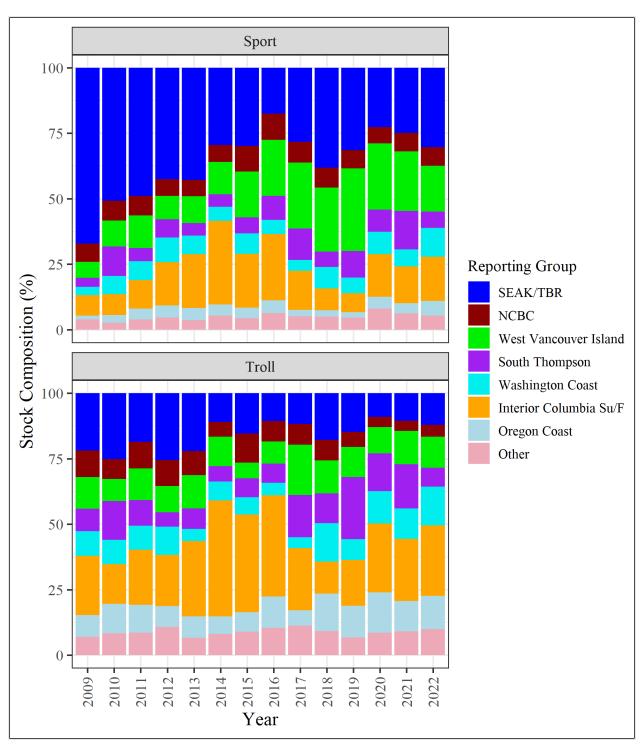


Figure 30.—Mean contributions (%) of driver stock reporting groups of Chinook salmon to the annual regionwide sport (upper) and troll (lower) fishery harvest in Southeast Alaska, AY 2009–2022.

Note: Reporting groups are described in Table 1. Driver stocks are aggregate stocks that consistently make up a large proportion (>5%) of all Chinook salmon harvested annually in Southeast Alaska fisheries, and thus are important stocks that help drive catch allocations under the Pacific Salmon Treaty.

Note: AY = Accounting year = October 1–September 30.

APPENDIX A: BASELINE POPULATION

Appendix A1.—Location and collection details for each population of Chinook salmon included in the coastwide baseline of microsatellite data (GAPS version 3.0).

Reporting	Fine-scale	Pop			Run			
group no.	reporting group	No.a	Population	N	time ^b	Origin ^c	Life stage	Collection date
1	Situk	1	Situk River	127	_	W	Adult	1988, 1990, 1991, 1992
2	Alsek	2	Blanchard River	349	_	W	Adult	2000, 2001, 2002, 2003
		3	Goat Creek	62	_	W	Adult	2007, 2008
		4	Klukshu River	238	_	W	Adult	1987, 1989, 1990, 1991, 2000, 2001
		5	Takhanne River	196	_	W	Adult	2000, 2001, 2002, 2003, 2008
3	N Southeast Alaska	6	Big Boulder Creek	138	_	W	Adult	1992, 1995, 2004
		7	Tahini River–Macaulay Hatchery	77	_	Н	Adult	2005
		8	Tahini River	119	_	W	Adult	1992, 2004
		9	Kelsall River	153	_	W	Adult	2004
		10	King Salmon River	143	_	W	Adult	1989, 1990, 1993
4	Taku	11	Dudidontu River	233	_	W	Adult	2002, 2004, 2005, 2006
		12	Kowatua Creek	288	_	W	Adult	1989, 1990, 2005
		13	Little Tatsamenie River	684	_	W	Adult	1999, 2005, 2006, 2007
		14	Little Trapper River	74	_	W	Adult	1999
		15	Upper Nahlin River	132	_	W	Adult	1989, 1990, 2004
		16	Nakina River	428	_	W	Adult	1989, 1990, 2004, 2005, 2006, 2007
		17	Tatsatua Creek	171	_	W	Adult	1989, 1990
5	Andrew	18	Andrew Creek	131	_	W	Adult	1989, 2004
		19	Andrew Creek-Crystal Hatchery	207	_	Н	Adult	2005
		20	Andrew Creek-Macaulay Hatchery	135	_	Н	Adult	2005
		21	Andrew Creek-Medvejie Hatchery	177	_	Н	Adult	2005
6	Stikine	22	Christina River	164	_	W	Adult	2000, 2001, 2002
		23	Craig River	96	_	W	Adult	2001
		24	Johnny Tashoots Creek	62	_	W	Adult	2001, 2004, 2005, 2008
		25	Little Tahltan River	126	_	W	Adult	2001. 2004
		26	Shakes Creek	164	_	W	Adult	2000, 2001, 2002, 2007
		27	Tahltan River	80	_	W	Adult	2008
		28	Verrett River	482	_	W	Adult	2000, 2002, 2003, 2007
7	S Southeast Alaska	29	Chickamin River	126	_	W	Adult	1990, 2003
		30	King Creek	136	_	W	Adult	2003
		31	Butler Creek	190	_	W	Adult	2004
		32	Leduc Creek	43	_	W	Adult	2004
		33	Humpy Creek	124	_	W	Adult	2003
		34	Chickamin River–Little Port Walter H.	218	_	Н	Adult	1993, 2005
		35	Chickamin River-Whitman Hatchery	193	_	Н	Adult	2005
		36	Clear Creek	134	_	W	Adult	1989, 2003, 2004

Appendix A1.—Page 2 of 10.

Reporting	Fine-scale	Pop						
group no.	reporting group	No.a	Population	N	Run time ^b	Origin ^c	Life stage	Collection date
7	S Southeast Alaska	37	Cripple Creek	141	-	W	Adult	1988, 2003
	(cont.)	38	Gene's Lake	92	_	W	Adult	1989, 2003, 2004
		39	Kerr Creek	151	_	W	Adult	2003, 2004
		40	Unuk River-Little Port Walter H.	149	_	Н	Adult	2005
		41	Keta River	200	_	W	Adult	1989, 2003, 2004
		42	Blossom River	190	_	W	Adult	2004
8	Nass	43	Cranberry River	158	_	W	Adult	1996, 1997
		44	Damdochax River	63	Su	W	Adult	1996
		45	Ishkheenickh River	192	_	_	Adult	2004, 2006
		46	Kincolith River	220	Su	W	Adult	1996, 1999
		47	Kiteen River	54	_	_	Adult	2006
		48	Kwinageese River	67	Su	W	Adult	1996, 1997
		49	Meziadin River	45	_	_	Adult	1996
		50	Oweegie Creek	147	Su	W	Adult	1996, 1997, 2004
		51	Tseax River	198	_	_	Adult	1995, 1996, 2002, 2006, 2008
9	Skeena	52	Cedar River	112	Su	W	Adult	1996
		53	Ecstall River	149	Su	W	Adult	2000, 2001, 2002
		54	Exchamsiks River	106	_	_	Adult	1995, 2009
		55	Exstew River	140	_	_	Adult	2009
		56	Gitnadoix River	170	_	_	Adult	1995, 2009
		57	Kitsumkalum River (Lower)	449	Su	W	Adult	1996, 1998, 2001, 2009
		58	Kasiks River	60	_	_	Adult	2006
		59	Zymagotitz River	119	_	_	Adult	2006, 2009
		60	Zymoetz River (Upper)	54	_	_	Adult	1995, 2004, 2009
		61	Kispiox River	88	_	_	Adult	1995, 2004, 2006, 2008
		62	Kitseguecla River	258	_	_	Adult	2009
		63	Kitwanga River	169	_	_	Adult	1996, 2002, 2003
		64	Shegunia River	78	_	_	Adult	2009
		65	Sweetin River	60	_	_	Adult	2004, 2005, 2008
		66	Bear River	99	_	_	Adult	1991, 1995, 1996, 2005
		67	Kluakaz Creek	98	_	_	Adult	2007, 2008, 2009
		68	Kluayaz Creek	144	_	_	Adult	2007, 2008, 2009
		69	Kuldo Creek	170	_	_	Adult	2008, 2009
		70	Osti Creek	90	_	_	Adult	2009
		71	Sicintine River	105	_	W	Adult	2009
		72	Slamgeesh River	125	_	_	Adult	2004, 2005, 2006, 2007, 2008, 2009
		73	Squingala River	259	_	_	Adult	2008, 2009

Appendix A1.—Page 3 of 10.

Reporting	Fine-scale	Pop			Run			
group no.	reporting group	No.a	Population	N	timeb	Origin ^c	Life stage	Collection date
9	Skeena	74	Sustut River	337	Su	W	Adult	1995, 1996, 2001, 2002, 2005, 2006
	(cont.)	75	Babine River	105	Su	Н	Adult	1996
		76	Bulkley River (Upper)	206	Su	W	Adult	1991, 1998, 1999
		77	Morice River	105	_	_	Adult	1991, 1995, 1996
		78	Suskwa River	85	_	_	Adult	2004, 2005, 2009
10	BC Coast/Haida Gwaii	79	Yakoun River	131	_	_	Adult	1989, 1996, 2001
		80	Atnarko Creek	142	Su	Н	Adult	1996
		81	Chuckwalla River	46	_	_	Adult	1999, 2001, 2005
		82	Dean River	175	_	_	Adult	2002, 2003, 2004, 2006
		83	Dean River (Upper)	176	_	_	Adult	2001, 2002, 2003, 2004, 2006
		84	Docee River	42	_	_	Adult	1999, 2002, 2007
		85	Kateen River	128	_	_	Adult	2004, 2005
		86	Kilbella River	50	_	_	Adult	2001, 2005
		87	Kildala River	197	_	_	Adult	1999, 2000
		88	Kitimat River	135	Su	Н	Adult	1997
		89	Kitlope River	181	_	_	Adult	2004, 2006
		90	Takia River	46	_	_	Adult	2002, 2003, 2006
		91	Wannock River	129	F	Н	Adult	1996
		92	Capilano River	75	_	_	Adult	1999
		93	Cheakamus River	54	F	_	Adult	2006, 2007, 2008
		94	Devereux River	148	F	W	Adult	1997, 2000
		95	Klinaklini River	198	F	W	Adult	1997, 1998, 2002
		96	Phillips River	287	_	_	Adult	2000, 2004, 2006, 2007, 2008
		97	Squamish River	181	F	Н	Adult	2003
11	West Vancouver	98	Burman River	218	_	_	Adult	1985, 1989, 1990, 1991, 1992, 2000, 2002, 2003
		99	Conuma River	140	F	Н	Adult	1997
		100	Gold River	258	_	_	Adult	1983, 1985, 1986, 1987, 1992, 2002
		101	Kennedy River (Lower)	320	_	_	Adult	2005, 2007, 2008
		102	Marble River	136	F	Н	Adult	1996, 1999, 2000
		103	Nahmint River	43	_	_	Adult	2002, 2003
		104	Nitinat River	125	F	H	Adult	1996
		105	Robertson Creek	124	F	H	Adult	1996, 2003
		106	San Juan River	175	_	_	Adult	2001, 2002
		107	Sarita River	137	F	H	Adult	1997, 2001
		108	Tahsis River	174	F	W	Adult	1996, 2002, 2003
		109	Thornton Creek	158	_	_	Adult	2001
		110	Tlupana River	58	_	_	Adult	2002, 2003

Appendix A1.—Page 4 of 10.

Reporting	Fine-scale	Pop			Run			
group no.	reporting group	No.a	Population	N	time ^b	Origin ^c	Life stage	Collection date
11	West Vancouver	111	Toquart River	68	_	_	Adult	1999, 2000
	(cont.)	112	Tranquil Creek	227	F	W	Adult	1996, 1999, 2004
	` ,	113	Zeballos River	148	_	_	Adult	2002, 2005, 2006, 2007, 2008
12	East Vancouver	114	Chemainus River	202	_	_	Adult	1996, 1999
		115	Nanaimo River (Fall)	122	F	H	Adult	1996, 2002
		116	Nanaimo River (Summer)	166	Su	H	Adult	1996, 2002
		117	Nanaimo River (Spring)	94	Sp	W	Adult	1998
		118	Nanaimo River (Upper)	114	_	_	Adult	2003, 2004
		119	Nimpkish River	68	_	_	Adult	2004
		120	Puntledge River (Fall)	279	F	H	Adult	2000, 2001
		121	Puntledge River (Summer)	255	Su	Н	Adult	1998, 2000, 2006
		122	Qualicum River	79	F	Н	Adult	1996
		123	Quinsam River	143	F	Н	Adult	1996, 1998
13	Fraser	124	Harrison River	216	F	=	Adult	1999, 2002
		125	Big Silver Creek	54	Sp	W	Adult	2004, 2005, 2006, 2007, 2008
		126	Birkenhead River	154	Sp	W	Adult	1998, 1999, 2001, 2002, 2005, 2006
		127	Pitt River (Upper)	65	Sp	W	Adult	2004, 2005, 2006, 2007, 2008
		128	Maria Slough	271	Su	W	Adult	1999, 2000, 2001, 2002, 2005
		129	Baezaeko River	80	_	_	Adult	1984, 1985
		130	Bridge River	157	_	_	Adult	1996
		131	Cariboo River	76	Su	W	Adult	1996, 2007, 2008
		132	Cariboo River (Upper)	166	Sp	W	Adult	2001
		133	Chilcotin River	201	Sp	W	Adult	1996, 1997, 1998, 2001
		134	Chilcotin River (Lower)	173	Sp	W	Adult	1996, 2000, 2001
		135	Chilko River	144	Sp	W	Adult	1995, 1999, 2001, 2002
		136	Cottonwood River (Upper)	118	_	_	Adult	2004, 2007, 2008
		137	Elkin Creek	190	Su	W	Adult	1996
		138	Endako River	42	_	_	Adult	1997, 1998, 2000
		139	Nazko River	179	_	_	Adult	1983, 1984, 1985
		140	Nechako River	128	Su	W	Adult	1992, 1996
		141	Portage Creek	138	_	_	Adult	2002, 2004, 2005, 2006, 2008
		142	Quesnel River	119	Su	W	Adult	1996, 1997
		143	Stuart River	125	Su	W	Adult	1996
		144	Taseko River	120	_	_	Adult	1997, 1998, 2002
		145	Bowron River	78	Sp	W	Adult	1997, 1998, 2001, 2003
		146	Fontoniko Creek	46	_	_	Adult	1996
		147	Goat River	46	_	_	Adult	1997, 2000, 2001, 2002

Appendix A1.—Page 5 of 10.

Reporting	Fine-scale	Pop			Run			
group no.	reporting group	No.a	Population	N	time ^b	Origin ^c	Life stage	Collection date
13	Fraser	148	Holmes River	100	_	_	Adult	1996, 1999, 2000, 2001, 2002
	(cont.)	149	James Creek	53	_	_	Adult	1984, 1988
	, ,	150	McGregor River	119	_	_	Adult	1997
		151	Morkill River	152	Su	W	Adult	2001
		152	Salmon River (Fraser)	153	Sp	W	Adult	1996, 1997
		153	Slim Creek	113	Sp	W	Adult	1996, 1998, 2001
		154	Swift Creek	120	Sp	W	Adult	1996, 2000
		155	Fraser River above Tete Jaune	183	_	_	Adult	2001
		156	Torpy River	135	F	W	Adult	2001
		157	Willow River	37	Sp	W	Adult	1997, 2002, 2004
14	Lower Thompson	158	Coldwater River	109	_	_	Adult	1995, 1997, 1998, 1999
		159	Coldwater River (Upper)	69	_	_	Adult	2004, 2005, 2006
		160	Deadman River	256	Sp	H	Adult	1997, 1998, 1999, 2006
		161	Lois River	259	Sp	W	Adult	1997, 1999, 2001, 2006, 2008
		162	Nicola Hatchery	135	Sp	H	Adult	1998, 1999
		163	Nicola River	88	_	_	Adult	1998, 1999
		164	Spius Creek	52	_	_	Adult	1998, 1999
		165	Spius Creek (Upper)	82	_	_	Adult	2001, 2006
		166	Spius Hatchery	95	Sp	H	Adult	1996, 1997, 1998
15	North Thompson	167	Blue River	57	_	_	Adult	2001, 2002, 2003, 2004, 2006, 2007
		168	Clearwater River	112	Su	W	Adult	1997
		169	Finn Creek	174	_	_	Adult	1996, 1998, 2002, 2006, 2008
		170	Lemieux Creek	56	_	_	Adult	2001, 2002, 2004, 2006
		171	North Thompson River	77	_	_	Adult	2001
		172	Raft River	105	Su	W	Adult	2001, 2002, 2006, 2008
16	South Thompson	173	Adams River	76	Su	H	Adult	1996, 2001, 2002
		174	Bessette Creek	103	_	_	Adult	1998, 2002, 2003, 2004, 2006, 2008
		175	Eagle River	76	_	_	Adult	2003, 2004
		176	Shuswap River (Lower)	93	_	_	Adult	1996, 1997
		177	Shuswap River (Middle)	149	Su	H	Adult	1997, 2001
		178	South Thompson River	73	_	_	Adult	1996, 2001
		179	Salmon River	126	_	_	Adult	1997, 1998, 1999
		180	Thompson River (Lower)	175	F	W	Adult	2001, 2008
17	Puget Sound	181	Dungeness River	123	_	W	Adult	2004
	-	182	Elwha Hatchery	209	F	H	Adult/Juv	1996, 2004
		183	Elwha River	139	_	W	Adult/Juv	2004, 2005
		184	Upper Cascade River	43	Sp	W	Adult	1998, 1999

Appendix A1.—Page 6 of 10.

Reporting	Fine-scale	Pop			Run			
group no.	reporting group	No.a	Population	N	time ^b	Origin ^c	Life stage	Collection date
17	Puget Sound	185	Marblemount Hatchery	91	Sp	Н	Adult	2006
	(cont.)	186	North Fork Nooksack River	137	Sp	H,W	Adult	1998, 1999
	,	187	North Fork Stilliguamish River	290	Su	H,W	Adult	1996, 2001, 2004
		188	Samish Hatchery	74	F	Н	Adult	1998
		189	Upper Sauk River	120	Sp/Su	W	Adult	1994, 1998, 1999, 2006
		190	Skagit River (Summer)	99	Su	W	Adult	1994, 1995
		191	Skagit River (Lower; Fall)	95	F	W	Adult	1998, 2006
		192	Skagit River (Upper)	53	Su	W	No data	1998
		193	Skykomish River	73	Su	W	Adult	1996, 2000
		194	Snoqualmie River	49	_	W	No data	2005
		195	Suiattle River	122	Sp	W	Adult	1989, 1998, 1999
		196	Wallace Hatchery	191	Su	Н	Adult	1996, 2004, 2005
		197	Bear Creek	204	Su/F	W	Adult	1998, 1999, 2003, 2004
		198	Cedar River	170	Su/F	W	Adult	1994, 2003, 2004
		199	Nisqually River-Clear Creek Hatchery	132	F	Н	Adult	2005
		200	Grovers Creek Hatchery	95	Su/F	Н	Adult	2004
		201	Hupp Springs Hatchery	90	Sp	Н	Adult	2002
		202	Issaquah Creek	166	Su/F	H,W	Adult	1999, 2004
		203	Nisqually River	94	Su/F	W	Adult	1998, 1999, 2000, 2006
		204	South Prairie Creek	78	F	W	Adult	1998, 1999, 2002
		205	Soos Creek	178	F	Н	Adult	1998, 2004
		206	Univ of Washington Hatchery	125	Su/F	Н	Adult	2004
		207	Voights Hatchery	93	F	Н	Adult	1998
		208	White River	146	Sp	Н	Adult	1998
		209	George Adams Hatchery	131	ŕ	Н	Adult	2005
		210	Hamma Hamma River	128	F	W	Adult	1999, 2000, 2001
		211	North Fork Skokomish River	87	F	W	Adult	1998, 1999, 2000, 2004, 2005, 2006
		212	South Fork Skokomish River	96	Su/F	H,W	Adult	2005, 2006
18	Washington Coast	213	Forks Creek Hatchery	140	F	H	Adult	2005
	G	214	Hoh River (Fall)	115	F	W	Adult	2004, 2005
		215	Hoh River (Spring/Summer)	138	Sp/Su	W	Adult	1995, 1996, 1997, 1998, 2005, 2006
		216	Hoko Hatchery	73	F	H,W	Adult	2004, 2006
		217	Humptulips Hatchery	60	F	H	Adult	1990
		218	Makah Hatchery	128	F	Н	Adult	2001, 2003
		219	Queets River	53	F	W	Adult	1996, 1997
		220	Quillayute River	52	F	W	Adult	1995, 1996
		221	Quinault River	54	F	W	Adult	1995, 1997, 1998

Appendix A1.—Page 7 of 10.

