Freshwater Resource Investigations Near Greens Creek Mine

by

Katrina M. Kanouse and Evan Fritz

January 2020

Alaska Department of Fish and Game

Habitat Section

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in reports by the Habitat Section, and Divisions of Sport Fish and Commercial Fisheries. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figures or figure captions.

or recurrence or two res, union in	1180110001	inguit suprising.			
Weights and measures (metric)		General		Measures (fisheries)	
centimeter	cm	Alaska Administrative		fork length	FL
deciliter	dL	Code	AAC	mideye-to-fork	MEF
gram	g	all commonly accepted		mideye-to-tail fork	METF
hectare	ha	abbreviations	e.g., Mr., Mrs.,	standard length	SL
kilogram	kg		AM, PM, etc.	total length	TL
kilometer	km	all commonly accepted			
liter	L	professional titles	e.g., Dr., Ph.D.,	Mathematics, statistics	
meter	m		R.N., etc.	all standard mathematical	
milliliter	mL	at	@	signs, symbols and	
millimeter	mm	compass directions:		abbreviations	
		east	E	alternate hypothesis	H_A
Weights and measures (English)		north	N	base of natural logarithm	e
cubic feet per second	ft ³ /s	south	S	catch per unit effort	CPUE
foot	ft	west	W	coefficient of variation	CV
gallon	gal	copyright	©	common test statistics	$(F, t, \chi^2, etc.)$
inch	in	corporate suffixes:		confidence interval	CI
mile	mi	Company	Co.	correlation coefficient	
nautical mile	nmi	Corporation	Corp.	(multiple)	R
ounce	OZ	Incorporated	Inc.	correlation coefficient	
pound	lb	Limited	Ltd.	(simple)	r
quart	qt	District of Columbia	D.C.	covariance	cov
yard	yd	et alii (and others)	et al.	degree (angular)	0
,	<i>y</i> =	et cetera (and so forth)	etc.	degrees of freedom	df
Time and temperature		exempli gratia		expected value	E
day	d	(for example)	e.g.	greater than	>
degrees Celsius	°C	Federal Information	8	greater than or equal to	≥
degrees Fahrenheit	°F	Code	FIC	harvest per unit effort	- HPUE
degrees kelvin	K	id est (that is)	i.e.	less than	<
hour	h	latitude or longitude	lat. or long.	less than or equal to	≤
minute	min	monetary symbols	8	logarithm (natural)	_ ln
second	S	(U.S.)	\$, ¢	logarithm (base 10)	log
Second	3	months (tables and	Ψ, γ	logarithm (specify base)	log ₂ , etc.
Physics and chemistry		figures): first three		minute (angular)	1052, etc.
all atomic symbols		letters	Jan,,Dec	no data	ND
alternating current	AC	registered trademark	®	not significant	NS
ampere	A	trademark	TM	null hypothesis	H _o
calorie	cal	United States		percent	%
direct current	DC	(adjective)	U.S.	probability	P
hertz	Hz	United States of	0.5.	probability of a type I error	Г
		America (noun)	USA	(rejection of the null	
horsepower hydrogen ion activity	hp ~II	U.S.C.	United States	hypothesis when true)	
(negative log of)	pН	0.5.C.	Code	,	α
()		U.S. state	use two-letter	probability of a type II error	
parts per million	ppm		abbreviations	(acceptance of the null	ρ
parts per thousand	ppt,		(e.g., AK, WA)	hypothesis when false)	β
volta	‰ V		, ,	second (angular) standard deviation	
volts					SD
watts	W			standard error	SE
				variance	1 7
				population	Var
				sample	var

TECHNICAL REPORT NO. 19-01

FRESHWATER RESOURCE INVESTIGATIONS NEAR GREENS CREEK MINE

Ву

Katrina M. Kanouse

and

Evan Fritz

Alaska Department of Fish and Game Habitat Section, Region I 802 3rd Street, Douglas, Alaska 99824

January 2020

This investigation was fully financed by Hecla Greens Creek Mining Co.