Reporting	Fine-scale	Pop			Run			
group no.	reporting group	No.a	Population	N	time ^b	Origin ^c	Life stage	Collection date
18	Washington Coast	222	Quinault Hatchery	82	F	Н	Adult	2001, 2006
	(cont.)	223	Sol Duc Hatchery	94	Sp	Н	Adult	2003
19	West Cascades Sp	224	Cowlitz Hatchery (Spring)	124	Sp	Н	No data	2004
	-	225	Kalama Hatchery	133	Sp	Н	No data	2004
		226	Lewis Hatchery	116	Sp	Н	No data	2004
20	Lower Columbia F	227	Abernathy Creek	89	F	W	Adult	1995, 1997, 1998, 2000
		228	Abernathy Hatchery	91	F	Н	Adult	1995
		229	Coweeman River	109	F	W	Adult	1996, 2006
		230	Cowlitz Hatchery (Fall)	116	F	Н	No data	2004
		231	Elochoman River	88	F	W	Adult	1995, 1997
		232	Green River	55	F	W	Adult	2000
		233	Lewis River (Fall)	79	F	W	Adult	2003
		234	Lewis River (Lower; Summer)	83	F	W	Adult	2004
		235	Lewis River (Summer)	128	F	W	Adult	2004
		236	Sandy River (Fall)	106	F	W	Adult	2002, 2004
		237	Washougal River	108	F	W	Adult	1995, 1996, 2006
		238	Big Creek Hatchery	95	F	Н	Juvenile	2004
		239	Elochoman Hatchery	94	F	Н	Juvenile	2004
		240	Spring Creek	194	F	Н	Juvenile	2001, 2002, 2006
21	Willamette Sp	241	Sandy River (Spring)	63	Sp	W	Adult	2006
	•	242	McKenzie Hatchery	127	Sp	Н	Adult	2002, 2004
		243	McKenzie River	90	Sp	W	Juvenile	1997
		244	North Fork Clackamas River	62	Sp	W	Juvenile	1997
		245	North Santiam Hatchery	125	Sp	Н	Adult	2002, 2004
		246	North Santiam River	83	Sp	W	Juvenile	1997
22	Columbia Sp	247	Klickitat Hatchery	82	Sp	Н	Adult	2002, 2006
	1	248	Klickitat River (Spring)	40	Sp	W	Adult	2005
		249	Shitike Creek	127	Sp	Н	Juvenile	2003, 2004
		250	Warm Springs Hatchery	127	Sp	Н	No data	2002, 2003
		251	Granite Creek	54	Sp	W	Adult	2005, 2006
		252	John Day River (upper mainstem)	65	Sp	W	Adult	2004, 2005, 2006
		253	Middle Fork John Day River	83	Sp	W	Adult	2004, 2005, 2006
		254	North Fork John Day River	105	Sp	W	Adult	2004, 2005, 2006
		255	American River	116	Sp	W	Adult	2003
		256	Upper Yakima Hatchery	179	Sp	Н	Adult	1998
		257	Little Naches River	73	Sp	W	Adult	2004
		258	Yakima River (Upper)	46	Sp	W	Adult	1992, 1997
		259	Naches River	64	Sp	W	Adult	1989, 1993

Appendix A1.—Page 8 of 10.

Reporting	Fine-scale	Pop			Run			
group no.	reporting group	No.a	Population	N	time ^b	Origin ^c	Life stage	Collection date
22	Columbia Sp	260	Carson Hatchery	168	Sp	H	No data	2001, 2004, 2006
	(cont.)	261	Entiat Hatchery	127	Sp	Н	Juvenile	2002
		262	Little White Salmon Hatchery (Spring)	93	Sp	H	Juvenile	2005
		263	Methow River (Spring)	85	Sp	Н	Juvenile	1998, 2000
		264	Twisp River	122	Sp	W	Adult	2001, 2005
		265	Wenatchee Hatchery	43	Sp	H	Adult	1998, 2000
		266	Wenatchee River	62	Sp	W	Adult	1993
		267	Tucannon River	112	Sp/Su	W	Adult	2003
		268	Chamberlain Creek	45	Sp/Su	W	Juvenile	2006
		269	Crooked Fork Creek	100	Sp/Su	W	Juvenile	2005, 2006
		270	Dworshak Hatchery	81	Sp/Su	Н	Adult	2005
		271	Lochsa River	125	Sp/Su	H	Adult	2005
		272	Lolo Creek	92	Sp/Su	W	Adult/Juv	2001, 2002
		273	Newsome Creek	75	Sp/Su	W	Adult	2001, 2002
		274	Rapid River Hatchery	136	Sp/Su	Н	No data	1997, 1999, 2002
		275	Rapid River Hatchery	46	Su	Н	Juvenile	2001, 2002
		276	Red River/South Fork Clearwater	172	Sp/Su	Н	Adult	2005
		277	Catherine Creek	111	Sp/Su	W	Adult	2002, 2003
		278	Lookingglass Hatchery	188	Sp/Su	Н	Juvenile	1994, 1995, 1998
		279	Minam River	136	Sp/Su	W	No data	1994, 2002, 2003
		280	Wenaha Creek	46	Sp/Su	W	Juvenile	2002
		281	Imnaha River	132	Sp/Su	W	No data	1998, 2002, 2003
		282	Bear Valley Creek	45	Sp/Su	W	Juvenile	2006
		283	Johnson Creek	186	Sp/Su	W	Adult/Juv	2001, 2002, 2003
		284	Johnson Hatchery	92	Sp/Su	Н	Juvenile	2002, 2003, 2004
		285	Knox Bridge	90	Su	W	Juvenile	2001, 2002
		286	McCall Hatchery	80	Su	H	Juvenile	1999, 2001
		287	Poverty Flat	88	Su	W	Juvenile	2001, 2002
		288	Sesech River	115	Sp/Su	W	No data	2001, 2002, 2003
		289	Stolle Meadows	91	Su	W	Juvenile	2001, 2002
		290	Big Creek	142	Sp/Su	W	Adult	2001, 2002, 2003
		291	Big Creek (Lower)	74	Su	W	Juvenile	1999, 2002
		292	Big Creek (Upper)	87	Su	W	Juvenile	1999, 2002
		293	Camas Creek	42	Sp/Su	W	Juvenile	2006
		294	Capehorn Creek	51	Sp/Su	W	Juvenile	2006
		295	Marsh Creek	95	Su	W	Juvenile	2001, 2002
		296	Decker Flat	78	Su	W	Juvenile	1999, 2002
		297	Valley Creek (Lower)	94	Su	W	Juvenile	1999, 2002

Appendix A1.—Page 9 of 10.

Reporting	Fine-scale	Pop			Run			
group no.	reporting group	No.a	Population	N	time ^b	Origin ^c	Life stage	Collection date
22	Columbia Sp	298	Valley Creek (Upper)	95	Su	W	Juvenile	1999, 2002
	(cont.)	299	East Fork Salmon River	141	Sp/Su	W	Adult	2004, 2005
	()	300	Pahsimeroi River	71	Sp/Su	W	Adult	2002
		301	Sawtooth Hatchery	260	Sp/Su	Н	Adult/Juv	2002, 2003, 2005, 2006
		302	West Fork Yankee Fork	59	Sp/Su	W	Juvenile	2005
23	Interior Columbia Su/F	303	Hanford Reach	163	Su/F	W	No data	1999, 2000, 2001
		304	Klickitat River (Summer/Fall)	149	Su/F	W	Adult	1994, 2005
		305	Little White Salmon Hatchery (Fall)	94	Su/F	Н	Juvenile	2006
		306	Marion Drain	131	Su/F	W	Adult	1989, 1992
		307	Methow River (Summer)	115	Su/F	W	No data	1992, 1993, 1994
		308	Okanagan River	72	Su/F	W	Adult	2000, 2002, 2003, 2004, 2006, 2007, 2008
		309	Priest Rapids Hatchery	181	Su/F	Н	Juvenile	1998, 1999, 2000, 2001
		310	Priest Rapids Hatchery	67	Su/F	Н	Adult	1998
		311	Umatilla Hatchery	90	F	Н	Adult	2006
		312	Umatilla Hatchery	94	Su/F	Н	Adult	2003
		313	Wells Dam Hatchery	128	Su/F	Н	No data	1993
		314	Wenatchee River	119	Su/F	W	Adult	1993
		315	Yakima River (Lower)	102	Su/F	W	Adult	1990, 1993, 1998
		316	Deschutes River (Lower)	101	F	W	No data	1999, 2001, 2002
		317	Deschutes River (Upper)	128	Su/F	W	Juvenile	1998, 1999, 2002
		318	Clearwater River	88	F	W	Adult	2000, 2001, 2002
		319	Lyons Ferry	185	F	Н	Adult	2002, 2003
		320	Nez Perce Tribal Hatchery	123	F	Н	Adult	2003, 2004
24	North Oregon Coast	321	Alsea River	108	F	W	Adult	2004
	_	322	Kilchis River	44	F	Unk	Adult	2000, 2005
		323	Necanicum Hatchery	50	F	H,W	Adult	2005
		324	Nehalem River	131	F	W	Adult	2000, 2002
		325	Nestucca Hatchery	119	F	Н	Adult	2004, 2005
		326	Salmon River	83	F	Unk	Adult	2003
		327	Siletz River	107	F	W	Adult	2000
		328	Trask River	123	F	W	Adult	2005
		329	Wilson River	120	F	W	Adult	2005
		330	Yaquina River	113	F	W	Adult	2005
		331	Siuslaw River	105	F	W	Adult	2001
25	Mid Oregon Coast	332	Coos Hatchery	58	F	Н	Adult	2005
		333	Coquille River	118	F	W	Adult	2000
		334	Elk River	129	F	Н	Adult	2004
		335	South Coos Hatchery	73	F	Н	Adult	2005

Appendix A1.—Page 10 of 10.

Reporting	Fine-scale	Pop			Run		Life	
group no.	reporting group	No.a	Population	N	timeb	Origin ^c	stage	Collection date
25	Mid Oregon Coast	336	South Coos River	45	F	W	Adult	2000
	(cont.)	337	South Umpqua Hatchery	128	F	H,W	Adult	2002
		338	Sixes River	107	F	W	Adult	2000, 2005
		339	Umpqua Hatchery	132	Sp	W	Adult	2004
26	S Oregon/California	340	Applegate Creek	110	F	W	Adult	2004
		341	Cole Rivers Hatchery	126	Sp	Н	Adult	2004
		342	Klaskanine Hatchery	96	F	Н	Juvenile	2009
		343	Chetco River	136	F	W	Adult	2004
		344	Klamath River	111	F	W	Adult	2004
		345	Trinity Hatchery (Fall)	144	F	H	Adult	1992
		346	Trinity Hatchery (Spring)	127	Sp	Н	Adult	1992
		347	Eel River	122	F	W	Adult	2000, 2001
		348	Russian River	142	F	W	Juvenile	2001
		349	Battle Creek	99	F	W	Adult	2002, 2003
		350	Butte Creek	61	F	W	Adult	2002, 2003
		351	Feather Hatchery (Fall)	129	F	Н	Adult	2003
		352	Stanislaus River	61	F	W	Adult	2002
		353	Butte Creek	101	Sp	W	Adult	2002, 2003
		354	Deer Creek	42	Sp	W	Adult	2002
		355	Feather Hatchery (Spring)	144	Sp	H	Adult	2003
		356	Mill Creek	76	Sp	W	Adult	2002, 2003
		357	Sacramento River (Winter)	95	Ŵ	H,W	Adult	1992, 1993, 1994, 1995, 1997, 1998, 2001, 2003, 2004

Note: En dashes indicate no data.

^a Population numbers and reporting group numbers correspond to the population and reporting group numbers referenced in Table 1.

^b Run-timing components are abbreviated as Sp (spring), Su (summer), F (fall), and W (winter).

^c Origin categories are abbreviated as H (hatchery), W (wild), and Unk (unknown).

APPENDIX B: ESTIMATED CONTRIBUTION

Appendix B1.—Estimated contributions of broad-scale reporting groups of Chinook salmon to the Southeast Alaska troll fishery harvest, AY 2020.

		Sample	Reporting				90%	6 CI
Fishery	Quadrant	size	group	Mean	SD	Median	5%	95%
			Alaska	0.259	0.018	0.259	0.229	0.290
	All	587	TBR	0.001	0.003	0.000	0.000	0.007
	All	387	Canada	0.500	0.023	0.500	0.463	0.537
Early			US South	0.240	0.019	0.239	0.210	0.271
winter			Alaska	0.064	0.016	0.062	0.039	0.092
	NO	207	TBR	0.002	0.005	0.000	0.000	0.012
	NO	297	Canada	0.577	0.031	0.577	0.526	0.627
			US South	0.358	0.029	0.357	0.310	0.406
			Alaska	0.147	0.017	0.147	0.119	0.176
	A 11	5.00	TBR	0.013	0.007	0.012	0.004	0.026
	All	560	Canada	0.455	0.023	0.455	0.418	0.493
Late			US South	0.384	0.020	0.384	0.351	0.417
winter			Alaska	0.040	0.013	0.039	0.021	0.063
	3.10	205	TBR	0.013	0.007	0.012	0.004	0.027
	NO	385	Canada	0.429	0.027	0.429	0.385	0.474
			US South	0.517	0.026	0.517	0.474	0.560
			Alaska	0.327	0.013	0.326	0.305	0.349
			TBR	0.007	0.003	0.006	0.003	0.012
	All	1,522	Canada	0.484	0.014	0.484	0.461	0.508
			US South	0.182	0.011	0.182	0.164	0.201
		•	Alaska	0.305	0.017	0.304	0.277	0.332
			TBR	0.004	0.003	0.004	0.001	0.010
	NO	949	Canada	0.467	0.018	0.467	0.438	0.497
			US South	0.224	0.014	0.223	0.200	0.248
Spring			Alaska	0.230	0.022	0.230	0.196	0.266
		385	TBR	0.230	0.022	0.002	0.000	0.200
	SO		Canada	0.701	0.000	0.701	0.660	0.740
			US South	0.761	0.024	0.761	0.042	0.090
			Alaska	0.843	0.013	0.844	0.792	0.889
			TBR	0.042	0.029	0.040	0.792	0.076
	SI	188	TBK Canada	0.103	0.018	0.101	0.016	0.076
			US South	0.103	0.023	0.101	0.000	0.140
			Alaska	0.012	0.009	0.010	0.000	0.030
			TBR	0.033	0.008	0.034	0.024	0.049
	All	695	T B K Canada	0.001	0.001	0.000	0.325	0.002
Summer			US South	0.557	0.020	0.608	0.525	0.589
retention 1			•••••••••••••••••••••••••••••••••••••••				0.376	
retention i			Alaska	0.019	0.009	0.018		0.037
	NO	374	TBR	0.000	0.001	0.000	0.000	0.000
			Canada	0.321	0.026	0.320	0.279	0.363
			US South	0.660	0.025	0.660	0.618	0.701
			Alaska TDD	0.074	0.011	0.074	0.058	0.093
	All	764	TBR Canada	0.002	0.003	0.001	0.000	0.009
C			Canada	0.199	0.019	0.198	0.169	0.230
Summer			US South	0.725	0.020	0.726	0.692	0.757
retention 2			Alaska	0.047	0.012	0.046	0.028	0.068
retention 2	NO	386	TBR	0.001	0.004	0.000	0.000	0.010
	•		Canada	0.195	0.022	0.194	0.161	0.232
			US South	0.757	0.023	0.757	0.719	0.793

Note: Successfully genotyped sample sizes, standard deviation (SD), and 90% credibility intervals (CI) are provided.

Appendix B2.–Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska troll fishery harvest by season and quadrant, AY 2020.

	Early winter regionwide $(n = 587)$						Early winter Northern Outside ($n = 297$)					
	Ea	rly winte	r regionwi				Earl	ly winter N	Northern Out			
D:		CD.	3.6.12		6 CI			CD	3.6.11	90%		
Reporting group	Mean	SD	Median	5%	95%		Mean	SD	Median	5%	95%	
SEAK/TBR	0.261	0.018	0.261	0.231	0.291		0.066	0.017	0.064	0.040	0.095	
NCBC	0.197	0.019	0.197	0.168	0.229).221	0.026	0.220	0.179	0.265	
West Vancouver	0.079	0.010	0.079	0.063	0.096).177	0.022	0.176	0.141	0.215	
South Thompson	0.010	0.004	0.010	0.004	0.018		0.019	0.009	0.018	0.007	0.035	
Washington Coast	0.001	0.002	0.000	0.000	0.006		0.002	0.003	0.000	0.000	0.009	
Interior Columbia Su/F	0.109	0.012	0.109	0.090	0.129		0.228	0.025	0.228	0.188	0.271	
Oregon Coast	0.001	0.002	0.000	0.000	0.005		0.002	0.004	0.000	0.000	0.010	
Other	0.341	0.021	0.341	0.307	0.375	0).285	0.028	0.284	0.240	0.331	
			regionwic	•					orthern Outs			
SEAK/TBR	0.161	0.017	0.160	0.133	0.189		0.053	0.014	0.053	0.032	0.078	
NCBC	0.134	0.017	0.134	0.107	0.163).112	0.018	0.111	0.083	0.143	
West Vancouver	0.217	0.017	0.217	0.190	0.246).255	0.022	0.254	0.219	0.293	
South Thompson	0.016	0.006	0.015	0.008	0.026	0	0.017	0.007	0.016	0.007	0.030	
Washington Coast	0.024	0.007	0.024	0.014	0.037	0	0.030	0.010	0.029	0.015	0.047	
Interior Columbia Su/F	0.190	0.016	0.190	0.164	0.217	0	0.263	0.023	0.263	0.226	0.302	
Oregon Coast	0.003	0.004	0.002	0.000	0.011	0	0.005	0.006	0.002	0.000	0.017	
Other	0.255	0.020	0.254	0.223	0.288	0).265	0.024	0.265	0.226	0.306	
	S	Spring re	gionwide (n = 1,522	2)		S	Spring Nor	thern Outsid	e(n = 949))	
SEAK/TBR	0.333	0.013	0.333	0.312	0.356	0	0.309	0.017	0.309	0.282	0.337	
NCBC	0.044	0.006	0.044	0.034	0.056	0	0.039	0.008	0.038	0.027	0.052	
West Vancouver	0.281	0.012	0.281	0.261	0.302	0).245	0.015	0.245	0.221	0.270	
South Thompson	0.129	0.010	0.129	0.112	0.146	0).157	0.013	0.156	0.136	0.179	
Washington Coast	0.021	0.005	0.021	0.014	0.030	0	0.027	0.006	0.027	0.018	0.038	
Interior Columbia Su/F	0.083	0.009	0.083	0.070	0.098	0	0.101	0.011	0.100	0.083	0.119	
Oregon Coast	0.007	0.002	0.007	0.003	0.011	0	0.008	0.003	0.008	0.004	0.014	
Other	0.101	0.009	0.101	0.087	0.117	0).115	0.012	0.114	0.096	0.134	
	Spi	ring sout	hern outsid	$le^a (n=3)$	85)		;	Spring Sou	uthern Inside	e(n = 188)		
SEAK/TBR	0.235	0.021	0.234	0.201	0.271	0).885	0.025	0.887	0.841	0.924	
NCBC	0.072	0.015	0.071	0.048	0.099	0	0.035	0.017	0.033	0.012	0.066	
West Vancouver	0.539	0.026	0.539	0.496	0.580	0	0.016	0.009	0.015	0.005	0.034	
South Thompson	0.055	0.013	0.055	0.036	0.078	0	0.000	0.001	0.000	0.000	0.000	
Washington Coast	0.002	0.003	0.000	0.000	0.008	0	0.000	0.001	0.000	0.000	0.001	
Interior Columbia Su/F	0.037	0.010	0.036	0.022	0.056	0	0.000	0.001	0.000	0.000	0.001	
Oregon Coast	0.004	0.005	0.003	0.000	0.014	0	0.000	0.001	0.000	0.000	0.002	
Other	0.056	0.013	0.055	0.035	0.079	0	0.063	0.019	0.061	0.034	0.096	
	Sı	ımmer 1	regionwid	e (n = 69)	5)	Summer 1 Northern Outside ($n = 374$)						
SEAK/TBR	0.035	0.008	0.035	0.024	0.049	0	0.019	0.009	0.018	0.007	0.037	
NCBC	0.023	0.008	0.022	0.011	0.039	0	0.027	0.012	0.026	0.010	0.050	
West Vancouver	0.055	0.009	0.054	0.040	0.071		0.058	0.012	0.057	0.039	0.080	
South Thompson	0.268	0.017	0.267	0.240	0.297).222	0.022	0.221	0.187	0.258	
Washington Coast	0.130	0.015	0.130	0.107	0.155).151	0.020	0.151	0.120	0.185	
Interior Columbia Su/F	0.219	0.017	0.219	0.192	0.248		0.221	0.022	0.221	0.185	0.258	
Oregon Coast	0.199	0.017	0.199	0.172	0.228).223	0.023	0.223	0.187	0.261	
Other	0.070	0.011	0.070	0.052	0.090	0	0.078	0.015	0.077	0.054	0.104	

Appendix B2.-Page 2 of 2.

	S	Summer 2	regionwide	e(n = 764)	4)	Summer 2 Northern Outside ($n = 386$)						
				90%	6 CI				90%	6 CI		
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%		
SEAK/TBR	0.076	0.011	0.075	0.059	0.095	0.048	0.012	0.047	0.029	0.070		
NCBC	0.025	0.008	0.024	0.014	0.039	0.017	0.009	0.015	0.005	0.033		
West Vancouver	0.106	0.014	0.106	0.084	0.131	0.115	0.016	0.115	0.089	0.143		
South Thompson	0.048	0.010	0.047	0.033	0.065	0.048	0.012	0.047	0.030	0.068		
Washington Coast	0.161	0.018	0.161	0.132	0.192	0.181	0.021	0.181	0.147	0.217		
Interior Columbia Su/F	0.365	0.022	0.365	0.329	0.402	0.389	0.025	0.388	0.347	0.431		
Oregon Coast	0.169	0.018	0.168	0.140	0.199	0.159	0.020	0.159	0.127	0.194		
Other	0.050	0.010	0.049	0.034	0.069	0.043	0.012	0.042	0.025	0.064		

Note: n = successfully genotyped sample size, SD = standard deviation, and 90% CI = 90% credibility intervals.

Note: Reporting groups are described in Table 1.

^a Results did not converge at 40,000 iterations in BAYES for the Washington Coast reporting groups. Results are an average of all 5 chains.

Appendix B3.–Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the early winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2020.

		Regionwide ($n = 587$)					Northern Outside quadrant ($n = 297$)						
Reporting					90%	6 CI				90%	6 CI		
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%		
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
2	Alsek	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.001		
3	N Southeast Alaska	0.007	0.003	0.006	0.002	0.013	0.000	0.001	0.000	0.000	0.000		
4	Taku	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000		
5	Andrew	0.075	0.012	0.074	0.056	0.095	0.015	0.009	0.013	0.003	0.032		
6	Stikine	0.001	0.002	0.000	0.000	0.006	0.002	0.004	0.000	0.000	0.011		
7	S Southeast Alaska	0.178	0.018	0.178	0.148	0.209	0.049	0.015	0.048	0.026	0.076		
8	Nass	0.002	0.003	0.000	0.000	0.007	0.002	0.005	0.000	0.000	0.012		
9	Skeena	0.020	0.007	0.020	0.009	0.033	0.027	0.013	0.026	0.007	0.050		
10	BC Coast/Haida Gwaii	0.176	0.018	0.175	0.148	0.205	0.192	0.024	0.191	0.154	0.233		
11	West Vancouver	0.079	0.010	0.079	0.063	0.096	0.177	0.022	0.176	0.141	0.215		
12	East Vancouver	0.194	0.018	0.193	0.165	0.223	0.156	0.022	0.155	0.121	0.193		
13	Fraser	0.019	0.007	0.018	0.009	0.032	0.004	0.004	0.002	0.000	0.011		
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
15	North Thompson	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.001		
16	South Thompson	0.010	0.004	0.010	0.004	0.018	0.019	0.009	0.018	0.007	0.035		
17	Puget Sound	0.107	0.015	0.106	0.082	0.133	0.098	0.019	0.097	0.068	0.131		
18	Washington Coast	0.001	0.002	0.000	0.000	0.006	0.002	0.003	0.000	0.000	0.009		
19	West Cascades Sp	0.004	0.003	0.003	0.000	0.009	0.003	0.003	0.002	0.000	0.010		
20	Lower Columbia F	0.013	0.006	0.012	0.005	0.024	0.014	0.008	0.013	0.003	0.029		
21	Willamette Sp	0.005	0.003	0.004	0.001	0.010	0.010	0.006	0.009	0.003	0.022		
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
23	Interior Columbia Su/F	0.109	0.012	0.109	0.090	0.129	0.228	0.025	0.228	0.188	0.271		
24	North Oregon Coast	0.001	0.001	0.000	0.000	0.004	0.002	0.003	0.000	0.000	0.008		
25	Mid Oregon Coast	0.001	0.001	0.000	0.000	0.003	0.001	0.002	0.000	0.000	0.004		
26	S Oregon/California	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000		

Note: n = successfully genotyped sample size, SD = standard deviation, and 90% CI = 90% credibility intervals.

^a Run-timing components are abbreviated as Sp (spring), Su (summer), and F (fall).

Appendix B4.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the late winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2020.

			Regionwide ($n = 560$)					Northern Outside quadrant ($n = 385$)					
Reporting					90%	6 CI				90%	6 CI		
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%		
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
2	Alsek	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000		
3	N Southeast Alaska	0.002	0.002	0.001	0.000	0.005	0.003	0.003	0.002	0.000	0.008		
4	Taku	0.007	0.005	0.007	0.000	0.016	0.011	0.007	0.010	0.000	0.024		
5	Andrew	0.023	0.009	0.022	0.010	0.039	0.013	0.009	0.012	0.000	0.030		
6	Stikine	0.006	0.007	0.005	0.000	0.019	0.003	0.006	0.000	0.000	0.017		
7	S Southeast Alaska	0.123	0.016	0.122	0.097	0.150	0.025	0.010	0.023	0.010	0.043		
8	Nass	0.006	0.004	0.005	0.001	0.014	0.009	0.007	0.008	0.001	0.022		
9	Skeena	0.010	0.006	0.009	0.002	0.022	0.005	0.007	0.001	0.000	0.020		
10	BC Coast/Haida Gwaii	0.118	0.016	0.118	0.093	0.146	0.098	0.017	0.097	0.071	0.127		
11	West Vancouver	0.217	0.017	0.217	0.190	0.246	0.255	0.022	0.254	0.219	0.293		
12	East Vancouver	0.080	0.013	0.079	0.060	0.101	0.032	0.009	0.031	0.018	0.049		
13	Fraser	0.004	0.003	0.003	0.000	0.009	0.006	0.005	0.005	0.000	0.014		
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
15	North Thompson	0.005	0.003	0.004	0.001	0.011	0.008	0.005	0.007	0.002	0.018		
16	South Thompson	0.016	0.006	0.015	0.008	0.026	0.017	0.007	0.016	0.007	0.030		
17	Puget Sound	0.050	0.011	0.049	0.033	0.070	0.044	0.012	0.043	0.026	0.065		
18	Washington Coast	0.024	0.007	0.024	0.014	0.037	0.030	0.010	0.029	0.015	0.047		
19	West Cascades Sp	0.003	0.003	0.002	0.000	0.008	0.005	0.005	0.004	0.000	0.014		
20	Lower Columbia F	0.039	0.009	0.038	0.025	0.055	0.050	0.013	0.049	0.031	0.072		
21	Willamette Sp	0.073	0.011	0.073	0.057	0.091	0.119	0.017	0.118	0.091	0.148		
22	Columbia Sp	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000		
23	Interior Columbia Su/F	0.190	0.016	0.190	0.164	0.217	0.263	0.023	0.263	0.226	0.302		
24	North Oregon Coast	0.001	0.002	0.000	0.000	0.006	0.001	0.003	0.000	0.000	0.009		
25	Mid Oregon Coast	0.002	0.003	0.000	0.000	0.009	0.003	0.005	0.000	0.000	0.015		
26	S Oregon/California	0.001	0.002	0.000	0.000	0.005	0.002	0.003	0.000	0.000	0.007		

Note: n = successfully genotyped sample size, SD = standard deviation, and 90% CI = 90% credibility intervals.

^a Run timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B5.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the spring troll fishery regionwide and in the Northern Outside, Southern Outside, and Southern Inside quadrants of Southeast Alaska, AY 2020.

			Regio	onwide $(n = 1)$,522)		Northern Outside quadrant ($n = 949$)						
Reporting					90%	6 CI		<u>, </u>	-	90%	6 CI		
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%		
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
3	N Southeast Alaska	0.001	0.001	0.001	0.000	0.003	0.002	0.001	0.001	0.000	0.004		
4	Taku	0.002	0.002	0.002	0.000	0.006	0.003	0.002	0.002	0.000	0.008		
5	Andrew	0.206	0.012	0.206	0.186	0.227	0.267	0.016	0.267	0.241	0.294		
6	Stikine	0.004	0.002	0.004	0.002	0.009	0.001	0.002	0.000	0.000	0.006		
7	S Southeast Alaska	0.119	0.007	0.119	0.108	0.132	0.035	0.008	0.035	0.023	0.050		
8	Nass	0.001	0.001	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.001		
9	Skeena	0.003	0.002	0.003	0.000	0.008	0.003	0.003	0.002	0.000	0.009		
10	BC Coast/Haida Gwaii	0.040	0.006	0.040	0.031	0.051	0.036	0.007	0.035	0.025	0.048		
11	West Vancouver	0.281	0.012	0.281	0.261	0.302	0.245	0.015	0.245	0.221	0.270		
12	East Vancouver	0.025	0.004	0.025	0.019	0.031	0.022	0.004	0.021	0.015	0.029		
13	Fraser	0.003	0.002	0.003	0.001	0.006	0.003	0.002	0.002	0.000	0.007		
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
15	North Thompson	0.002	0.002	0.001	0.000	0.006	0.003	0.003	0.002	0.000	0.008		
16	South Thompson	0.129	0.010	0.129	0.112	0.146	0.157	0.013	0.156	0.136	0.179		
17	Puget Sound	0.014	0.004	0.013	0.008	0.020	0.013	0.004	0.013	0.007	0.020		
18	Washington Coast	0.021	0.005	0.021	0.014	0.030	0.027	0.006	0.027	0.018	0.038		
19	West Cascades Sp	0.002	0.002	0.001	0.000	0.005	0.002	0.002	0.002	0.000	0.007		
20	Lower Columbia F	0.050	0.007	0.050	0.039	0.063	0.065	0.009	0.064	0.050	0.081		
21	Willamette Sp	0.005	0.002	0.004	0.002	0.009	0.006	0.003	0.006	0.003	0.011		
22	Columbia Sp	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.001		
23	Interior Columbia Su/F	0.083	0.009	0.083	0.070	0.098	0.101	0.011	0.100	0.083	0.119		
24	North Oregon Coast	0.005	0.002	0.005	0.002	0.009	0.005	0.003	0.005	0.002	0.010		
25	Mid Oregon Coast	0.002	0.001	0.002	0.000	0.005	0.003	0.002	0.002	0.000	0.006		
26	S Oregon/California	0.001	0.001	0.001	0.000	0.002	0.001	0.001	0.001	0.000	0.003		

Appendix B5.—Page 2 of 2.

		S	Southern O	utside quadrai	$nt^{b} (n = 385)$	5)	Southern Inside quadrant ($n = 188$)				
Reporting					90%	6 CI			•	90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.001	0.000	0.000	0.000					
2	Alsek	0.000	0.001	0.000	0.000	0.000					
3	N Southeast Alaska	0.000	0.001	0.000	0.000	0.001					
4	Taku	0.001	0.002	0.000	0.000	0.003					
5	Andrew	0.012	0.006	0.011	0.004	0.022					
6	Stikine	0.004	0.006	0.001	0.000	0.015					
7	S Southeast Alaska	0.218	0.021	0.218	0.185	0.254					
8	Nass	0.000	0.001	0.000	0.000	0.001					
9	Skeena	0.003	0.004	0.001	0.000	0.011					
10	BC Coast/Haida Gwaii	0.069	0.015	0.068	0.046	0.095					
11	West Vancouver	0.539	0.026	0.539	0.496	0.580					
12	East Vancouver	0.031	0.011	0.030	0.016	0.050					
13	Fraser	0.003	0.003	0.002	0.000	0.009		Insu	ıfficient sample	size	
14	Lower Thompson	0.000	0.001	0.000	0.000	0.001			-		
15	North Thompson	0.000	0.001	0.000	0.000	0.001					
16	South Thompson	0.055	0.013	0.055	0.036	0.078					
17	Puget Sound	0.018	0.010	0.017	0.005	0.036					
18	Washington Coast	0.002	0.003	0.000	0.000	0.008					
19	West Cascades Sp	0.000	0.001	0.000	0.000	0.001					
20	Lower Columbia F	0.002	0.002	0.002	0.000	0.007					
21	Willamette Sp	0.000	0.001	0.000	0.000	0.000					
22	Columbia Sp	0.000	0.001	0.000	0.000	0.001					
23	Interior Columbia Su/F	0.037	0.010	0.036	0.022	0.056					
24	North Oregon Coast	0.004	0.005	0.003	0.000	0.014					
25	Mid Oregon Coast	0.000	0.001	0.000	0.000	0.001					
26	S Oregon/California	0.000	0.001	0.000	0.000	0.001					

Note: n = successfully genotyped sample size, SD = standard deviation, and 90% CI = 90% credibility intervals.

Note: There was insufficient sample size (n = 188) for fine-scale reporting groups for the spring troll Southern Inside Quadrant.

^a Run timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

b Results did not converge at 40,000 iterations in BAYES for the Washington Coast reporting groups. Results are an average of all 5 chains.

Appendix B6.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the first retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2020.

		Regionwide $(n = 695)$						Northe	rn Outside ^b (n	a = 374	
Reporting					90%	6 CI			•	90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
4	Taku	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
5	Andrew	0.018	0.006	0.017	0.010	0.028	0.015	0.007	0.014	0.006	0.028
6	Stikine	0.000	0.001	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.000
7	S Southeast Alaska	0.017	0.006	0.016	0.010	0.028	0.004	0.007	0.000	0.000	0.020
8	Nass	0.000	0.001	0.000	0.000	0.001	0.000	0.002	0.000	0.000	0.000
9	Skeena	0.002	0.003	0.000	0.000	0.008	0.002	0.005	0.000	0.000	0.013
10	BC Coast/Haida Gwaii	0.022	0.008	0.021	0.010	0.035	0.025	0.011	0.024	0.009	0.045
11	West Vancouver	0.055	0.009	0.054	0.040	0.071	0.058	0.012	0.057	0.039	0.080
12	East Vancouver	0.003	0.003	0.002	0.000	0.008	0.004	0.004	0.003	0.000	0.012
13	Fraser	0.004	0.003	0.003	0.000	0.010	0.004	0.004	0.002	0.000	0.013
14	Lower Thompson	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
15	North Thompson	0.005	0.004	0.004	0.000	0.012	0.006	0.006	0.005	0.000	0.016
16	South Thompson	0.268	0.017	0.267	0.240	0.297	0.222	0.022	0.221	0.187	0.258
17	Puget Sound	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
18	Washington Coast	0.130	0.015	0.130	0.107	0.155	0.151	0.020	0.151	0.120	0.185
19	West Cascades Sp	0.000	0.001	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.000
20	Lower Columbia F	0.056	0.010	0.056	0.041	0.073	0.061	0.013	0.060	0.041	0.084
21	Willamette Sp	0.002	0.002	0.001	0.000	0.006	0.003	0.003	0.002	0.000	0.009
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.219	0.017	0.219	0.192	0.248	0.221	0.022	0.221	0.185	0.258
24	North Oregon Coast	0.191	0.017	0.191	0.164	0.220	0.218	0.023	0.218	0.181	0.257
25	Mid Oregon Coast	0.008	0.006	0.007	0.000	0.019	0.005	0.006	0.003	0.000	0.017
26	S Oregon/California	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall)

b Results did not converge at 40,000 iterations in BAYES for the Fraser and Mid Oregon Coast reporting groups. Results are an average of all 5 chains..

Appendix B7.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the second retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2020.

			Reg	ionwide $(n = $	764)			Northe	ern Outside (n	= 386)	
Reporting					90%	6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.003	0.003	0.002	0.000	0.008	0.003	0.003	0.002	0.000	0.009
4	Taku	0.000	0.002	0.000	0.000	0.003	0.000	0.002	0.000	0.000	0.003
5	Andrew	0.023	0.008	0.022	0.012	0.038	0.021	0.009	0.020	0.008	0.038
6	Stikine	0.001	0.003	0.000	0.000	0.007	0.001	0.003	0.000	0.000	0.008
7	S Southeast Alaska	0.048	0.009	0.047	0.035	0.063	0.023	0.010	0.021	0.009	0.040
8	Nass	0.003	0.003	0.003	0.001	0.009	0.002	0.003	0.001	0.000	0.008
9	Skeena	0.005	0.006	0.002	0.000	0.017	0.006	0.007	0.001	0.000	0.020
10	BC Coast/Haida Gwaii	0.016	0.006	0.015	0.008	0.027	0.009	0.006	0.007	0.001	0.021
11	West Vancouver	0.106	0.014	0.106	0.084	0.131	0.115	0.016	0.115	0.089	0.143
12	East Vancouver	0.015	0.005	0.014	0.008	0.025	0.011	0.006	0.010	0.003	0.022
13	Fraser	0.004	0.004	0.003	0.000	0.011	0.004	0.004	0.003	0.000	0.012
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.001	0.001	0.001	0.000	0.002	0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.048	0.010	0.047	0.033	0.065	0.048	0.012	0.047	0.030	0.068
17	Puget Sound	0.002	0.001	0.002	0.000	0.004	0.000	0.001	0.000	0.000	0.001
18	Washington Coast	0.161	0.018	0.161	0.132	0.192	0.181	0.021	0.181	0.147	0.217
19	West Cascades Sp	0.001	0.002	0.000	0.000	0.006	0.001	0.003	0.000	0.000	0.007
20	Lower Columbia F	0.026	0.008	0.025	0.014	0.040	0.026	0.009	0.025	0.013	0.043
21	Willamette Sp	0.001	0.001	0.001	0.000	0.002	0.000	0.000	0.000	0.000	0.000
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.365	0.022	0.365	0.329	0.402	0.389	0.025	0.388	0.347	0.431
24	North Oregon Coast	0.121	0.016	0.121	0.096	0.148	0.114	0.018	0.113	0.085	0.145
25	Mid Oregon Coast	0.047	0.012	0.046	0.030	0.068	0.045	0.013	0.044	0.026	0.069
26	S Oregon/California	0.001	0.001	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.001

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B8.—Estimated contributions of broad-scale reporting groups of Chinook salmon to the Southeast Alaska sport fishery harvest, AY 2020.

		Sample	Reporting				90%	% CI
Area	Period	size	group	Mean	SD	Median	5%	95%
			Alaska	0.439	0.031	0.439	0.388	0.490
Ketchikan	All season	273	TBR	0.000	0.001	0.000	0.000	0.001
Ketchikan	All season	213	Canada	0.402	0.031	0.402	0.351	0.454
			US South	0.159	0.023	0.158	0.122	0.199
			Alaska	0.081	0.012	0.080	0.062	0.101
C:-	A 11	600	TBR	0.000	0.001	0.000	0.000	0.001
Craig	All season	699	Canada	0.688	0.019	0.688	0.657	0.719
			US South	0.231	0.017	0.231	0.204	0.259
			Alaska	0.067	0.008	0.067	0.054	0.081
Sitka	All season	1,130	TBR	0.006	0.004	0.005	0.001	0.013
Siika	All season	1,130	Canada	0.391	0.015	0.391	0.366	0.415
			US South	0.536	0.015	0.536	0.511	0.561
			Alaska	0.731	0.052	0.733	0.640	0.812
Petersburg-	All season	97	TBR	0.017	0.023	0.001	0.000	0.064
Wrangell	All season	91	Canada	0.199	0.044	0.196	0.131	0.275
			US South	0.054	0.023	0.050	0.022	0.097
			Alaska	0.844	0.024	0.845	0.803	0.882
Northern Inside	A 11	270	TBR	0.033	0.014	0.032	0.014	0.059
Northern Inside	All season	270	Canada	0.101	0.019	0.100	0.071	0.134
			US South	0.022	0.010	0.021	0.008	0.040
			Alaska	0.075	0.007	0.075	0.064	0.087
	A 11	1.050	TBR	0.001	0.001	0.000	0.000	0.004
	All season	1,858	Canada	0.507	0.012	0.507	0.487	0.527
			US South	0.417	0.012	0.417	0.397	0.436
			Alaska	0.152	0.016	0.152	0.126	0.179
0-4-11	D' 1 0 12	(0)	TBR	0.003	0.004	0.000	0.000	0.010
Outside	Biweeks 9–13	686	Canada	0.487	0.021	0.487	0.453	0.520
			US South	0.359	0.019	0.359	0.328	0.390
			Alaska	0.032	0.006	0.032	0.023	0.043
	Dividelles 14, 10	1 172	TBR	0.000	0.001	0.000	0.000	0.001
	Biweeks 14–18	1,172	Canada	0.519	0.015	0.519	0.494	0.544
			US South	0.449	0.015	0.449	0.424	0.473

Note: Successfully genotyped sample sizes, standard deviation (SD), and 90% credibility intervals (CI) are provided.

Note: Reporting groups are described in Table 1.

Appendix B9.–Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska sport fishery harvest by area and season, AY 2020.

		Keto	hikan (n =	273)			Petersbu	rg-Wrangell	(n = 97))		Northe	rn Inside (n	= 270)	
	·			90%	6 CI	·			909	% CI				90%	6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.439	0.031	0.439	0.388	0.490						0.877	0.021	0.878	0.842	0.910
NCBC	0.041	0.014	0.040	0.021	0.066						0.081	0.017	0.080	0.054	0.111
West Vancouver	0.151	0.022	0.150	0.117	0.188						0.000	0.001	0.000	0.000	0.000
South Thompson	0.106	0.019	0.105	0.076	0.139		Insuf	ficient samp	le size		0.004	0.004	0.003	0.000	0.013
Washington Coast	0.039	0.012	0.038	0.021	0.061						0.014	0.008	0.012	0.002	0.029
Interior Columbia Su/F	0.084	0.017	0.083	0.057	0.114						0.008	0.005	0.006	0.001	0.018
Oregon Coast	0.004	0.004	0.003	0.000	0.012						0.000	0.001	0.000	0.000	0.001
Other	0.136	0.022	0.135	0.102	0.174						0.016	0.008	0.015	0.006	0.031
		C	raio $(n = 69)$	(9)			Si	tka (n = 1.13	30)						

		Ci	raig ($n = 69$	9)			Sit	ka (n = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	30)	
				90%	6 CI				90%	6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.081	0.012	0.080	0.062	0.101	0.073	0.008	0.073	0.060	0.087
NCBC	0.100	0.013	0.100	0.080	0.122	0.026	0.006	0.025	0.017	0.035
West Vancouver	0.471	0.019	0.470	0.439	0.502	0.230	0.013	0.230	0.210	0.251
South Thompson	0.062	0.010	0.062	0.047	0.078	0.114	0.010	0.114	0.099	0.130
Washington Coast	0.073	0.011	0.073	0.056	0.092	0.135	0.011	0.134	0.117	0.153
Interior Columbia Su/F	0.085	0.011	0.085	0.068	0.104	0.272	0.013	0.272	0.251	0.295
Oregon Coast	0.043	0.008	0.043	0.030	0.058	0.076	0.009	0.076	0.062	0.091
Other	0.085	0.011	0.084	0.067	0.104	0.074	0.008	0.074	0.061	0.088

		Outside A	All Season (n = 1,858)		outside Bi	weeks 9–13	3 (n = 680)	5)	Ou	tside Biw	veeks 14–18	3 (n = 1, 1)	72)
				90%	6 CI				90%	6 CI				90%	6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.076	0.007	0.076	0.065	0.087	0.155	0.016	0.154	0.129	0.181	0.033	0.006	0.032	0.023	0.043
NCBC	0.058	0.006	0.057	0.048	0.068	0.081	0.013	0.080	0.061	0.103	0.045	0.007	0.044	0.034	0.057
West Vancouver	0.319	0.011	0.319	0.301	0.337	0.245	0.017	0.245	0.218	0.273	0.359	0.014	0.359	0.336	0.383
South Thompson	0.097	0.007	0.097	0.086	0.109	0.132	0.013	0.131	0.111	0.154	0.078	0.008	0.077	0.065	0.091
Washington Coast	0.108	0.008	0.107	0.095	0.121	0.104	0.013	0.104	0.084	0.126	0.109	0.010	0.109	0.093	0.126
Interior Columbia Su/F	0.203	0.010	0.203	0.187	0.219	0.150	0.014	0.150	0.128	0.174	0.232	0.013	0.232	0.212	0.253
Oregon Coast	0.060	0.006	0.059	0.050	0.070	0.056	0.010	0.055	0.041	0.072	0.062	0.008	0.062	0.049	0.076
Other	0.081	0.007	0.081	0.070	0.092	0.077	0.011	0.077	0.060	0.096	0.083	0.008	0.082	0.069	0.097

Note: Reporting groups are described in Table 1.