Cover: Hawk Inlet Head Creek mouth at Hawk Inlet on May 15, 2018.

Technical Reports are available through the Alaska State Library, Alaska Resources Library and Information Services (ARLIS) and on the Internet: http://www.adfg.alaska.gov/index.cfm?adfg=habitat_publications.main. This publication has undergone editorial and peer review.

Note: Product names or specific company names used in this publication are included for completeness but do not constitute product endorsement. The Alaska Department of Fish and Game, in accordance with State of Alaska ethics laws, does not favor one group over another through endorsement or recommendation.

Alaska Department of Fish and Game, Habitat Section 802 3rd Street, Douglas, Alaska, 99824, USA

This document should be cited as:

Kanouse, K. M. and E. Fritz. 2020. Freshwater resource investigations near Greens Creek Mine. Alaska Department of Fish and Game, Technical Report No. 19-01, Douglas, AK.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:

ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G Habitat Section, 802 3rd Street, Douglas, Alaska 99824 (907) 465-4105

TABLE OF CONTENTS

	Page
LIST OF TABLES	i
LIST OF FIGURES	ii
LIST OF APPENDICES	ii
ACKNOWLEDGEMENTS	iii
EXECUTIVE SUMMARY	1
INTRODUCTION	2
Purpose	3
Aquatic Studies	
Study Area	
Hawk Inlet Head Creek	
Unnamed Creek	
Jimmy Green Creek	
Empire Creek	
Piledriver Creek	
Cannery Creek	
Tributary Creek	
Greens Creek	
METHODS	16
Sediment Composition and Element Concentrations	16
Resident Fish Element Concentrations	
RESULTS	
Sediment Composition and Element Concentrations.	
Resident Fish Element Concentrations	
REFERENCES CITED	
LIST OF TABLES	
Table	Page
1. 2018 sample sites.	
2. 2018 sediment sampling sites.	
3. 2018 sediment tests, analytes, and methods	
2018 resident fish sampling sites. Fresh water and marine sediment median element concentration comparisons	
6. Whole body Dolly Varden char median element concentration comparisons	
,,	

LIST OF FIGURES

Figur	re	Page
1.	Greens Creek Mine area map.	2
2.	2018 sampling site map.	
3.	Hawk Inlet Head Creek Site 2061.	
4.	Hawk Inlet Head Creek barrier falls.	
5.	Unnamed Creek, tidally influenced reach	
6.	Unnamed Creek channel braid.	
7.	Unnamed Creek tributary	7
8.	Jimmy Green Creek debris jam.	
9.	Jimmy Green Creek new channel.	8
10.	Jimmy Green Creek spawning gravel.	
11.	Empire Creek near tidal influence.	
12.	Empire Creek.	9
13.	Empire Creek	9
14.	Piledriver Creek.	
15.	Piledriver Creek, tidally influenced reach.	10
16.	Piledriver Creek.	
17.	Cannery Creek Site 37.	
18.	Cannery Creek Site 37.	
19.	Cannery Creek.	
20.	Zinc Creek and the barrier falls.	
21.	Zinc Creek above the falls.	
22.	Zinc Creek Site 371.	
23.	Tributary Creek Site 9.	
24.	Tributary Creek Site 1847.	
25.	Tributary Creek mouth.	
26.	Greens Creek Site 54.	
27.	Greens Creek.	
28.	Greens Creek.	
29.	Greens Creek Site 63A.	
30.	Greens Creek Site 63B.	
31.	Greens Creek new channel.	
32.	Sediment cadmium concentrations.	
33.	Sediment copper concentrations.	
34.	Sediment mercury concentrations.	
35.	Sediment lead concentrations.	
36.	Sediment selenium concentrations	
37.	Sediment zinc concentrations.	
38.	2018 whole body Dolly Varden char cadmium concentrations.	
39.	2018 whole body Dolly Varden char copper concentrations.	
40.	2018 whole body Dolly Varden char mercury concentrations	
41.	2018 whole body Dolly Varden char lead concentrations.	
42.	2018 whole body Dolly Varden char selenium concentrations	
43.	2018 whole body Dolly Varden char zinc concentrations.	27