Note: There was insufficient sample size (n = 97) for driver stock reporting groups for Petersburg-Wrangell.

Appendix B10.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the sport fishery harvest in Ketchikan, Petersburg-Wrangell, Northern Inside (Juneau, Haines, and Skagway), Craig, and Sitka areas of Southeast Alaska, AY 2020.

			Ketc	hikan $(n = 2)$	273)		Pe	tersbur	g-Wrangell	1 (n = 9)	7)	No	rthern In	side quadra	$nt^b (n=2)$	70)
Reporting					90%	6 CI				90	% CI	_			90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.001	0.000	0.000	0.000						0.010	0.006	0.008	0.002	0.022
4	Taku	0.000	0.000	0.000	0.000	0.000						0.026	0.012	0.025	0.010	0.048
5	Andrew	0.002	0.006	0.000	0.000	0.015						0.788	0.029	0.788	0.739	0.834
6	Stikine	0.000	0.001	0.000	0.000	0.000						0.007	0.011	0.000	0.000	0.030
7	S Southeast Alaska	0.437	0.031	0.437	0.385	0.488						0.047	0.018	0.045	0.020	0.078
8	Nass	0.017	0.009	0.015	0.005	0.034						0.000	0.001	0.000	0.000	0.000
9	Skeena	0.004	0.004	0.003	0.000	0.011						0.029	0.010	0.028	0.014	0.048
10	BC Coast/Haida Gwaii	0.021	0.010	0.019	0.006	0.039						0.052	0.014	0.050	0.030	0.077
11	West Vancouver	0.151	0.022	0.150	0.117	0.188						0.000	0.001	0.000	0.000	0.000
12	East Vancouver	0.099	0.019	0.098	0.070	0.131						0.015	0.007	0.014	0.005	0.029
13	Fraser	0.005	0.006	0.003	0.000	0.018		Insuffi	cient samp	le size		0.000	0.002	0.000	0.000	0.002
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.106	0.019	0.105	0.076	0.139						0.004	0.004	0.003	0.000	0.013
17	Puget Sound	0.032	0.012	0.031	0.014	0.055						0.000	0.002	0.000	0.000	0.002
18	Washington Coast	0.039	0.012	0.038	0.021	0.061						0.014	0.008	0.012	0.002	0.029
19	West Cascades Sp	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
20	Lower Columbia F	0.000	0.001	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
21	Willamette Sp	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
22	Columbia Sp	0.000	0.001	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.084	0.017	0.083	0.057	0.114						0.008	0.005	0.006	0.001	0.018
24	North Oregon Coast	0.000	0.000	0.000	0.000	0.000						0.000	0.001	0.000	0.000	0.000
25	Mid Oregon Coast	0.004	0.004	0.003	0.000	0.012						0.000	0.001	0.000	0.000	0.000
26	S Oregon/California	0.000	0.000	0.000	0.000	0.000						0.000	0.001	0.000	0.000	0.000

Appendix B10.—Page 2 of 2.

				Craig $(n = 699)$)			Ş	Sitka ($n = 1,130$))	
Reporting					90%	6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
4	Taku	0.000	0.000	0.000	0.000	0.000	0.005	0.003	0.005	0.001	0.011
5	Andrew	0.021	0.007	0.021	0.011	0.033	0.042	0.007	0.042	0.031	0.054
6	Stikine	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.000	0.000	0.006
7	S Southeast Alaska	0.059	0.011	0.059	0.042	0.078	0.025	0.006	0.025	0.016	0.035
8	Nass	0.008	0.006	0.006	0.001	0.019	0.005	0.003	0.005	0.000	0.011
9	Skeena	0.026	0.008	0.025	0.014	0.039	0.001	0.002	0.000	0.000	0.006
10	BC Coast/Haida Gwaii	0.067	0.011	0.067	0.050	0.086	0.020	0.005	0.020	0.012	0.029
11	West Vancouver	0.471	0.019	0.470	0.439	0.502	0.230	0.013	0.230	0.210	0.251
12	East Vancouver	0.046	0.008	0.046	0.033	0.060	0.016	0.004	0.016	0.011	0.023
13	Fraser	0.009	0.004	0.008	0.004	0.015	0.004	0.002	0.004	0.002	0.008
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.062	0.010	0.062	0.047	0.078	0.114	0.010	0.114	0.099	0.130
17	Puget Sound	0.002	0.003	0.000	0.000	0.009	0.000	0.000	0.000	0.000	0.000
18	Washington Coast	0.073	0.011	0.073	0.056	0.092	0.135	0.011	0.134	0.117	0.153
19	West Cascades Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20	Lower Columbia F	0.027	0.006	0.026	0.017	0.038	0.049	0.007	0.049	0.038	0.061
21	Willamette Sp	0.001	0.001	0.001	0.000	0.004	0.004	0.002	0.004	0.002	0.008
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.085	0.011	0.085	0.068	0.104	0.272	0.013	0.272	0.251	0.295
24	North Oregon Coast	0.042	0.008	0.041	0.029	0.056	0.065	0.008	0.065	0.052	0.079
25	Mid Oregon Coast	0.001	0.002	0.000	0.000	0.006	0.011	0.005	0.010	0.004	0.020
26	S Oregon/California	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Note: There was insufficient sample size (n = 97) for fine-scale reporting groups for Petersburg-Wrangell.

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

b Results did not converge at 40,000 iterations in BAYES for the S Oregon/California reporting groups. Results are an average of all 5 chains.

Appendix B11.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the total season, early season (biweeks 9–13), and late season (biweeks 14–18) sport fishery harvest in outside waters (Craig/Klawock, Sitka, Yakutat, Gustavus, and Elfin Cove) of Southeast Alaska, AY 2020.

		Total season ($n = 1,858$)					Early	season (n =	= 686)			Late s	eason (n =	1,172)		
Reporting					90%	6 CI	=,			90%	6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.001	0.001	0.001	0.000	0.003	0.001	0.001	0.001	0.000	0.004	0.001	0.001	0.001	0.000	0.003
4	Taku	0.001	0.001	0.000	0.000	0.003	0.002	0.003	0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.000
5	Andrew	0.035	0.005	0.035	0.027	0.044	0.075	0.013	0.074	0.054	0.097	0.014	0.004	0.013	0.008	0.020
6	Stikine	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
7	S Southeast Alaska	0.039	0.006	0.038	0.030	0.048	0.076	0.013	0.076	0.056	0.098	0.018	0.005	0.018	0.010	0.027
8	Nass	0.006	0.003	0.006	0.002	0.010	0.015	0.007	0.015	0.006	0.027	0.000	0.001	0.000	0.000	0.004
9	Skeena	0.015	0.004	0.014	0.008	0.022	0.017	0.009	0.017	0.002	0.033	0.013	0.004	0.013	0.007	0.020
10	BC Coast/Haida Gwaii	0.037	0.005	0.037	0.029	0.046	0.048	0.010	0.048	0.033	0.065	0.031	0.006	0.031	0.022	0.041
11	West Vancouver	0.319	0.011	0.319	0.301	0.337	0.245	0.017	0.245	0.218	0.273	0.359	0.014	0.359	0.336	0.383
12	East Vancouver	0.028	0.004	0.028	0.022	0.035	0.025	0.006	0.024	0.016	0.036	0.030	0.005	0.030	0.022	0.039
13	Fraser	0.006	0.002	0.006	0.003	0.009	0.004	0.003	0.003	0.001	0.009	0.007	0.003	0.007	0.004	0.012
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.097	0.007	0.097	0.086	0.109	0.132	0.013	0.131	0.111	0.154	0.078	0.008	0.077	0.065	0.091
17	Puget Sound	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001
18	Washington Coast	0.108	0.008	0.107	0.095	0.121	0.104	0.013	0.104	0.084	0.126	0.109	0.010	0.109	0.093	0.126
19	West Cascades Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20	Lower Columbia F	0.041	0.005	0.041	0.034	0.050	0.043	0.008	0.042	0.030	0.057	0.041	0.006	0.041	0.031	0.051
21	Willamette Sp	0.005	0.002	0.005	0.002	0.008	0.006	0.003	0.005	0.002	0.011	0.004	0.002	0.004	0.002	0.008
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.203	0.010	0.203	0.187	0.219	0.150	0.014	0.150	0.128	0.174	0.232	0.013	0.232	0.212	0.253
24	North Oregon Coast	0.053	0.006	0.053	0.044	0.063	0.055	0.010	0.054	0.040	0.071	0.052	0.008	0.052	0.040	0.065
25	Mid Oregon Coast	0.006	0.003	0.006	0.002	0.011	0.001	0.002	0.000	0.000	0.006	0.010	0.004	0.009	0.003	0.017
26	S Oregon/California	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B12.-Estimated contributions of broad-scale reporting groups of Chinook salmon to the Southeast Alaska troll fishery harvest, AY 2021.

		Sample	Reporting		~-		90%	
Fishery	Quadrant	size	group	Mean	SD	Median	5%	95%
			Alaska	0.312	0.022	0.312	0.277	0.348
	All	651	TBR	0.003	0.004	0.002	0.000	0.011
	2 111	031	Canada	0.473	0.023	0.473	0.435	0.512
Early			US South	0.211	0.016	0.211	0.185	0.238
winter			Alaska	0.158	0.022	0.157	0.122	0.195
	NO	373	TBR	0.004	0.005	0.002	0.000	0.014
	NO	373	Canada	0.513	0.029	0.513	0.465	0.561
			US South	0.325	0.025	0.325	0.284	0.368
			Alaska	0.155	0.020	0.154	0.122	0.189
	A 11	106	TBR	0.001	0.002	0.000	0.000	0.005
	All	486	Canada	0.619	0.025	0.619	0.578	0.661
Late			US South	0.225	0.020	0.225	0.194	0.259
winter			Alaska	0.067	0.015	0.066	0.044	0.094
	210	2.60	TBR	0.001	0.003	0.000	0.000	0.005
	NO	360	Canada	0.652	0.027	0.652	0.607	0.695
			US South	0.281	0.024	0.280	0.242	0.321
			Alaska	0.375	0.012	0.375	0.355	0.395
			TBR	0.006	0.003	0.005	0.002	0.011
	All	1,457	Canada	0.474	0.013	0.474	0.453	0.495
			US South	0.145	0.009	0.145	0.130	0.161
			Alaska	0.335	0.016	0.335	0.309	0.361
			TBR	0.006	0.010	0.006	0.001	0.013
	NO	1,040	Canada	0.462	0.017	0.462	0.435	0.489
			US South	0.197	0.017	0.196	0.176	0.218
Spring			Alaska	0.188	0.026	0.187	0.147	0.233
			TBR	0.004	0.007	0.000	0.000	0.019
	SO	233	Canada	0.765	0.028	0.766	0.717	0.810
			US South	0.703	0.028	0.700	0.023	0.067
			Alaska	0.950	0.020	0.953	0.023	0.007
			TBR	0.006	0.020	0.000	0.000	0.029
	SI	184	TBR Canada	0.000	0.010	0.000	0.000	0.029
				0.041	0.018	0.039	0.013	0.074
			US South	0.002	0.003	0.000	0.000	0.012
			Alaska					
	All	705	TBR	0.007	0.005	0.007	0.001	0.016
0			Canada	0.432	0.019	0.432	0.400	0.463
Summer			US South	0.508	0.019	0.508	0.477	0.539
retention 1			Alaska	0.044	0.012	0.043	0.026	0.066
	NO	350	TBR	0.012	0.008	0.011	0.000	0.028
		-	Canada	0.377	0.027	0.377	0.334	0.421
			US South	0.567	0.027	0.567	0.522	0.611
			Alaska	0.063	0.009	0.062	0.049	0.078
	All	702	TBR	0.001	0.002	0.000	0.000	0.006
~		. • -	Canada	0.215	0.018	0.215	0.187	0.244
Summer			US South	0.721	0.018	0.722	0.691	0.751
retention 2			Alaska	0.032	0.010	0.031	0.017	0.050
	NO	377	TBR	0.001	0.003	0.000	0.000	0.007
	1.0	277	Canada	0.203	0.021	0.203	0.169	0.239
			US South	0.764	0.022	0.764	0.726	0.800

Note: Successfully genotyped sample sizes, standard deviation (SD), and 90% credibility intervals (CI) are provided.

Appendix B13.–Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska troll fishery harvest by season and quadrant, AY 2021.

	E	arly winte	er regionwic	de (n = 65)	1)	Early	winter N	Jorthern Ou	tside (n =	: 373)
				90%	6 CI	·			90%	6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.315	0.022	0.315	0.280	0.351	0.162	0.022	0.161	0.126	0.200
NCBC	0.220	0.020	0.220	0.187	0.254	0.209	0.025	0.208	0.170	0.251
West Vancouver	0.053	0.008	0.052	0.040	0.067	0.105	0.016	0.104	0.080	0.133
South Thompson	0.002	0.003	0.001	0.000	0.008	0.004	0.006	0.001	0.000	0.016
Washington Coast	0.001	0.002	0.000	0.000	0.004	0.000	0.001	0.000	0.000	0.001
Interior Columbia Su/F	0.098	0.011	0.097	0.080	0.117	0.168	0.020	0.168	0.136	0.202
Oregon Coast	0.005	0.003	0.005	0.001	0.011	0.010	0.006	0.009	0.003	0.021
Other	0.306	0.019	0.306	0.275	0.339	0.341	0.026	0.340	0.299	0.384
	L	ate winte	r regionwid	le (n = 48)	6)	Late	winter N	orthern Out	tside ($n =$	360)
SEAK/TBR	0.156	0.020	0.155	0.123	0.190	0.068	0.015	0.067	0.044	0.094
NCBC	0.169	0.020	0.168	0.137	0.203	0.167	0.022	0.166	0.132	0.203
West Vancouver	0.297	0.021	0.296	0.263	0.331	0.362	0.026	0.361	0.320	0.404
South Thompson	0.033	0.009	0.032	0.021	0.049	0.050	0.012	0.049	0.032	0.070
Washington Coast	0.007	0.004	0.007	0.002	0.015	0.011	0.006	0.010	0.003	0.022
Interior Columbia Su/F	0.126	0.015	0.126	0.103	0.151	0.171	0.020	0.170	0.139	0.205
Oregon Coast	0.001	0.002	0.000	0.000	0.004	0.000	0.002	0.000	0.000	0.003
Other	0.212	0.021	0.211	0.178	0.247	0.172	0.021	0.172	0.139	0.208
		Spring re	gionwide (1	n = 1,457)	Spi	ing Nortl	nern Outsid	e (n = 1,0)	40)
SEAK/TBR	0.381	0.012	0.381	0.361	0.401	0.342	0.016	0.341	0.316	0.368
NCBC	0.047	0.007	0.047	0.037	0.059	0.045	0.007	0.045	0.034	0.058
West Vancouver	0.316	0.012	0.316	0.298	0.336	0.268	0.014	0.267	0.245	0.291
South Thompson	0.092	0.008	0.092	0.079	0.105	0.127	0.011	0.127	0.109	0.146
Washington Coast	0.022	0.004	0.022	0.015	0.029	0.029	0.006	0.029	0.021	0.040
Interior Columbia Su/F	0.080	0.008	0.080	0.068	0.093	0.112	0.011	0.111	0.095	0.130
Oregon Coast	0.006	0.002	0.006	0.003	0.011	0.009	0.003	0.009	0.004	0.015
Other	0.055	0.006	0.055	0.045	0.066	0.069	0.008	0.068	0.055	0.083
			thern outsic	le (n = 23)		S	pring Sou	thern Insid	e(n = 184)	
SEAK/TBR	0.192	0.026	0.191	0.151	0.236	0.957	0.019	0.959	0.923	0.983
NCBC	0.064	0.020	0.062	0.034	0.100	0.030	0.017	0.028	0.007	0.061
West Vancouver	0.669	0.031	0.670	0.617	0.720	0.010	0.007	0.008	0.002	0.023
South Thompson	0.017	0.008	0.016	0.006	0.032	0.000	0.001	0.000	0.000	0.000
Washington Coast	0.007	0.007	0.005	0.000	0.021	0.000	0.001	0.000	0.000	0.001
Interior Columbia Su/F	0.013	0.007	0.012	0.004	0.026	0.000	0.001	0.000	0.000	0.001
Oregon Coast	0.000	0.001	0.000	0.000	0.002	0.001	0.004	0.000	0.000	0.008
Other	0.037	0.013	0.035	0.018	0.061	0.002	0.003	0.001	0.000	0.008
			regionwid					orthern Out		
SEAK/TBR	0.060	0.010	0.060	0.045	0.077	0.056	0.013	0.055	0.036	0.079
NCBC	0.022	0.007	0.021	0.012	0.035	0.024	0.009	0.023	0.011	0.041
West Vancouver	0.079	0.010	0.079	0.063	0.097	0.133	0.018	0.133	0.104	0.165
South Thompson	0.310	0.017	0.310	0.282	0.339	0.210	0.022	0.210	0.175	0.248
Washington Coast	0.102	0.012	0.102	0.083	0.123	0.138	0.019	0.137	0.107	0.171
Interior Columbia Su/F	0.237	0.016	0.236	0.210	0.264	0.239	0.024	0.238	0.201	0.279
Oregon Coast	0.115	0.013	0.114	0.094	0.136	0.126	0.019	0.125	0.096	0.158
Other	0.075	0.011	0.074	0.058	0.093	0.074	0.015	0.073	0.051	0.099

Appendix B13.—Page 2 of 2.

		Summer 2	regionwide	e(n = 702)	2)	Sum	mer 2 No	orthern Out	side $(n = 1)$	377)
				90%	6 CI				90%	6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.064	0.009	0.063	0.050	0.079	0.033	0.010	0.032	0.018	0.051
NCBC	0.019	0.007	0.019	0.010	0.031	0.012	0.007	0.011	0.003	0.026
West Vancouver	0.121	0.014	0.121	0.099	0.145	0.127	0.017	0.127	0.100	0.157
South Thompson	0.058	0.010	0.057	0.042	0.075	0.058	0.012	0.057	0.039	0.079
Washington Coast	0.183	0.018	0.183	0.155	0.214	0.213	0.023	0.212	0.176	0.251
Interior Columbia Su/F	0.304	0.019	0.304	0.272	0.336	0.335	0.025	0.335	0.295	0.376
Oregon Coast	0.173	0.016	0.173	0.148	0.200	0.150	0.019	0.149	0.119	0.183
Other	0.078	0.012	0.077	0.060	0.098	0.072	0.014	0.071	0.050	0.097

Note: Reporting groups are described in Table 1.

Appendix B14.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the early winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2021.

			Reg	ionwide ($n =$	651)]	Northern O	utside quadra	nt (n = 373))
Reporting					90%	6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.001	0.001	0.001	0.000	0.004	0.003	0.003	0.002	0.000	0.008
3	N Southeast Alaska	0.004	0.003	0.003	0.001	0.009	0.003	0.003	0.002	0.000	0.008
4	Taku	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
5	Andrew	0.082	0.012	0.082	0.062	0.103	0.033	0.011	0.031	0.016	0.052
6	Stikine	0.001	0.003	0.000	0.000	0.009	0.001	0.004	0.000	0.000	0.009
7	S Southeast Alaska	0.226	0.021	0.226	0.193	0.261	0.123	0.021	0.122	0.089	0.158
8	Nass	0.003	0.005	0.000	0.000	0.015	0.006	0.011	0.000	0.000	0.030
9	Skeena	0.023	0.010	0.023	0.005	0.040	0.003	0.004	0.002	0.000	0.011
10	BC Coast/Haida Gwaii	0.194	0.019	0.193	0.164	0.225	0.200	0.023	0.199	0.162	0.238
11	West Vancouver	0.053	0.008	0.052	0.040	0.067	0.105	0.016	0.104	0.080	0.133
12	East Vancouver	0.191	0.016	0.191	0.165	0.219	0.185	0.021	0.184	0.151	0.220
13	Fraser	0.005	0.003	0.005	0.002	0.011	0.007	0.005	0.006	0.001	0.015
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.001	0.001	0.001	0.000	0.004	0.003	0.003	0.002	0.000	0.008
16	South Thompson	0.002	0.003	0.001	0.000	0.008	0.004	0.006	0.001	0.000	0.016
17	Puget Sound	0.089	0.012	0.089	0.070	0.110	0.125	0.019	0.125	0.096	0.157
18	Washington Coast	0.001	0.002	0.000	0.000	0.004	0.000	0.001	0.000	0.000	0.001
19	West Cascades Sp	0.003	0.003	0.002	0.000	0.009	0.001	0.002	0.000	0.000	0.005
20	Lower Columbia F	0.007	0.004	0.006	0.002	0.014	0.012	0.006	0.011	0.004	0.023
21	Willamette Sp	0.008	0.004	0.008	0.003	0.015	0.008	0.005	0.007	0.002	0.018
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.098	0.011	0.097	0.080	0.117	0.168	0.020	0.168	0.136	0.202
24	North Oregon Coast	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
25	Mid Oregon Coast	0.005	0.003	0.005	0.001	0.011	0.010	0.006	0.009	0.003	0.021
26	S Oregon/California	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.001

^a Run-timing components are abbreviated as Sp (spring), Su (summer), and F (fall).

Appendix B15.–Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the late winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2021.

			Reg	ionwide (n =	486)		1	Northern O	utside Quadra	nt (n = 360)	1)
Reporting					90%	6 CI			-	90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.002	0.002	0.001	0.000	0.005	0.002	0.003	0.002	0.000	0.008
4	Taku	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
5	Andrew	0.042	0.010	0.041	0.026	0.060	0.045	0.013	0.044	0.026	0.068
6	Stikine	0.001	0.002	0.000	0.000	0.004	0.000	0.002	0.000	0.000	0.002
7	S Southeast Alaska	0.111	0.019	0.111	0.081	0.143	0.020	0.011	0.018	0.005	0.039
8	Nass	0.013	0.007	0.012	0.004	0.026	0.019	0.009	0.018	0.006	0.035
9	Skeena	0.011	0.007	0.010	0.003	0.024	0.003	0.004	0.002	0.000	0.011
10	BC Coast/Haida Gwaii	0.144	0.018	0.143	0.115	0.175	0.144	0.020	0.144	0.113	0.179
11	West Vancouver	0.297	0.021	0.296	0.263	0.331	0.362	0.026	0.361	0.320	0.404
12	East Vancouver	0.120	0.017	0.119	0.093	0.148	0.073	0.015	0.072	0.050	0.098
13	Fraser	0.001	0.002	0.000	0.000	0.005	0.001	0.003	0.000	0.000	0.007
14	Lower Thompson	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.033	0.009	0.032	0.021	0.049	0.050	0.012	0.049	0.032	0.070
17	Puget Sound	0.027	0.009	0.026	0.015	0.043	0.025	0.010	0.024	0.011	0.043
18	Washington Coast	0.007	0.004	0.007	0.002	0.015	0.011	0.006	0.010	0.003	0.022
19	West Cascades Sp	0.000	0.002	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.000
20	Lower Columbia F	0.009	0.004	0.008	0.003	0.017	0.014	0.007	0.013	0.005	0.026
21	Willamette Sp	0.054	0.012	0.054	0.037	0.075	0.059	0.013	0.058	0.040	0.081
22	Columbia Sp	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.126	0.015	0.126	0.103	0.151	0.171	0.020	0.170	0.139	0.205
24	North Oregon Coast	0.000	0.001	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.002
25	Mid Oregon Coast	0.000	0.001	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.000
26	S Oregon/California	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

^a Run-timing components are abbreviated as Sp (spring), Su (summer), and F (fall).

Appendix B16.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the spring troll fishery regionwide and in the Northern Outside, Southern Outside, and Southern Inside quadrants of Southeast Alaska, AY 2021.

			Regio	onwide $(n = 1)$,457)		N	orthern Ou	tside quadran	nt (n = 1,040)	0)
Reporting					90%	6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.001	0.001	0.001	0.000	0.002	0.001	0.001	0.001	0.000	0.003
2	Alsek	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.001
3	N Southeast Alaska	0.002	0.001	0.002	0.001	0.004	0.003	0.001	0.002	0.001	0.005
4	Taku	0.002	0.002	0.001	0.000	0.006	0.002	0.003	0.002	0.000	0.008
5	Andrew	0.215	0.011	0.215	0.197	0.233	0.305	0.015	0.305	0.280	0.331
6	Stikine	0.004	0.003	0.003	0.000	0.009	0.004	0.003	0.003	0.000	0.009
7	S Southeast Alaska	0.157	0.007	0.157	0.146	0.170	0.026	0.007	0.026	0.016	0.038
8	Nass	0.002	0.002	0.002	0.000	0.005	0.001	0.001	0.000	0.000	0.003
9	Skeena	0.004	0.002	0.004	0.001	0.008	0.002	0.002	0.002	0.000	0.006
10	BC Coast/Haida Gwaii	0.041	0.006	0.041	0.032	0.052	0.042	0.007	0.042	0.031	0.054
11	West Vancouver	0.316	0.012	0.316	0.298	0.336	0.268	0.014	0.267	0.245	0.291
12	East Vancouver	0.017	0.004	0.017	0.011	0.023	0.022	0.005	0.021	0.014	0.030
13	Fraser	0.001	0.001	0.001	0.000	0.002	0.000	0.001	0.000	0.000	0.001
14	Lower Thompson	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.001	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.092	0.008	0.092	0.079	0.105	0.127	0.011	0.127	0.109	0.146
17	Puget Sound	0.006	0.002	0.006	0.003	0.010	0.003	0.002	0.003	0.001	0.006
18	Washington Coast	0.022	0.004	0.022	0.015	0.029	0.029	0.006	0.029	0.021	0.040
19	West Cascades Sp	0.000	0.001	0.000	0.000	0.002	0.001	0.001	0.000	0.000	0.002
20	Lower Columbia F	0.023	0.004	0.023	0.017	0.031	0.033	0.006	0.033	0.024	0.044
21	Willamette Sp	0.006	0.002	0.006	0.003	0.009	0.008	0.003	0.008	0.004	0.013
22	Columbia Sp	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.080	0.008	0.080	0.068	0.093	0.112	0.011	0.111	0.095	0.130
24	North Oregon Coast	0.006	0.002	0.005	0.003	0.009	0.008	0.003	0.008	0.004	0.013
25	Mid Oregon Coast	0.001	0.001	0.000	0.000	0.003	0.001	0.001	0.000	0.000	0.004
26	S Oregon/California	0.001	0.001	0.001	0.000	0.004	0.002	0.002	0.001	0.000	0.005

Appendix B16.—Page 2 of 2.

		S	Southern O	utside Quadra	ant $(n = 233)$)	(Southern :	Inside Quadran	t (n = 184))
Reporting				-	90%	6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.001	0.000	0.000	0.001					
2	Alsek	0.000	0.001	0.000	0.000	0.001					
3	N Southeast Alaska	0.000	0.001	0.000	0.000	0.002					
4	Taku	0.000	0.003	0.000	0.000	0.002					
5	Andrew	0.010	0.009	0.009	0.000	0.027					
6	Stikine	0.003	0.006	0.000	0.000	0.017					
7	S Southeast Alaska	0.178	0.026	0.177	0.137	0.222					
8	Nass	0.009	0.008	0.007	0.000	0.024					
9	Skeena	0.003	0.006	0.000	0.000	0.016					
10	BC Coast/Haida Gwaii	0.052	0.018	0.050	0.026	0.085					
11	West Vancouver	0.669	0.031	0.670	0.617	0.720					
12	East Vancouver	0.009	0.007	0.007	0.001	0.024					
13	Fraser	0.004	0.003	0.003	0.000	0.011		Insu	ıfficient sample	size	
14	Lower Thompson	0.000	0.001	0.000	0.000	0.001			-		
15	North Thompson	0.002	0.004	0.000	0.000	0.010					
16	South Thompson	0.017	0.008	0.016	0.006	0.032					
17	Puget Sound	0.021	0.010	0.020	0.008	0.039					
18	Washington Coast	0.007	0.007	0.005	0.000	0.021					
19	West Cascades Sp	0.000	0.001	0.000	0.000	0.001					
20	Lower Columbia F	0.000	0.001	0.000	0.000	0.001					
21	Willamette Sp	0.000	0.001	0.000	0.000	0.001					
22	Columbia Sp	0.000	0.001	0.000	0.000	0.001					
23	Interior Columbia Su/F	0.013	0.007	0.012	0.004	0.026					
24	North Oregon Coast	0.000	0.001	0.000	0.000	0.001					
25	Mid Oregon Coast	0.000	0.001	0.000	0.000	0.001					
26	S Oregon/California	0.000	0.001	0.000	0.000	0.001					

Note: There was insufficient sample size (n = 184) for fine-scale reporting groups for the spring troll Southern Inside Quadrant.

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B17.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the first retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2021.

			Regi	onwide $(n =$	705)			Northe	rn Outside ^b (n	a = 350)	
Reporting				•	90%	6 CI			•	90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
4	Taku	0.001	0.002	0.000	0.000	0.005	0.000	0.001	0.000	0.000	0.000
5	Andrew	0.028	0.007	0.028	0.018	0.041	0.044	0.012	0.043	0.025	0.065
6	Stikine	0.006	0.004	0.006	0.000	0.014	0.012	0.008	0.011	0.000	0.027
7	S Southeast Alaska	0.024	0.007	0.024	0.014	0.035	0.000	0.002	0.000	0.000	0.002
8	Nass	0.002	0.002	0.001	0.000	0.005	0.000	0.000	0.000	0.000	0.000
9	Skeena	0.004	0.004	0.003	0.000	0.012	0.001	0.002	0.000	0.000	0.004
10	BC Coast/Haida Gwaii	0.017	0.006	0.016	0.009	0.027	0.024	0.009	0.023	0.011	0.040
11	West Vancouver	0.079	0.010	0.079	0.063	0.097	0.133	0.018	0.133	0.104	0.165
12	East Vancouver	0.014	0.005	0.013	0.007	0.022	0.006	0.004	0.005	0.001	0.014
13	Fraser	0.002	0.001	0.001	0.000	0.005	0.003	0.003	0.002	0.000	0.009
14	Lower Thompson	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
15	North Thompson	0.004	0.003	0.004	0.001	0.009	0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.310	0.017	0.310	0.282	0.339	0.210	0.022	0.210	0.175	0.248
17	Puget Sound	0.006	0.004	0.006	0.001	0.014	0.001	0.002	0.000	0.000	0.005
18	Washington Coast	0.102	0.012	0.102	0.083	0.123	0.138	0.019	0.137	0.107	0.171
19	West Cascades Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20	Lower Columbia F	0.048	0.008	0.047	0.035	0.062	0.064	0.014	0.063	0.043	0.088
21	Willamette Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.237	0.016	0.236	0.210	0.264	0.239	0.024	0.238	0.201	0.279
24	North Oregon Coast	0.112	0.013	0.112	0.092	0.134	0.125	0.019	0.124	0.095	0.157
25	Mid Oregon Coast	0.002	0.002	0.002	0.000	0.007	0.001	0.003	0.000	0.000	0.005
26	S Oregon/California	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

b Results did not converge at 40,000 iterations in BAYES for the Skeena reporting groups. Results are an average of all 5 chains.

Appendix B18.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the second retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2021.

			Reg	ionwide (n =	702)			Northe	rn Outside (n	= 377)	
Reporting					90%	6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	Taku	0.001	0.002	0.000	0.000	0.005	0.001	0.003	0.000	0.000	0.007
5	Andrew	0.031	0.007	0.030	0.020	0.043	0.025	0.009	0.024	0.012	0.040
6	Stikine	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
7	S Southeast Alaska	0.032	0.006	0.031	0.022	0.043	0.008	0.006	0.006	0.001	0.019
8	Nass	0.004	0.003	0.003	0.000	0.009	0.001	0.002	0.000	0.000	0.006
9	Skeena	0.001	0.002	0.000	0.000	0.005	0.000	0.002	0.000	0.000	0.003
10	BC Coast/Haida Gwaii	0.014	0.006	0.014	0.006	0.025	0.011	0.007	0.010	0.002	0.023
11	West Vancouver	0.121	0.014	0.121	0.099	0.145	0.127	0.017	0.127	0.100	0.157
12	East Vancouver	0.015	0.004	0.014	0.009	0.021	0.003	0.003	0.002	0.000	0.009
13	Fraser	0.002	0.002	0.002	0.000	0.007	0.003	0.003	0.002	0.000	0.009
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
16	South Thompson	0.058	0.010	0.057	0.042	0.075	0.058	0.012	0.057	0.039	0.079
17	Puget Sound	0.003	0.003	0.003	0.000	0.008	0.003	0.003	0.002	0.000	0.009
18	Washington Coast	0.183	0.018	0.183	0.155	0.214	0.213	0.023	0.212	0.176	0.251
19	West Cascades Sp	0.000	0.001	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000
20	Lower Columbia F	0.052	0.010	0.051	0.036	0.070	0.058	0.013	0.057	0.038	0.081
21	Willamette Sp	0.005	0.003	0.004	0.001	0.010	0.005	0.004	0.004	0.001	0.013
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.304	0.019	0.304	0.272	0.336	0.335	0.025	0.335	0.295	0.376
24	North Oregon Coast	0.148	0.016	0.147	0.123	0.174	0.128	0.019	0.127	0.098	0.160
25	Mid Oregon Coast	0.026	0.008	0.025	0.013	0.041	0.022	0.010	0.021	0.008	0.040
26	S Oregon/California	0.000	0.001	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B19.–Estimated contributions of broad-scale reporting groups of Chinook salmon to the Southeast Alaska sport fishery harvest, AY 2021.

		Sample	Reporting				909	% CI
Area	Period	size	group	Mean	SD	Median	5%	95%
			Alaska	0.432	0.026	0.432	0.390	0.475
IV -4-1-:1	A 11	469	TBR	0.000	0.002	0.000	0.000	0.001
Ketchikan	All season	409	Canada	0.458	0.026	0.458	0.415	0.501
			US South	0.109	0.015	0.109	0.085	0.135
			Alaska	0.133	0.016	0.132	0.108	0.160
Const.	A 11	550	TBR	0.000	0.001	0.000	0.000	0.000
Craig	All season	559	Canada	0.670	0.021	0.670	0.635	0.704
			US South	0.197	0.017	0.197	0.169	0.226
			Alaska	0.104	0.012	0.104	0.085	0.125
Sitka	All season	770	TBR	0.001	0.002	0.000	0.000	0.004
Siika	All season	770	Canada	0.477	0.019	0.477	0.446	0.508
			US South	0.418	0.018	0.418	0.388	0.449
			Alaska	0.844	0.041	0.848	0.771	0.906
Petersburg-	All season	115	TBR	0.001	0.005	0.000	0.000	0.004
Wrangell	All season	113	Canada	0.145	0.041	0.141	0.085	0.218
			US South	0.010	0.011	0.006	0.000	0.031
			Alaska	0.800	0.035	0.802	0.740	0.853
Northern Inside	All season	244	TBR	0.076	0.030	0.070	0.036	0.136
Normern mside	All season	Z 44	Canada	0.103	0.024	0.101	0.067	0.144
			US South	0.021	0.010	0.020	0.008	0.040
			Alaska	0.111	0.010	0.111	0.094	0.128
	A 11	1 127	TBR	0.001	0.002	0.000	0.000	0.004
	All season	1,127	Canada	0.539	0.016	0.539	0.513	0.565
			US South	0.350	0.015	0.350	0.326	0.374
			Alaska	0.144	0.014	0.144	0.122	0.167
Outside	Biweeks 9–13	824	TBR	0.001	0.002	0.000	0.000	0.004
Outside	Diweeks 9–13	824	Canada	0.508	0.019	0.508	0.477	0.538
			US South	0.347	0.017	0.347	0.319	0.376
			Alaska	0.024	0.011	0.022	0.008	0.043
	Biweeks 14–18	303	TBR	0.001	0.002	0.000	0.000	0.003
	DIWEEKS 14-18	303	Canada	0.620	0.029	0.620	0.572	0.667
			US South	0.356	0.028	0.355	0.311	0.402

Note: Successfully genotyped sample sizes, standard deviation (SD), and 90% credibility intervals (CI) are provided.

Note: Reporting groups are described in Table 1.

Appendix B20.–Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska sport fishery harvest by area and season, AY 2021.

		Ket	chikan (n =	469)			Petersbur	g-Wrangell	(n = 115))		Northe	rn Inside (n	= 244)	
				90%	6 CI				90%	6 CI				90%	6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.433	0.026	0.432	0.391	0.475	0.845	0.041	0.849	0.772	0.907	0.876	0.025	0.877	0.832	0.914
NCBC	0.052	0.015	0.052	0.028	0.079	0.074	0.034	0.069	0.027	0.138	0.096	0.024	0.094	0.060	0.137
West Vancouver	0.247	0.020	0.247	0.215	0.281	0.018	0.013	0.015	0.003	0.043	0.003	0.004	0.001	0.000	0.011
South Thompson	0.115	0.015	0.115	0.091	0.141	0.009	0.009	0.006	0.000	0.026	0.000	0.000	0.000	0.000	0.000
Washington Coast	0.002	0.003	0.001	0.000	0.007	0.000	0.001	0.000	0.000	0.000	0.005	0.004	0.003	0.000	0.013
Interior Columbia Su/F	0.060	0.011	0.059	0.042	0.080	0.007	0.009	0.005	0.000	0.025	0.009	0.006	0.007	0.001	0.021
Oregon Coast	0.009	0.004	0.008	0.003	0.017	0.000	0.002	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
Other	0.081	0.014	0.081	0.060	0.105	0.046	0.020	0.043	0.019	0.083	0.013	0.008	0.011	0.003	0.027
		C	raig $(n = 55)$	59)			S	itka ($n = 77$	(0)						
				90%	6 CI				90%	6 CI					
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%					
SEAK/TBR	0.133	0.016	0.133	0.108	0.160	0.105	0.012	0.104	0.085	0.125					
NCBC	0.105	0.014	0.104	0.082	0.129	0.049	0.009	0.048	0.034	0.064					
West Vancouver	0.404	0.021	0.404	0.370	0.439	0.210	0.015	0.210	0.186	0.235					
South Thompson	0.129	0.015	0.129	0.106	0.154	0.199	0.015	0.199	0.175	0.223					
Washington Coast	0.066	0.011	0.065	0.048	0.085	0.095	0.012	0.094	0.076	0.114					
Interior Columbia Su/F	0.093	0.013	0.092	0.073	0.114	0.215	0.015	0.215	0.190	0.240					
Oregon Coast	0.014	0.006	0.013	0.006	0.024	0.064	0.010	0.064	0.049	0.082					
Other	0.057	0.011	0.057	0.041	0.076	0.064	0.010	0.063	0.049	0.081					
	(Outside A	All Season (n = 1,127)	(Outside B	iweeks 9–1	3 (n = 824)	4)	O	utside Bi	weeks 14–1	8 (n = 30)	3)
				90%	6 CI				90%	6 CI				90%	6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.112	0.010	0.111	0.095	0.129	0.145	0.013	0.144	0.123	0.167	0.024	0.011	0.023	0.009	0.044
NCBC	0.071	0.009	0.071	0.057	0.087	0.064	0.010	0.063	0.047	0.081	0.091	0.018	0.090	0.064	0.123
West Vancouver	0.262	0.013	0.262	0.241	0.284	0.244	0.015	0.244	0.219	0.269	0.312	0.027	0.311	0.269	0.356
South Thompson	0.177	0.012	0.177	0.158	0.196	0.169	0.013	0.169	0.147	0.191	0.197	0.023	0.197	0.160	0.237
Washington Coast	0.084	0.009	0.084	0.070	0.099	0.073	0.010	0.072	0.057	0.090	0.115	0.019	0.114	0.086	0.148
Interior Columbia Su/F	0.177	0.012	0.177	0.158	0.196	0.176	0.014	0.176	0.154	0.199	0.178	0.022	0.178	0.143	0.216
Oregon Coast	0.050	0.007	0.049	0.038	0.062	0.058	0.009	0.058	0.044	0.074	0.028	0.010	0.027	0.013	0.047

0.054

0.081

0.072

0.010

0.072

0.057

0.089

0.054

0.014

0.053

0.033

0.078

0.067

Note: Reporting groups are described in Table 1.

Other

Note: AY 2021 = Accounting year 2021 = October 1, 2020–September 30, 2021.

0.067 0.008

Appendix B21.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the sport fishery harvest in Ketchikan, Petersburg-Wrangell, Northern Inside (Juneau, Haines, and Skagway), Craig, and Sitka areas of Southeast Alaska, AY 2021.