LIST OF APPENDICES

APPENDIX A: ANADROMOUS WATERS CATALOG NOMINATIONS APPENDIX B: SEDIMENT DATA AND LABORATORY REPORTS APPENDIX C: FISH DATA AND LABORATORY REPORTS

ACKNOWLEDGEMENTS

Hecla Greens Creek Mining Co. provided financial support for this project. Environmental Manager Chris Wallace and Senior Environmental Engineer Dave Landes collaborated on study design. Mr. Landes provided field support and collected and handled the water samples, and Environmental Technician Gunner Fredheim provided transportation to sampling sites by skiff. Mr. Wallace and Mr. Landes reviewed the draft report.

Many Habitat Section staff contributed to this project. Former Southeast Regional Supervisor Jackie Timothy collaborated on study design, Habitat Biologist Greg Albrecht collected field data, former Habitat Biologist Nicole Legere verified data entry, and Habitat Biologist Bill Kane prepared the report for publication. Habitat Section Operations Manager Dr. Al Ott and Ms. Timothy reviewed and edited the report.

Thank you all for your contribution.

EXECUTIVE SUMMARY

In 2012, the Alaska Department of Environmental Conservation (DEC) listed the tidal and submerged lands around the Greens Creek Mine ore concentrate loading dock on the Clean Water Act Section 303(d) Impaired Waters List for elevated cadmium, copper, mercury, lead, and zinc in sediments. In 2017, DEC published a total maximum daily load (TMDL) for the site, and Site S-3 at the head of Hawk Inlet, recommending additional data collection to characterize element concentrations in water, sediment, and fish in fresh water bodies draining to Hawk Inlet at undisturbed sites and sites near historic and current hard rock mining activities (DEC 2017).

During 2018, Alaska Department of Fish and Game (ADF&G) habitat biologists sampled sediment and resident Dolly Varden char^a Salvelinus malma at 12 sites in nine streams draining to Hawk Inlet for total concentrations of cadmium, copper, lead, mercury, and zinc.^b Hecla Greens Creek Mining Co. (Hecla) staff sampled water at each site. Of the 12 sample sites, 6 sites were in streams where no known hard rock mining has occurred, 4 sites were downstream of historic or active hard rock mining, and 2 sites were upstream of active hard rock mining.

We found similar sediment median cadmium, copper, lead, mercury, and zinc concentrations among sites undisturbed and near historic and active hard rock mining activities. Many sediment cadmium, copper, and zinc concentrations exceeded the National Oceanic and Atmospheric Administration's freshwater sediment toxicity screening guidelines (Buchman 2008). The range of freshwater sediment median element concentrations was similar to the range of medians observed across Hawk Inlet 1984–2015 (DEC 2017)^c, indicative of area mineralization, except median copper, lead, mercury, and zinc concentrations were elevated at the ore concentrate loading dock and median mercury concentration was elevated at Empire Creek due to known contaminants. At the head of Hawk Inlet, most median cadmium, copper, lead, mercury, and zinc concentrations in freshwater sediments were similar or greater than medians observed at Hawk Inlet Site S-3 1984–2015 (DEC 2017).

We found similar median copper, lead, and zinc concentrations in fish among sites undisturbed and near historic and active hard rock mining activities. Median cadmium concentrations were greater among the Greens Creek fish samples, above and below active mining operations, and median mercury concentration was greater among the Tributary Creek fish samples. Comparing the 2018 Greens Creek and Tributary Creek fish element concentration data with the 2001–2017 biomonitoring data (Zutz 2018a), the 2018 Greens Creek fish median element concentrations were greater than the 2001-2017 medians, and the 2018 Tributary Creek fish median element concentrations were similar or less than the 2001-2017 medians, except the 2018 median mercury concentration was greater.

Where present.

Evan Fritz, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: 2018 GCM freshwater resource investigations; dated 11/9/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd Street, Douglas, AK.