			Keto	hikan (n =	469)		F	Petersbu	rg-Wrangell	(n = 115)	j)	No	rthern In	side Quadra	ant $(n=2)$	244)
Reporting					90%	6 CI				909	% CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000						0.001	0.003	0.000	0.000	0.008
2	Alsek	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.000						0.000	0.001	0.000	0.000	0.000
4	Taku	0.000	0.001	0.000	0.000	0.000						0.042	0.021	0.042	0.008	0.078
5	Andrew	0.016	0.012	0.015	0.000	0.037						0.775	0.035	0.777	0.714	0.828
6	Stikine	0.000	0.001	0.000	0.000	0.000						0.033	0.032	0.030	0.000	0.094
7	S Southeast Alaska	0.416	0.026	0.416	0.373	0.460						0.024	0.019	0.021	0.000	0.059
8	Nass	0.036	0.014	0.036	0.015	0.060						0.000	0.002	0.000	0.000	0.001
9	Skeena	0.004	0.004	0.002	0.000	0.012						0.017	0.008	0.015	0.006	0.032
10	BC Coast/Haida Gwaii	0.012	0.007	0.011	0.003	0.025						0.079	0.022	0.077	0.045	0.118
11	West Vancouver	0.247	0.020	0.247	0.215	0.281						0.003	0.004	0.001	0.000	0.011
12	East Vancouver	0.032	0.009	0.031	0.019	0.047						0.004	0.005	0.003	0.000	0.013
13	Fraser	0.009	0.005	0.008	0.003	0.018		Insuf	ficient samp	le size		0.000	0.001	0.000	0.000	0.000
14	Lower Thompson	0.002	0.002	0.001	0.000	0.006						0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.115	0.015	0.115	0.091	0.141						0.000	0.000	0.000	0.000	0.000
17	Puget Sound	0.022	0.007	0.021	0.011	0.035						0.000	0.001	0.000	0.000	0.000
18	Washington Coast	0.002	0.003	0.001	0.000	0.007						0.005	0.004	0.003	0.000	0.013
19	West Cascades Sp	0.000	0.001	0.000	0.000	0.000						0.000	0.001	0.000	0.000	0.000
20	Lower Columbia F	0.014	0.007	0.013	0.005	0.026						0.008	0.006	0.006	0.001	0.019
21	Willamette Sp	0.003	0.003	0.002	0.000	0.008						0.000	0.000	0.000	0.000	0.000
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.060	0.011	0.059	0.042	0.080						0.009	0.006	0.007	0.001	0.021
24	North Oregon Coast	0.009	0.004	0.008	0.003	0.017						0.000	0.001	0.000	0.000	0.000
25	Mid Oregon Coast	0.000	0.000	0.000	0.000	0.000						0.000	0.001	0.000	0.000	0.000
26	S Oregon/California	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000

Appendix B21.—Page 2 of 2.

				Craig $(n = 559)$)				Sitka $(n = 770)$		
Reporting					90%	6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	Taku	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001
5	Andrew	0.032	0.009	0.031	0.018	0.048	0.069	0.011	0.069	0.052	0.088
6	Stikine	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.002
7	S Southeast Alaska	0.101	0.015	0.101	0.078	0.126	0.035	0.009	0.034	0.021	0.050
8	Nass	0.008	0.005	0.007	0.002	0.017	0.004	0.004	0.003	0.000	0.011
9	Skeena	0.044	0.010	0.044	0.028	0.062	0.011	0.006	0.010	0.003	0.021
10	BC Coast/Haida Gwaii	0.052	0.010	0.052	0.037	0.070	0.034	0.007	0.034	0.023	0.047
11	West Vancouver	0.404	0.021	0.404	0.370	0.439	0.210	0.015	0.210	0.186	0.235
12	East Vancouver	0.032	0.008	0.032	0.021	0.046	0.017	0.005	0.017	0.010	0.026
13	Fraser	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.001	0.000	0.006
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.003
16	South Thompson	0.129	0.015	0.129	0.106	0.154	0.199	0.015	0.199	0.175	0.223
17	Puget Sound	0.010	0.005	0.009	0.003	0.019	0.002	0.003	0.001	0.000	0.009
18	Washington Coast	0.066	0.011	0.065	0.048	0.085	0.095	0.012	0.094	0.076	0.114
19	West Cascades Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20	Lower Columbia F	0.015	0.006	0.015	0.006	0.027	0.033	0.007	0.032	0.022	0.046
21	Willamette Sp	0.000	0.000	0.000	0.000	0.000	0.009	0.004	0.009	0.004	0.016
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.093	0.013	0.092	0.073	0.114	0.215	0.015	0.215	0.190	0.240
24	North Oregon Coast	0.013	0.005	0.012	0.006	0.023	0.059	0.011	0.059	0.043	0.077
25	Mid Oregon Coast	0.000	0.002	0.000	0.000	0.003	0.005	0.005	0.004	0.000	0.015
26	S Oregon/California	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001

Note: There was insufficient sample size (n = 115) for fine-scale reporting groups for Petersburg-Wrangell.

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B22.–Estimated contributions of fine-scale reporting groups of Chinook salmon to the total season, early season (biweeks 9–13), and late season (biweeks 14–18) sport fishery harvest in outside waters (Craig/Klawock, Sitka, Yakutat, Gustavus, and Elfin Cove) of Southeast Alaska, AY 2021.

			Total s	season (n =	1,127)			Early	season (n =	= 824)			Late	season (n =	303)	
Reporting					90%	6 CI	- ,			90%	6 CI	_			90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	Taku	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
5	Andrew	0.056	0.008	0.056	0.044	0.070	0.070	0.010	0.069	0.053	0.087	0.021	0.011	0.020	0.006	0.041
6	Stikine	0.000	0.002	0.000	0.000	0.003	0.000	0.002	0.000	0.000	0.002	0.000	0.002	0.000	0.000	0.001
7	S Southeast Alaska	0.055	0.008	0.054	0.042	0.068	0.074	0.011	0.074	0.057	0.093	0.002	0.005	0.000	0.000	0.014
8	Nass	0.007	0.003	0.007	0.003	0.013	0.007	0.004	0.007	0.002	0.015	0.007	0.005	0.006	0.001	0.016
9	Skeena	0.019	0.006	0.018	0.011	0.029	0.014	0.007	0.013	0.005	0.026	0.032	0.012	0.031	0.015	0.054
10	BC Coast/Haida Gwaii	0.045	0.007	0.045	0.034	0.057	0.043	0.008	0.042	0.030	0.057	0.052	0.014	0.051	0.032	0.076
11	West Vancouver	0.262	0.013	0.262	0.241	0.284	0.244	0.015	0.244	0.219	0.269	0.312	0.027	0.311	0.269	0.356
12	East Vancouver	0.026	0.005	0.026	0.019	0.035	0.030	0.006	0.029	0.020	0.041	0.016	0.007	0.015	0.006	0.030
13	Fraser	0.002	0.001	0.001	0.000	0.004	0.001	0.001	0.001	0.000	0.004	0.003	0.004	0.002	0.000	0.011
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.001	0.000	0.000	0.002	0.001	0.001	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.177	0.012	0.177	0.158	0.196	0.169	0.013	0.169	0.147	0.191	0.197	0.023	0.197	0.160	0.237
17	Puget Sound	0.003	0.002	0.003	0.000	0.007	0.001	0.002	0.000	0.000	0.004	0.009	0.007	0.008	0.001	0.022
18	Washington Coast	0.084	0.009	0.084	0.070	0.099	0.073	0.010	0.072	0.057	0.090	0.115	0.019	0.114	0.086	0.148
19	West Cascades Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20	Lower Columbia F	0.028	0.006	0.027	0.019	0.037	0.031	0.007	0.031	0.021	0.043	0.018	0.008	0.017	0.006	0.033
21	Willamette Sp	0.008	0.003	0.008	0.004	0.014	0.009	0.004	0.008	0.003	0.015	0.007	0.005	0.006	0.001	0.016
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.177	0.012	0.177	0.158	0.196	0.176	0.014	0.176	0.154	0.199	0.178	0.022	0.178	0.143	0.216
24	North Oregon Coast	0.043	0.007	0.043	0.033	0.055	0.050	0.009	0.049	0.036	0.065	0.027	0.010	0.026	0.012	0.045
25	Mid Oregon Coast	0.006	0.004	0.006	0.000	0.013	0.008	0.005	0.008	0.000	0.017	0.001	0.003	0.000	0.000	0.008
26	S Oregon/California	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.002

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B23.—Estimated contributions of broad-scale reporting groups of Chinook salmon to the Southeast Alaska troll fishery harvest, AY 2022.

		Sample	Reporting				90%	
Fishery	Quadrant	size	group	Mean	SD	Median	5%	95%
			Alaska	0.319	0.019	0.319	0.287	0.350
	All	561	TBR	0.008	0.006	0.007	0.000	0.020
	7 111	301	Canada	0.343	0.024	0.343	0.304	0.382
Early			US South	0.330	0.020	0.330	0.298	0.363
winter			Alaska	0.070	0.018	0.069	0.043	0.103
	NO	288	TBR	0.015	0.012	0.013	0.000	0.037
	NO	200	Canada	0.377	0.032	0.377	0.325	0.430
			US South	0.538	0.031	0.538	0.487	0.588
			Alaska	0.143	0.012	0.143	0.124	0.163
	All	1 000	TBR	0.023	0.006	0.022	0.014	0.033
	All	1,088	Canada	0.472	0.016	0.472	0.446	0.499
Late			US South	0.361	0.014	0.361	0.338	0.385
winter			Alaska	0.140	0.014	0.140	0.118	0.163
	NO	02.4	TBR	0.018	0.006	0.017	0.009	0.028
	NO	834	Canada	0.398	0.018	0.398	0.368	0.429
			US South	0.444	0.017	0.444	0.415	0.473
			Alaska	0.443	0.014	0.443	0.420	0.465
			TBR	0.009	0.003	0.009	0.005	0.015
	All	1,456	Canada	0.331	0.013	0.331	0.310	0.353
			US South	0.217	0.013	0.216	0.198	0.236
			Alaska	0.339	0.012	0.339	0.310	0.368
			TBR	0.005	0.018	0.004	0.001	0.009
	NO	1,015	Canada	0.351	0.017	0.350	0.323	0.379
			US South	0.306	0.017	0.306	0.279	0.334
Spring			Alaska	0.294	0.034	0.293	0.238	0.351
			TBR	0.234	0.034	0.233	0.238	0.331
	SO	222	TBK Canada	0.624	0.013	0.625	0.564	0.684
				0.024		0.023	0.364	0.084
			US South		0.017			
			Alaska	0.923	0.025	0.926	0.879	0.961
	SI	219	TBR	0.017	0.012	0.014	0.002	0.040
			Canada	0.053	0.022	0.050	0.021	0.093
			US South	0.007	0.006	0.005	0.001	0.019
			Alaska	0.069	0.009	0.069	0.054	0.085
	All	892	TBR	0.001	0.002	0.000	0.000	0.004
~			Canada	0.239	0.015	0.239	0.214	0.265
Summer			US South	0.691	0.016	0.691	0.663	0.717
retention 1			Alaska	0.059	0.011	0.059	0.042	0.078
	NO	530	TBR	0.000	0.002	0.000	0.000	0.003
	1.0	220	Canada	0.222	0.019	0.221	0.192	0.254
			US South	0.718	0.020	0.719	0.685	0.751
			Alaska	0.073	0.010	0.073	0.057	0.091
	All	658	TBR	0.015	0.007	0.014	0.005	0.027
	<i>1</i> 111	0.50	Canada	0.187	0.017	0.186	0.159	0.216
Summer			US South	0.726	0.019	0.726	0.694	0.756
retention 2			Alaska	0.049	0.011	0.048	0.032	0.068
	NO	481	TBR	0.017	0.008	0.016	0.005	0.031
	NO	401	Canada	0.196	0.020	0.196	0.165	0.229
			US South	0.738	0.021	0.738	0.703	0.772

Note: Successfully genotyped sample sizes, standard deviation (SD), and 90% credibility intervals (CI) are provided.

Appendix B24.—Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska troll fishery harvest by season and quadrant, AY 2022.

	E	arly winte	er regionwic	51)	Early	winter N	Northern Ou	tside (n =	: 288)	
				90%	6 CI				90%	6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.327	0.020	0.327	0.295	0.360	0.085	0.020	0.084	0.055	0.121
NCBC	0.190	0.021	0.190	0.156	0.226	0.189	0.027	0.188	0.145	0.234
West Vancouver	0.044	0.009	0.044	0.031	0.060	0.076	0.016	0.075	0.052	0.103
South Thompson	0.023	0.007	0.022	0.013	0.035	0.044	0.013	0.043	0.025	0.066
Washington Coast	0.005	0.003	0.005	0.001	0.012	0.010	0.006	0.009	0.002	0.022
Interior Columbia Su/F	0.182	0.015	0.182	0.158	0.207	0.350	0.029	0.349	0.303	0.398
Oregon Coast	0.007	0.004	0.006	0.002	0.014	0.013	0.007	0.012	0.004	0.027
Other	0.221	0.020	0.221	0.189	0.254	0.233	0.027	0.233	0.191	0.278
	La	ite winter	regionwide	e(n = 1.08)	38)	Late	winter N	orthern Out	tside ($n =$	834)
SEAK/TBR	0.166	0.012	0.166	0.146	0.187	0.158	0.014	0.158	0.135	0.182
NCBC	0.097	0.010	0.097	0.081	0.114	0.086	0.011	0.085	0.068	0.105
West Vancouver	0.284	0.014	0.284	0.262	0.307	0.237	0.015	0.236	0.212	0.262
South Thompson	0.047	0.007	0.047	0.036	0.059	0.052	0.008	0.052	0.039	0.067
Washington Coast	0.034	0.006	0.034	0.025	0.045	0.039	0.008	0.039	0.028	0.053
Interior Columbia Su/F	0.158	0.011	0.158	0.140	0.176	0.200	0.014	0.200	0.178	0.224
Oregon Coast	0.015	0.004	0.015	0.009	0.022	0.018	0.005	0.018	0.011	0.028
Other	0.198	0.013	0.198	0.178	0.219	0.209	0.014	0.209	0.186	0.233
		Spring re	gionwide (1	n = 1,456)	Spr	ing Nortl	hern Outsid	e(n = 1,0)	15)
SEAK/TBR	0.452	0.014	0.452	0.430	0.474	0.344	0.018	0.344	0.315	0.373
NCBC	0.034	0.007	0.033	0.024	0.045	0.026	0.006	0.025	0.017	0.037
West Vancouver	0.237	0.011	0.236	0.219	0.255	0.246	0.015	0.245	0.222	0.270
South Thompson	0.037	0.006	0.037	0.028	0.048	0.053	0.009	0.052	0.039	0.068
Washington Coast	0.041	0.006	0.040	0.031	0.051	0.060	0.009	0.059	0.045	0.075
Interior Columbia Su/F	0.129	0.010	0.128	0.113	0.146	0.182	0.015	0.182	0.159	0.207
Oregon Coast	0.013	0.003	0.012	0.008	0.019	0.018	0.005	0.018	0.011	0.028
Other	0.059	0.007	0.058	0.048	0.070	0.072	0.009	0.071	0.057	0.087
			thern Outsi					uthern Insid		•
SEAK/TBR	0.318	0.035	0.318	0.261	0.376	0.940	0.023	0.943	0.899	0.974
NCBC	0.067	0.023	0.065	0.032	0.108	0.038	0.021	0.036	0.010	0.077
West Vancouver	0.504	0.034	0.504	0.449	0.560	0.014	0.008	0.012	0.004	0.029
South Thompson	0.008	0.007	0.007	0.000	0.022	0.000	0.001	0.000	0.000	0.000
Washington Coast	0.001	0.002	0.000	0.000	0.003	0.000	0.001	0.000	0.000	0.001
Interior Columbia Su/F	0.036	0.013	0.034	0.017	0.060	0.000	0.001	0.000	0.000	0.001
Oregon Coast	0.000	0.001	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.001
Other	0.066	0.018	0.064	0.039	0.099	0.007	0.006	0.005	0.001	0.019
			regionwid					orthern Out		
SEAK/TBR	0.070	0.009	0.070	0.055	0.086	0.060	0.011	0.059	0.043	0.079
NCBC	0.030	0.007	0.029	0.019	0.042	0.030	0.009	0.029	0.018	0.046
West Vancouver	0.081	0.010	0.080	0.066	0.097	0.078	0.012	0.077	0.059	0.098
South Thompson	0.110	0.011	0.110	0.093	0.129	0.093	0.013	0.092	0.073	0.115
Washington Coast	0.161	0.014	0.161	0.139	0.185	0.171	0.017	0.171	0.144	0.201
Interior Columbia Su/F	0.304	0.017	0.304	0.277	0.332	0.313	0.021	0.313	0.280	0.348
Oregon Coast	0.159	0.014	0.159	0.137	0.182	0.164	0.017	0.164	0.137	0.193
Other	0.085	0.011	0.084	0.067	0.104	0.090	0.014	0.090	0.069	0.114

Appendix B24.—Page 2 of 2.

		Summer 2	regionwide	e(n = 658)	3)	Sum	mer 2 No	orthern Out	side $(n = 1)$	481)
				90%	6 CI				90%	6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.088	0.012	0.087	0.069	0.108	0.066	0.013	0.065	0.046	0.088
NCBC	0.038	0.010	0.037	0.023	0.056	0.043	0.012	0.042	0.025	0.063
West Vancouver	0.098	0.012	0.098	0.079	0.119	0.107	0.014	0.106	0.084	0.131
South Thompson	0.033	0.008	0.033	0.022	0.047	0.030	0.008	0.029	0.017	0.045
Washington Coast	0.209	0.018	0.209	0.180	0.239	0.225	0.020	0.224	0.192	0.259
Interior Columbia Su/F	0.296	0.019	0.295	0.265	0.327	0.310	0.022	0.310	0.275	0.347
Oregon Coast	0.156	0.015	0.155	0.131	0.182	0.141	0.017	0.141	0.114	0.170
Other	0.083	0.012	0.082	0.064	0.104	0.078	0.014	0.078	0.057	0.102

Note: Reporting groups are described in Table 1.

Appendix B25.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the early winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2022.

			Reg	ionwide (n =	561)]	Northern O	utside quadra	nt (n = 288))
Reporting					90%	6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.001	0.002	0.000	0.000	0.005	0.002	0.003	0.000	0.000	0.009
3	N Southeast Alaska	0.002	0.002	0.001	0.000	0.005	0.000	0.001	0.000	0.000	0.000
4	Taku	0.004	0.005	0.002	0.000	0.015	0.007	0.010	0.004	0.000	0.028
5	Andrew	0.092	0.011	0.091	0.074	0.110	0.001	0.002	0.000	0.000	0.003
6	Stikine	0.003	0.006	0.000	0.000	0.015	0.006	0.010	0.000	0.000	0.028
7	S Southeast Alaska	0.225	0.020	0.225	0.193	0.258	0.070	0.018	0.068	0.042	0.102
8	Nass	0.001	0.002	0.000	0.000	0.005	0.001	0.003	0.000	0.000	0.008
9	Skeena	0.026	0.009	0.026	0.011	0.043	0.033	0.015	0.033	0.006	0.059
10	BC Coast/Haida Gwaii	0.163	0.020	0.162	0.131	0.197	0.154	0.025	0.153	0.115	0.196
11	West Vancouver	0.044	0.009	0.044	0.031	0.060	0.076	0.016	0.075	0.052	0.103
12	East Vancouver	0.080	0.012	0.080	0.062	0.101	0.060	0.015	0.059	0.038	0.086
13	Fraser	0.003	0.002	0.002	0.000	0.007	0.004	0.004	0.003	0.000	0.011
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.002	0.002	0.002	0.000	0.007	0.004	0.004	0.003	0.000	0.013
16	South Thompson	0.023	0.007	0.022	0.013	0.035	0.044	0.013	0.043	0.025	0.066
17	Puget Sound	0.094	0.015	0.094	0.071	0.119	0.099	0.019	0.098	0.069	0.133
18	Washington Coast	0.005	0.003	0.005	0.001	0.012	0.010	0.006	0.009	0.002	0.022
19	West Cascades Sp	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
20	Lower Columbia F	0.012	0.005	0.011	0.005	0.022	0.009	0.006	0.007	0.001	0.021
21	Willamette Sp	0.029	0.007	0.029	0.018	0.042	0.056	0.014	0.055	0.035	0.081
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.182	0.015	0.182	0.158	0.207	0.350	0.029	0.349	0.303	0.398
24	North Oregon Coast	0.007	0.004	0.006	0.002	0.014	0.013	0.007	0.011	0.004	0.026
25	Mid Oregon Coast	0.000	0.001	0.000	0.000	0.002	0.000	0.002	0.000	0.000	0.003
26	S Oregon/California	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

^a Run-timing components are abbreviated as Sp (spring), Su (summer), and F (fall).

Appendix B26.–Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the late winter troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2022.

			Regi	onwide $(n = 1)$,088)]	Northern O	utside quadra	nt (n = 834))
Reporting				•	90%	6 CI			-	90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.001	0.001	0.001	0.000	0.003	0.000	0.000	0.000	0.000	0.000
4	Taku	0.015	0.005	0.014	0.007	0.024	0.015	0.006	0.014	0.005	0.025
5	Andrew	0.066	0.009	0.066	0.052	0.082	0.077	0.011	0.077	0.059	0.097
6	Stikine	0.008	0.005	0.007	0.002	0.017	0.003	0.005	0.000	0.000	0.013
7	S Southeast Alaska	0.076	0.010	0.075	0.059	0.093	0.063	0.011	0.062	0.045	0.082
8	Nass	0.001	0.002	0.000	0.000	0.006	0.001	0.003	0.000	0.000	0.008
9	Skeena	0.010	0.003	0.010	0.005	0.016	0.006	0.004	0.006	0.001	0.013
10	BC Coast/Haida Gwaii	0.086	0.009	0.086	0.071	0.103	0.079	0.010	0.078	0.062	0.096
11	West Vancouver	0.284	0.014	0.284	0.262	0.307	0.237	0.015	0.236	0.212	0.262
12	East Vancouver	0.037	0.006	0.036	0.027	0.047	0.016	0.005	0.015	0.009	0.024
13	Fraser	0.005	0.002	0.005	0.002	0.009	0.005	0.003	0.004	0.001	0.010
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.002	0.002	0.002	0.000	0.005	0.003	0.002	0.003	0.001	0.007
16	South Thompson	0.047	0.007	0.047	0.036	0.059	0.052	0.008	0.052	0.039	0.067
17	Puget Sound	0.031	0.006	0.030	0.021	0.042	0.027	0.006	0.027	0.017	0.038
18	Washington Coast	0.034	0.006	0.034	0.025	0.045	0.039	0.008	0.039	0.028	0.053
19	West Cascades Sp	0.005	0.003	0.004	0.002	0.011	0.007	0.004	0.006	0.002	0.014
20	Lower Columbia F	0.035	0.006	0.035	0.026	0.045	0.045	0.008	0.045	0.033	0.058
21	Willamette Sp	0.082	0.008	0.082	0.069	0.096	0.106	0.011	0.106	0.089	0.124
22	Columbia Sp	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.158	0.011	0.158	0.140	0.176	0.200	0.014	0.200	0.178	0.224
24	North Oregon Coast	0.012	0.004	0.011	0.005	0.019	0.014	0.006	0.014	0.006	0.025
25	Mid Oregon Coast	0.003	0.003	0.003	0.000	0.009	0.004	0.004	0.003	0.000	0.011
26	S Oregon/California	0.001	0.001	0.000	0.000	0.002	0.001	0.001	0.000	0.000	0.003

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B27.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the spring troll fishery regionwide and in the Northern Outside, Southern Outside, and Southern Inside quadrants of Southeast Alaska, AY 2022.

			Regio	onwide $(n = 1)$,456)		N	orthern Ou	ıtside quadran	t (n = 1,01:	5)
Reporting				•		6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.001
4	Taku	0.002	0.001	0.001	0.000	0.004	0.002	0.002	0.002	0.000	0.005
5	Andrew	0.224	0.012	0.224	0.204	0.245	0.314	0.017	0.314	0.285	0.343
6	Stikine	0.008	0.003	0.007	0.003	0.014	0.002	0.002	0.002	0.000	0.006
7	S Southeast Alaska	0.218	0.008	0.218	0.205	0.231	0.025	0.006	0.025	0.016	0.036
8	Nass	0.001	0.001	0.001	0.000	0.003	0.001	0.001	0.001	0.000	0.004
9	Skeena	0.003	0.002	0.003	0.001	0.007	0.005	0.003	0.004	0.001	0.010
10	BC Coast/Haida Gwaii	0.029	0.006	0.029	0.020	0.040	0.020	0.005	0.019	0.012	0.029
11	West Vancouver	0.237	0.011	0.236	0.219	0.255	0.246	0.015	0.245	0.222	0.270
12	East Vancouver	0.023	0.004	0.023	0.017	0.030	0.025	0.005	0.024	0.017	0.034
13	Fraser	0.001	0.001	0.000	0.000	0.002	0.001	0.001	0.000	0.000	0.003
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.001	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.002
16	South Thompson	0.037	0.006	0.037	0.028	0.048	0.053	0.009	0.052	0.039	0.068
17	Puget Sound	0.008	0.002	0.008	0.004	0.013	0.006	0.003	0.006	0.003	0.011
18	Washington Coast	0.041	0.006	0.040	0.031	0.051	0.060	0.009	0.059	0.045	0.075
19	West Cascades Sp	0.001	0.001	0.000	0.000	0.002	0.001	0.001	0.000	0.000	0.003
20	Lower Columbia F	0.022	0.005	0.022	0.015	0.030	0.033	0.007	0.032	0.023	0.045
21	Willamette Sp	0.003	0.001	0.002	0.001	0.005	0.004	0.002	0.004	0.002	0.007
22	Columbia Sp	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.129	0.010	0.128	0.113	0.146	0.182	0.015	0.182	0.159	0.207
24	North Oregon Coast	0.011	0.003	0.010	0.006	0.016	0.015	0.005	0.015	0.008	0.024
25	Mid Oregon Coast	0.002	0.001	0.002	0.000	0.005	0.003	0.002	0.003	0.001	0.007
26	S Oregon/California	0.001	0.002	0.000	0.000	0.005	0.001	0.003	0.000	0.000	0.007

Appendix B27.—Page 2 of 2.

			Southern O	utside quadra	nt (n = 222))		Southern I	nside quadran	t (n = 219)	
Reporting					90%	6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
2	Alsek	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.002	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.001
4	Taku	0.001	0.003	0.000	0.000	0.006	0.000	0.003	0.000	0.000	0.002
5	Andrew	0.082	0.023	0.080	0.047	0.121	0.002	0.006	0.000	0.000	0.014
6	Stikine	0.023	0.013	0.021	0.006	0.046	0.016	0.012	0.014	0.000	0.040
7	S Southeast Alaska	0.212	0.032	0.211	0.161	0.266	0.921	0.026	0.923	0.875	0.959
8	Nass	0.001	0.003	0.000	0.000	0.003	0.000	0.001	0.000	0.000	0.000
9	Skeena	0.001	0.004	0.000	0.000	0.008	0.000	0.001	0.000	0.000	0.000
10	BC Coast/Haida Gwaii	0.065	0.023	0.064	0.031	0.106	0.038	0.021	0.035	0.010	0.076
11	West Vancouver	0.504	0.034	0.504	0.449	0.560	0.014	0.008	0.012	0.004	0.029
12	East Vancouver	0.045	0.015	0.043	0.023	0.072	0.000	0.001	0.000	0.000	0.001
13	Fraser	0.000	0.002	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.001
14	Lower Thompson	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
15	North Thompson	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
16	South Thompson	0.008	0.007	0.007	0.000	0.022	0.000	0.001	0.000	0.000	0.000
17	Puget Sound	0.020	0.011	0.018	0.006	0.040	0.006	0.006	0.004	0.000	0.017
18	Washington Coast	0.001	0.002	0.000	0.000	0.003	0.000	0.001	0.000	0.000	0.001
19	West Cascades Sp	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
20	Lower Columbia F	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
21	Willamette Sp	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
22	Columbia Sp	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
23	Interior Columbia Su/F	0.036	0.013	0.034	0.017	0.060	0.000	0.001	0.000	0.000	0.001
24	North Oregon Coast	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
25	Mid Oregon Coast	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
26	S Oregon/California	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B28.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the first retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2022.

			Reg	ionwide (n =	892)			Northe	ern Outside (n	= 530)	
Reporting					90%	6 CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	Taku	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
5	Andrew	0.021	0.006	0.021	0.012	0.032	0.026	0.008	0.025	0.014	0.039
6	Stikine	0.001	0.002	0.000	0.000	0.003	0.000	0.002	0.000	0.000	0.001
7	S Southeast Alaska	0.048	0.008	0.047	0.035	0.061	0.034	0.009	0.033	0.020	0.049
8	Nass	0.001	0.001	0.000	0.000	0.003	0.000	0.001	0.000	0.000	0.003
9	Skeena	0.012	0.004	0.012	0.006	0.020	0.015	0.006	0.014	0.007	0.026
10	BC Coast/Haida Gwaii	0.017	0.005	0.016	0.009	0.027	0.015	0.007	0.014	0.006	0.027
11	West Vancouver	0.081	0.010	0.080	0.066	0.097	0.078	0.012	0.077	0.059	0.098
12	East Vancouver	0.005	0.003	0.005	0.002	0.011	0.004	0.003	0.004	0.001	0.011
13	Fraser	0.010	0.004	0.009	0.004	0.017	0.013	0.005	0.012	0.005	0.022
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.004	0.003	0.003	0.001	0.008	0.004	0.003	0.003	0.000	0.010
16	South Thompson	0.110	0.011	0.110	0.093	0.129	0.093	0.013	0.092	0.073	0.115
17	Puget Sound	0.001	0.001	0.000	0.000	0.003	0.001	0.001	0.000	0.000	0.003
18	Washington Coast	0.161	0.014	0.161	0.139	0.185	0.171	0.017	0.171	0.144	0.201
19	West Cascades Sp	0.000	0.001	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.001
20	Lower Columbia F	0.061	0.010	0.061	0.046	0.078	0.068	0.012	0.067	0.049	0.089
21	Willamette Sp	0.004	0.002	0.004	0.001	0.008	0.001	0.001	0.000	0.000	0.003
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.304	0.017	0.304	0.277	0.332	0.313	0.021	0.313	0.280	0.348
24	North Oregon Coast	0.146	0.013	0.146	0.125	0.169	0.150	0.017	0.150	0.124	0.179
25	Mid Oregon Coast	0.012	0.005	0.012	0.006	0.021	0.014	0.006	0.013	0.006	0.025
26	S Oregon/California	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B29.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the harvest for the second retention period of the summer troll fishery regionwide and in the Northern Outside quadrant of Southeast Alaska, AY 2022.

			Reg	ionwide ($n = $	658)			Northe	ern Outside (n	= 481)	
Reporting					90%	6 CI				90%	% CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.005	0.003	0.005	0.001	0.012	0.006	0.004	0.005	0.001	0.014
2	Alsek	0.009	0.004	0.008	0.003	0.017	0.010	0.005	0.009	0.003	0.020
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	Taku	0.001	0.002	0.000	0.000	0.004	0.001	0.002	0.000	0.000	0.005
5	Andrew	0.009	0.005	0.008	0.002	0.018	0.008	0.005	0.007	0.001	0.018
6	Stikine	0.005	0.005	0.004	0.000	0.015	0.006	0.006	0.004	0.000	0.018
7	S Southeast Alaska	0.059	0.009	0.058	0.045	0.075	0.035	0.009	0.034	0.021	0.052
8	Nass	0.002	0.003	0.000	0.000	0.007	0.001	0.003	0.000	0.000	0.007
9	Skeena	0.005	0.004	0.003	0.000	0.013	0.005	0.005	0.004	0.000	0.015
10	BC Coast/Haida Gwaii	0.032	0.009	0.031	0.018	0.047	0.036	0.010	0.035	0.020	0.054
11	West Vancouver	0.098	0.012	0.098	0.079	0.119	0.107	0.014	0.106	0.084	0.131
12	East Vancouver	0.008	0.004	0.007	0.003	0.014	0.006	0.004	0.005	0.001	0.013
13	Fraser	0.010	0.004	0.009	0.004	0.018	0.011	0.005	0.011	0.004	0.021
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
16	South Thompson	0.033	0.008	0.033	0.022	0.047	0.030	0.008	0.029	0.017	0.045
17	Puget Sound	0.015	0.006	0.015	0.006	0.026	0.016	0.007	0.015	0.006	0.028
18	Washington Coast	0.209	0.018	0.209	0.180	0.239	0.225	0.020	0.224	0.192	0.259
19	West Cascades Sp	0.003	0.002	0.003	0.001	0.007	0.000	0.001	0.000	0.000	0.000
20	Lower Columbia F	0.025	0.007	0.025	0.015	0.038	0.022	0.008	0.022	0.011	0.037
21	Willamette Sp	0.021	0.006	0.021	0.012	0.032	0.023	0.007	0.022	0.013	0.035
22	Columbia Sp	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.296	0.019	0.295	0.265	0.327	0.310	0.022	0.310	0.275	0.347
24	North Oregon Coast	0.146	0.015	0.146	0.122	0.172	0.137	0.017	0.137	0.110	0.166
25	Mid Oregon Coast	0.010	0.005	0.009	0.003	0.019	0.004	0.005	0.002	0.000	0.014
26	S Oregon/California	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B30.—Estimated contributions of broad-scale reporting groups of Chinook salmon to the Southeast Alaska sport fishery harvest, AY 2022.

		Sample Reporting					909	% CI
Area	Period	size	group	Mean	SD	Median	5%	95%
			Alaska	0.573	0.029	0.573	0.526	0.620
Ketchikan	All	343	TBR	0.002	0.005	0.000	0.000	0.014
Kettilikali	season	343	Canada	0.252	0.026	0.252	0.212	0.296
			US South	0.173	0.021	0.172	0.139	0.209
			Alaska	0.116	0.020	0.115	0.085	0.150
Craig	All	308	TBR	0.000	0.001	0.000	0.000	0.001
Craig	season	300	Canada	0.664	0.028	0.664	0.616	0.710
			US South	0.220	0.024	0.220	0.182	0.262
			Alaska	0.120	0.012	0.120	0.102	0.140
Sitka	All	946	TBR	0.000	0.001	0.000	0.000	0.001
Sitka	season	940	Canada	0.335	0.016	0.334	0.308	0.361
			US South	0.545	0.017	0.545	0.517	0.572
			Alaska	0.865	0.042	0.869	0.791	0.927
Petersburg-	All	79	TBR	0.002	0.008	0.000	0.000	0.007
Wrangell	season	13	Canada	0.097	0.035	0.093	0.046	0.160
			US South	0.036	0.025	0.032	0.005	0.084
			Alaska	0.826	0.030	0.828	0.774	0.874
Northern Inside	All	284	TBR	0.037	0.016	0.035	0.014	0.066
Northern Inside	season	284	Canada	0.132	0.026	0.131	0.092	0.178
			US South	0.005	0.004	0.003	0.000	0.013
			Alaska	0.119	0.010	0.119	0.103	0.136
	All	1 200	TBR	0.002	0.003	0.002	0.000	0.007
	season	1,388	Canada	0.384	0.014	0.384	0.361	0.407
			US South	0.495	0.014	0.495	0.472	0.517
			Alaska	0.151	0.013	0.151	0.130	0.174
Outside	Biweeks	989	TBR	0.001	0.002	0.000	0.000	0.004
Outside	9–13	989	Canada	0.363	0.017	0.363	0.335	0.390
			US South	0.485	0.016	0.485	0.458	0.512
	-		Alaska	0.041	0.012	0.040	0.022	0.063
	Biweeks	200	TBR	0.007	0.007	0.005	0.000	0.021
	14–18	399	Canada	0.435	0.026	0.435	0.392	0.478
			US South	0.518	0.026	0.518	0.475	0.560
				1.000/ 1				

Note: Successfully genotyped sample sizes, standard deviation (SD), and 90% credibility intervals (CI) are provided.

Note: Reporting groups are described in Table 1.

Appendix B31.—Estimated contributions of driver stock reporting groups of Chinook salmon to the Southeast Alaska sport fishery harvest by area and season, AY 2022.

	Ketchikan $(n = 344)$						Petersbu	rg-Wrangell	(n=79))		Northe	rn Inside (n	= 284)	
				90%	6 CI				909	% CI				90%	6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.575	0.029	0.575	0.527	0.622						0.863	0.026	0.865	0.818	0.904
NCBC	0.048	0.015	0.047	0.026	0.076						0.116	0.025	0.114	0.077	0.159
West Vancouver	0.129	0.018	0.129	0.101	0.160						0.002	0.003	0.000	0.000	0.009
South Thompson	0.051	0.012	0.050	0.033	0.072		Insuf	ficient sampl	le size		0.002	0.003	0.000	0.000	0.009
Washington Coast	0.042	0.012	0.041	0.024	0.062						0.000	0.001	0.000	0.000	0.000
Interior Columbia Su/F	0.086	0.015	0.086	0.062	0.113						0.000	0.001	0.000	0.000	0.000
Oregon Coast	0.017	0.008	0.016	0.007	0.031						0.000	0.000	0.000	0.000	0.000
Other	0.051	0.013	0.050	0.032	0.074						0.017	0.008	0.016	0.006	0.032
			main (n = 20)				-	i+1ra (n = 04)	()		,		. ,		

		Cı	8)				S1	tka ($n = 94$)	5)		
				90%	6 CI					90%	6 CI
Reporting group	Mean	SD	Median	5%	95%]	Mean	SD	Median	5%	95%
SEAK/TBR	0.116	0.020	0.115	0.085	0.150	(0.121	0.012	0.120	0.102	0.140
NCBC	0.161	0.022	0.160	0.126	0.199	(0.044	0.008	0.043	0.031	0.058
West Vancouver	0.388	0.028	0.388	0.342	0.434	(0.201	0.013	0.201	0.180	0.223
South Thompson	0.078	0.016	0.077	0.053	0.106	(0.080	0.009	0.080	0.065	0.095
Washington Coast	0.063	0.014	0.063	0.042	0.089	(0.173	0.013	0.172	0.152	0.195
Interior Columbia Su/F	0.114	0.019	0.114	0.085	0.147	(0.248	0.014	0.248	0.225	0.272
Oregon Coast	0.023	0.009	0.021	0.010	0.039	(0.072	0.009	0.071	0.057	0.087
Other	0.056	0.014	0.055	0.035	0.081	(0.062	0.008	0.061	0.048	0.076

	Outside All Season ($n = 1,388$)					C	utside Bi	weeks 9-1.	3 (n = 989)	9)	O	utside Bi	weeks 14-1	8 (n = 39)	9)
				90%	6 CI				90%	6 CI				90%	6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.122	0.010	0.121	0.106	0.138	0.152	0.013	0.152	0.131	0.174	0.048	0.013	0.047	0.028	0.071
NCBC	0.070	0.009	0.070	0.057	0.085	0.062	0.010	0.061	0.046	0.079	0.091	0.016	0.091	0.066	0.120
West Vancouver	0.223	0.011	0.223	0.205	0.242	0.204	0.013	0.204	0.183	0.226	0.267	0.022	0.267	0.231	0.305
South Thompson	0.079	0.008	0.079	0.067	0.092	0.088	0.010	0.088	0.073	0.105	0.055	0.012	0.055	0.037	0.076
Washington Coast	0.149	0.010	0.148	0.132	0.166	0.138	0.012	0.137	0.119	0.157	0.175	0.020	0.175	0.143	0.210
Interior Columbia Su/F	0.222	0.011	0.222	0.203	0.241	0.221	0.014	0.220	0.198	0.243	0.226	0.021	0.225	0.192	0.261
Oregon Coast	0.076	0.008	0.076	0.064	0.089	0.077	0.009	0.077	0.063	0.092	0.075	0.014	0.074	0.053	0.099
Other	0.059	0.007	0.059	0.048	0.071	0.058	0.008	0.058	0.045	0.072	0.062	0.013	0.061	0.041	0.086

Note: Reporting groups are described in Table 1.

Note: There was insufficient sample size (n = 79) for driver stock reporting groups for Petersburg-Wrangell.

Appendix B32.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the sport fishery harvest in Ketchikan, Petersburg-Wrangell, Northern Inside (Juneau, Haines, and Skagway), Craig, and Sitka areas of Southeast Alaska, AY 2022.

			hikan (n =		Petersburg-Wrangell ($n = 79$)					Northern Inside quadrant ($n = 284$)						
Reporting					90%	6 CI				909	% CI				90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.000						0.011	0.006	0.010	0.003	0.023
4	Taku	0.000	0.001	0.000	0.000	0.000						0.037	0.016	0.035	0.014	0.066
5	Andrew	0.041	0.014	0.039	0.020	0.065						0.736	0.029	0.736	0.686	0.783
6	Stikine	0.002	0.005	0.000	0.000	0.014						0.000	0.002	0.000	0.000	0.001
7	S Southeast Alaska	0.532	0.029	0.532	0.484	0.580						0.079	0.024	0.078	0.043	0.120
8	Nass	0.027	0.013	0.024	0.011	0.052						0.000	0.001	0.000	0.000	0.000
9	Skeena	0.005	0.004	0.004	0.001	0.013						0.029	0.010	0.028	0.014	0.047
10	BC Coast/Haida Gwaii	0.016	0.010	0.015	0.004	0.034						0.087	0.023	0.085	0.052	0.128
11	West Vancouver	0.129	0.018	0.129	0.101	0.160						0.002	0.003	0.000	0.000	0.009
12	East Vancouver	0.024	0.009	0.023	0.011	0.040						0.013	0.007	0.011	0.004	0.025
13	Fraser	0.000	0.001	0.000	0.000	0.000		Insuff	ficient sampl	le size		0.000	0.001	0.000	0.000	0.000
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.051	0.012	0.050	0.033	0.072						0.002	0.003	0.000	0.000	0.009
17	Puget Sound	0.005	0.005	0.004	0.000	0.014						0.000	0.001	0.000	0.000	0.001
18	Washington Coast	0.042	0.012	0.041	0.024	0.062						0.000	0.001	0.000	0.000	0.000
19	West Cascades Sp	0.005	0.005	0.004	0.000	0.014						0.003	0.003	0.001	0.000	0.009
20	Lower Columbia F	0.017	0.008	0.016	0.006	0.031						0.001	0.002	0.000	0.000	0.004
21	Willamette Sp	0.000	0.000	0.000	0.000	0.000						0.001	0.002	0.000	0.000	0.006
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.086	0.015	0.086	0.062	0.113						0.000	0.001	0.000	0.000	0.000
24	North Oregon Coast	0.017	0.007	0.016	0.007	0.030						0.000	0.000	0.000	0.000	0.000
25	Mid Oregon Coast	0.000	0.001	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000
26	S Oregon/California	0.000	0.000	0.000	0.000	0.000						0.000	0.000	0.000	0.000	0.000

Appendix B32.–Page 2 of 2.

			Craigb $(n = 308)$		Sitka $(n = 946)$						
Reporting						6 CI				90%	% CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
4	Taku	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5	Andrew	0.022	0.009	0.021	0.009	0.039	0.086	0.010	0.085	0.070	0.102
6	Stikine	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
7	S Southeast Alaska	0.093	0.018	0.092	0.065	0.125	0.035	0.008	0.034	0.023	0.048
8	Nass	0.001	0.002	0.000	0.000	0.005	0.000	0.001	0.000	0.000	0.002
9	Skeena	0.047	0.014	0.045	0.026	0.071	0.023	0.007	0.022	0.013	0.034
10	BC Coast/Haida Gwaii	0.114	0.020	0.113	0.083	0.148	0.021	0.006	0.020	0.012	0.031
11	West Vancouver	0.388	0.028	0.388	0.342	0.434	0.201	0.013	0.201	0.180	0.223
12	East Vancouver	0.033	0.010	0.032	0.018	0.051	0.009	0.003	0.008	0.004	0.015
13	Fraser	0.004	0.004	0.002	0.000	0.011	0.001	0.001	0.000	0.000	0.003
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.078	0.016	0.077	0.053	0.106	0.080	0.009	0.080	0.065	0.095
17	Puget Sound	0.001	0.004	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000
18	Washington Coast	0.063	0.014	0.063	0.042	0.089	0.173	0.013	0.172	0.152	0.195
19	West Cascades Sp	0.001	0.003	0.000	0.000	0.008	0.002	0.002	0.001	0.000	0.005
20	Lower Columbia F	0.005	0.007	0.001	0.000	0.020	0.043	0.007	0.042	0.031	0.055
21	Willamette Sp	0.012	0.007	0.011	0.003	0.026	0.008	0.003	0.008	0.003	0.014
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	Interior Columbia Su/F	0.114	0.019	0.114	0.085	0.147	0.248	0.014	0.248	0.225	0.272
24	North Oregon Coast	0.021	0.009	0.020	0.009	0.037	0.069	0.009	0.069	0.055	0.085
25	Mid Oregon Coast	0.001	0.004	0.000	0.000	0.009	0.002	0.003	0.001	0.000	0.009
26	S Oregon/California	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Note: There was insufficient sample size (n = 79) for fine-scale reporting groups for Petersburg-Wrangell.

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B33.—Estimated contributions of fine-scale reporting groups of Chinook salmon to the total season, early season (biweeks 9–13), and late season (biweeks 14–18) sport fishery harvest in outside waters (Craig/Klawock, Sitka, Yakutat, Gustavus, and Elfin Cove) of Southeast Alaska, AY 2022.

			Total season ($n = 1,388$)					Early season $(n = 989)$				Late season $(n = 399)$				
Reporting					90%	6 CI	=.			90%	6 CI	=,			90%	6 CI
group no.	Reporting group ^a	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
1	Situk	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	Alsek	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	N Southeast Alaska	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	Taku	0.002	0.002	0.001	0.000	0.006	0.000	0.001	0.000	0.000	0.001	0.006	0.007	0.004	0.000	0.020
5	Andrew	0.073	0.008	0.073	0.061	0.086	0.097	0.010	0.096	0.080	0.114	0.016	0.008	0.015	0.005	0.031
6	Stikine	0.000	0.001	0.000	0.000	0.003	0.000	0.002	0.000	0.000	0.003	0.000	0.003	0.000	0.000	0.002
7	S Southeast Alaska	0.046	0.008	0.046	0.034	0.059	0.055	0.010	0.054	0.040	0.071	0.025	0.011	0.024	0.008	0.044
8	Nass	0.000	0.001	0.000	0.000	0.002	0.000	0.001	0.000	0.000	0.003	0.000	0.001	0.000	0.000	0.000
9	Skeena	0.026	0.006	0.026	0.017	0.036	0.022	0.007	0.022	0.012	0.034	0.035	0.012	0.034	0.018	0.056
10	BC Coast/Haida Gwaii	0.044	0.007	0.044	0.033	0.056	0.039	0.009	0.038	0.025	0.054	0.056	0.013	0.056	0.037	0.078
11	West Vancouver	0.223	0.011	0.223	0.205	0.242	0.204	0.013	0.204	0.183	0.226	0.267	0.022	0.267	0.231	0.305
12	East Vancouver	0.008	0.003	0.008	0.005	0.013	0.006	0.003	0.006	0.003	0.011	0.014	0.006	0.013	0.005	0.026
13	Fraser	0.003	0.002	0.002	0.000	0.007	0.002	0.002	0.001	0.000	0.006	0.006	0.005	0.005	0.001	0.016
14	Lower Thompson	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	North Thompson	0.000	0.001	0.000	0.000	0.002	0.001	0.001	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000
16	South Thompson	0.079	0.008	0.079	0.067	0.092	0.088	0.010	0.088	0.073	0.105	0.055	0.012	0.055	0.037	0.076
17	Puget Sound	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
18	Washington Coast	0.149	0.010	0.148	0.132	0.166	0.138	0.012	0.137	0.119	0.157	0.175	0.020	0.175	0.143	0.210
19	West Cascades Sp	0.001	0.001	0.001	0.000	0.004	0.002	0.002	0.001	0.000	0.006	0.000	0.000	0.000	0.000	0.000
20	Lower Columbia F	0.034	0.005	0.034	0.026	0.043	0.036	0.006	0.036	0.026	0.047	0.029	0.010	0.028	0.015	0.047
21	Willamette Sp	0.011	0.003	0.011	0.007	0.017	0.011	0.003	0.010	0.006	0.017	0.012	0.006	0.012	0.004	0.023
22	Columbia Sp	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
23	Interior Columbia Su/F	0.222	0.011	0.222	0.203	0.241	0.221	0.014	0.220	0.198	0.243	0.226	0.021	0.225	0.192	0.261
24	North Oregon Coast	0.071	0.007	0.071	0.059	0.083	0.073	0.009	0.073	0.059	0.088	0.066	0.013	0.065	0.045	0.089
25	Mid Oregon Coast	0.005	0.003	0.005	0.002	0.010	0.004	0.002	0.004	0.001	0.008	0.009	0.006	0.008	0.000	0.021
26	S Oregon/California	0.001	0.001	0.000	0.000	0.003	0.001	0.002	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000

^a Run-timing components are abbreviated as Sp (spring), Su (summer) and F (fall).

Appendix B34.–Estimated contributions of driver stock reporting groups of Chinook salmon to the annual Southeast Alaska troll fishery harvest, AY 2009–2022.

		AY	2009 (n = 1)	,629)			AY	2010 (n = 3)	,197)	
					6 CI					6 CI
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%
SEAK/TBR	0.219	0.009	0.219	0.204	0.234	0.252	0.008	0.252	0.238	0.266
NCBC	0.101	0.008	0.101	0.089	0.115	0.075	0.006	0.075	0.066	0.085
West Vancouver	0.121	0.008	0.121	0.108	0.136	0.085	0.006	0.085	0.076	0.094
South Thompson	0.085	0.008	0.084	0.071	0.099	0.148	0.008	0.148	0.135	0.161
Washington Coast	0.094	0.009	0.094	0.08	0.11	0.092	0.007	0.092	0.081	0.104
Interior Columbia (Su/F)	0.226	0.012	0.226	0.206	0.246	0.152	0.008	0.152	0.139	0.165
Oregon Coast	0.084	0.009	0.083	0.069	0.099	0.112	0.007	0.112	0.1	0.125
Other	0.07	0.007	0.07	0.058	0.083	0.084	0.006	0.083	0.074	0.094
		AY	2011 (n = 5)	,198)			AY 2	2012 (n = 3)	,288)	
SEAK/TBR	0.186	0.006	0.186	0.177	0.196	0.255	0.009	0.255	0.241	0.269
NCBC	0.101	0.005	0.101	0.093	0.11	0.099	0.007	0.099	0.088	0.111
West Vancouver	0.121	0.005	0.121	0.113	0.129	0.1	0.006	0.1	0.091	0.109
South Thompson	0.097	0.005	0.097	0.09	0.105	0.055	0.005	0.055	0.048	0.063
Washington Coast	0.092	0.005	0.092	0.085	0.1	0.109	0.007	0.108	0.097	0.12
Interior Columbia (Su/F)	0.21	0.006	0.21	0.2	0.22	0.194	0.008	0.194	0.181	0.208
Oregon Coast	0.107	0.005	0.107	0.099	0.114	0.08	0.006	0.08	0.07	0.091
Other	0.086	0.004	0.086	0.078	0.093	0.108	0.006	0.108	0.098	0.119
		AY	2013 (n = 2)	,095)			AY 2	2014 (n = 3)	,465)	
SEAK/TBR	0.221	0.01	0.221	0.205	0.238	0.11	0.006	0.109	0.1	0.12
NCBC	0.091	0.008	0.091	0.079	0.104	0.056	0.005	0.056	0.049	0.064
West Vancouver	0.127	0.008	0.127	0.114	0.141	0.113	0.007	0.113	0.102	0.125
South Thompson	0.078	0.008	0.078	0.065	0.091	0.059	0.006	0.059	0.05	0.069
Washington Coast	0.047	0.007	0.046	0.036	0.058	0.071	0.008	0.071	0.059	0.085
Interior Columbia (Su/F)	0.287	0.012	0.287	0.267	0.308	0.443	0.013	0.443	0.422	0.464
Oregon Coast	0.083	0.009	0.083	0.069	0.098	0.067	0.008	0.067	0.055	0.08
Other	0.066	0.007	0.066	0.056	0.077	0.081	0.007	0.081	0.069	0.093
			2015 (n = 2)	,816)				2016 (n = 3)		
SEAK/TBR	0.154	0.007	0.154	0.143	0.165	0.106	0.005	0.106	0.099	0.115
NCBC	0.111	0.008	0.111	0.099	0.124	0.078	0.005	0.078	0.071	0.086
West Vancouver	0.06	0.005	0.06	0.052	0.069	0.084	0.005	0.083	0.075	0.092
South Thompson	0.072	0.007	0.072	0.06	0.085	0.074	0.006	0.073	0.064	0.084
Washington Coast	0.067	0.008	0.066	0.054	0.08	0.048	0.006	0.047	0.038	0.057
Interior Columbia (Su/F)	0.373	0.013	0.373	0.352	0.393	0.386	0.01	0.386	0.369	0.403
Oregon Coast	0.074	0.009	0.073	0.06	0.088	0.12	0.008	0.12	0.107	0.133
Other	0.09	0.007	0.09	0.079	0.102	0.105	0.006	0.104	0.095	0.115
CE AV/EDD	0.110		$\frac{2017 (n=3)}{20110}$		0.12	0.170		$\frac{2018 (n=3)}{2018 (n=3)}$		0.104
SEAK/TBR	0.118	0.007	0.118	0.106	0.13	0.178	0.01	0.178	0.162	0.194
NCBC	0.079	0.007	0.079	0.068	0.091	0.078	0.009	0.078	0.064	0.093
West Vancouver	0.192	0.008	0.192	0.179	0.205	0.127	0.008	0.127	0.114	0.141
South Thompson	0.161	0.008	0.161	0.148	0.175	0.112	0.009	0.112	0.098	0.128
Washington Coast	0.041	0.005	0.041	0.033	0.05	0.147	0.011	0.147	0.13	0.165
Interior Columbia (Su/F)	0.237	0.01	0.237	0.221	0.254	0.123	0.009	0.123	0.109	0.138
Oregon Coast	0.059	0.006	0.059	0.049	0.07	0.143	0.01	0.142	0.126	0.16
Other	0.113	0.008	0.113	0.1	0.126	0.092	0.008	0.092	0.079	0.106

Appendix B34.—Page 2 of 2.

		AY 2	2019 (n=3)	,693)		AY 2020 $(n = 4,128)$						
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%		
SEAK/TBR	0.147	0.007	0.147	0.137	0.159	0.090	0.006	0.090	0.081	0.100		
NCBC	0.058	0.006	0.058	0.049	0.069	0.039	0.005	0.039	0.031	0.048		
West Vancouver	0.114	0.007	0.114	0.103	0.126	0.100	0.007	0.100	0.089	0.113		
South Thompson	0.237	0.012	0.237	0.218	0.257	0.144	0.008	0.144	0.130	0.158		
Washington Coast	0.080	0.008	0.080	0.067	0.094	0.124	0.010	0.124	0.108	0.140		
Interior Columbia (Su/F)	0.175	0.011	0.175	0.158	0.193	0.262	0.012	0.262	0.243	0.282		
Oregon Coast	0.121	0.010	0.121	0.105	0.138	0.154	0.010	0.154	0.138	0.172		
Other	0.067	0.006	0.067	0.057	0.078	0.086	0.007	0.086	0.075	0.097		

		AY 2	2021 (n = 4)	,001)		AY 2022 $(n = 4,655)$						
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%		
SEAK/TBR	0.105	0.006	0.105	0.096	0.115	0.121	0.006	0.121	0.112	0.131		
NCBC	0.039	0.004	0.039	0.033	0.046	0.045	0.005	0.045	0.038	0.053		
West Vancouver	0.127	0.007	0.127	0.116	0.139	0.119	0.006	0.119	0.109	0.129		
South Thompson	0.168	0.009	0.168	0.154	0.182	0.072	0.006	0.072	0.063	0.082		
Washington Coast	0.117	0.009	0.116	0.103	0.131	0.148	0.009	0.148	0.134	0.163		
Interior Columbia (Su/F)	0.236	0.010	0.236	0.220	0.254	0.269	0.010	0.269	0.253	0.286		
Oregon Coast	0.117	0.008	0.116	0.103	0.130	0.126	0.008	0.126	0.113	0.140		
Other	0.091	0.007	0.090	0.080	0.102	0.099	0.007	0.099	0.089	0.111		

Note: Reporting groups are described in Table 1.

Note: AY = Accounting year = October 1–September 30.

Appendix B35.–Estimated contributions of driver stock reporting groups of Chinook salmon to the annual Southeast Alaska sport fishery harvest, AY 2009–2022.

	AY 2009 (n = 1,229)					AY 2010 (<i>n</i> = 1,349)					
					6 CI					6 CI	
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%	
SEAK/TBR	0.671	0.012	0.671	0.651	0.691	0.508	0.011	0.508	0.491	0.525	
NCBC	0.07	0.008	0.07	0.057	0.085	0.075	0.009	0.075	0.061	0.091	
West Vancouver	0.061	0.007	0.061	0.05	0.072	0.099	0.008	0.099	0.085	0.113	
South Thompson	0.035	0.006	0.034	0.026	0.044	0.112	0.009	0.112	0.097	0.127	
Washington Coast	0.031	0.005	0.031	0.023	0.04	0.07	0.008	0.07	0.057	0.083	
Interior Columbia (Su/F)	0.078	0.007	0.078	0.067	0.09	0.08	0.008	0.08	0.067	0.094	
Oregon Coast	0.015	0.004	0.014	0.009	0.021	0.028	0.006	0.028	0.019	0.038	
Other	0.039	0.006	0.039	0.03	0.05	0.027	0.005	0.027	0.019	0.037	
			2011 (n = 1)					2012 (n=1)	,619)		
SEAK/TBR	0.489	0.01	0.489	0.472	0.506	0.426	0.013	0.426	0.405	0.446	
NCBC	0.075	0.007	0.075	0.063	0.088	0.063	0.009	0.063	0.05	0.079	
West Vancouver	0.124	0.008	0.124	0.111	0.137	0.09	0.008	0.089	0.076	0.104	
South Thompson	0.05	0.006	0.05	0.041	0.059	0.069	0.008	0.069	0.057	0.083	
Washington Coast	0.072	0.007	0.072	0.061	0.084	0.095	0.009	0.095	0.081	0.111	
Interior Columbia (Su/F)	0.11	0.008	0.11	0.098	0.122	0.165	0.01	0.164	0.148	0.182	
Oregon Coast	0.041	0.005	0.041	0.032	0.05	0.046	0.007	0.046	0.035	0.058	
Other	0.039	0.005	0.039	0.031	0.049	0.047	0.006	0.047	0.037	0.057	
			2013 (n = 1)					2014 (n = 2)			
SEAK/TBR	0.428	0.01	0.428	0.413	0.444	0.296	0.007	0.296	0.283	0.308	
NCBC	0.063	0.007	0.062	0.052	0.074	0.064	0.006	0.064	0.054	0.074	
West Vancouver	0.102	0.008	0.101	0.089	0.114	0.124	0.008	0.124	0.111	0.136	
South Thompson	0.048	0.006	0.048	0.039	0.058	0.048	0.005	0.047	0.04	0.056	
Washington Coast	0.071	0.007	0.07	0.059	0.082	0.053	0.006	0.053	0.045	0.063	
Interior Columbia (Su/F)	0.206	0.01	0.206	0.19	0.223	0.319	0.01	0.319	0.303	0.336	
Oregon Coast	0.046	0.006	0.046	0.036	0.056	0.043	0.005	0.042	0.035	0.051	
Other	0.037	0.005	$\frac{0.036}{2015 (n-1)}$	0.029	0.045	0.054	0.006	$\frac{0.054}{2016 (n-1)}$	0.045	0.064	
SEAK/TBR	0.299	0.01	$\frac{2015 (n=1)}{0.298}$	0.283	0.315	0.175	0.009	$\frac{2016 (n=1)}{0.175}$	0.16	0.191	
NCBC	0.299	0.008	0.298	0.285	0.313	0.173	0.009	0.173	0.16	0.191	
West Vancouver	0.078	0.003	0.078	0.063	0.112	0.214	0.003	0.214	0.005	0.113	
South Thompson	0.061	0.007	0.061	0.05	0.074	0.092	0.009	0.092	0.173	0.107	
Washington Coast	0.078	0.008	0.078	0.065	0.091	0.053	0.007	0.053	0.043	0.065	
Interior Columbia (Su/F)	0.205	0.011	0.204	0.186	0.223	0.254	0.013	0.254	0.233	0.275	
Oregon Coast	0.041	0.007	0.041	0.031	0.052	0.049	0.007	0.049	0.038	0.061	
Other	0.044	0.006	0.043	0.034	0.054	0.063	0.008	0.063	0.051	0.076	
			2017 (n = 2)					2018 (n = 1)			
SEAK/TBR	0.283	0.009	0.283	0.269	0.297	0.381	0.009	0.381	0.366	0.397	
NCBC	0.079	0.007	0.079	0.069	0.091	0.077	0.007	0.077	0.065	0.089	
West Vancouver	0.252	0.008	0.252	0.238	0.266	0.244	0.009	0.244	0.229	0.259	
South Thompson	0.119	0.006	0.119	0.109	0.13	0.059	0.005	0.059	0.05	0.068	
Washington Coast	0.042	0.004	0.042	0.035	0.049	0.081	0.006	0.081	0.071	0.091	
Interior Columbia (Su/F)	0.149	0.007	0.149	0.138	0.16	0.084	0.006	0.084	0.074	0.094	
Oregon Coast	0.024	0.003	0.024	0.019	0.029	0.024	0.004	0.024	0.018	0.03	
Other	0.052	0.005	0.052	0.044	0.06	0.05	0.005	0.05	0.042	0.06	

Appendix B35.—Page 2 of 2.

		AY 2	2019 (n=2)	,306)		AY 2020 $(n = 2,498)$						
			90% CI						90%	6 CI		
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%		
SEAK/TBR	0.315	0.008	0.315	0.302	0.327	0.227	0.007	0.227	0.216	0.238		
NCBC	0.070	0.006	0.070	0.060	0.080	0.061	0.006	0.061	0.052	0.071		
West Vancouver	0.315	0.009	0.315	0.300	0.330	0.254	0.008	0.254	0.240	0.268		
South Thompson	0.102	0.006	0.102	0.091	0.113	0.084	0.006	0.084	0.075	0.093		
Washington Coast	0.059	0.005	0.059	0.051	0.068	0.086	0.006	0.086	0.076	0.096		
Interior Columbia (Su/F)	0.072	0.006	0.072	0.063	0.081	0.163	0.007	0.163	0.151	0.175		
Oregon Coast	0.022	0.003	0.021	0.016	0.028	0.045	0.005	0.045	0.038	0.053		
Other	0.046	0.005	0.046	0.038	0.054	0.080	0.006	0.080	0.071	0.090		

		AY	2021 (n = 1,	,955)		AY 2022 $(n = 2,095)$						
				90%	6 CI				90%	6 CI		
Reporting group	Mean	SD	Median	5%	95%	Mean	SD	Median	5%	95%		
SEAK/TBR	0.248	0.009	0.248	0.234	0.263	0.304	0.009	0.304	0.290	0.318		
NCBC	0.071	0.007	0.071	0.060	0.084	0.071	0.007	0.071	0.059	0.083		
West Vancouver	0.227	0.010	0.227	0.210	0.244	0.174	0.008	0.174	0.161	0.188		
South Thompson	0.147	0.009	0.146	0.132	0.162	0.062	0.006	0.062	0.053	0.072		
Washington Coast	0.064	0.007	0.064	0.053	0.076	0.110	0.007	0.110	0.099	0.123		
Interior Columbia (Su/F)	0.141	0.009	0.141	0.127	0.156	0.168	0.008	0.168	0.155	0.182		
Oregon Coast	0.038	0.005	0.038	0.030	0.048	0.056	0.005	0.056	0.047	0.065		
Other	0.063	0.006	0.063	0.053	0.074	0.054	0.006	0.053	0.045	0.063		

Note: Reporting groups are described in Table 1.

Note: AY = Accounting year = October 1–September 30.