Six sample sites: S-1 near the Greens Creek Mine outfall 002 wastewater discharge mixing zone; S-2 near the mouth of Hawk Inlet (reference site); S-3 near the head of Hawk Inlet (reference site with inherent variability); S-4 near the ore concentrate loading dock; and S-5N and S-5S below the ore concentrate loading dock.

INTRODUCTION

The Greens Creek Mine is located about 29 km southwest of Juneau by air near Hawk Inlet on the west side of Admiralty Island, within the Tongass National Forest and the Admiralty Island National Monument (USFS 2013). The mine has operated since 1989, except between 1993 and 1996 when the mine was temporarily closed, and exports gold, lead, silver, and zinc concentrates. Hecla, a subsidiary of Hecla Mining Co. of Coeur d'Alene, ID, has owned and operated the mine since April 2008.

Most mine infrastructure is located in two drainages that support resident and anadromous fish: the dry-stack tailings disposal facility (TDF) at the headwaters of Tributary Creek, and the mill, mine facilities, and waste rock storage areas adjacent to Greens Creek (Figure 1).

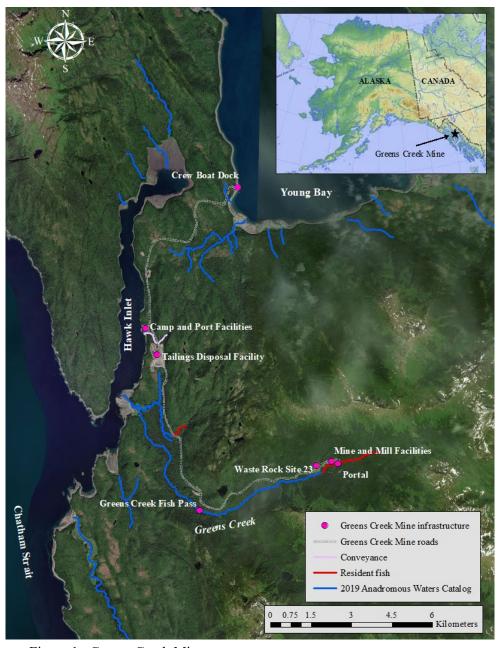


Figure 1.-Greens Creek Mine area map.

In 1989, when former mine owner Greens Creek Mining Co. first attempted to load a barge with ore concentrate, the conveyor belt system broke spilling concentrate into Hawk Inlet. In 1994, the company used a suction dredge to remove about 420 m³ of material, however remnant debris from a cannery that operated at the site since the early 1900s and burned down in 1974 complicated their cleanup efforts (DEC 2017, USFS 2003).^d

Cadmium, copper, lead, mercury, and zinc concentrations in sediments at the site continue to exceed marine sediment guidelines developed by the National Oceanic and Atmospheric Administration (Buchman 2008), and in 2012, DEC listed 1.12 acres of the tidal and submerged lands around the ore concentrate loading dock on the Clean Water Act Section 303(d) Impaired Waters List as a Category 5 water body. In 2017, DEC (2017) published the TMDL for the area and included an area of concern at the head of Hawk Inlet where cadmium, copper, mercury and zinc also exceed the marine sediment guidelines.

The TMDL recommends collecting data on freshwater inputs to Hawk Inlet, specifically characterizing element concentrations in water, sediment, and fish in areas undisturbed and disturbed by historic and active mining operations (DEC 2017). In 2018, Hecla and Habitat staffs developed and implemented a plan to investigate sediment and whole body Dolly Varden char element concentrations in several water bodies draining to Hawk Inlet in response to the recommendation; Hecla staff concurrently sampled water and will report those data separately. In this report, we present the sampling results and compare the data with sediment and whole body Dolly Varden char element concentrations data collected by ADF&G, including Greens Creek Mine aquatic biomonitoring data (Zutz 2018a) and baseline Glacier Creek aquatic studies data for the Palmer Exploration Project (Legere and Kanouse 2018), a hard rock mineral exploration project located about 55 km north of Haines on the same volcanogenic massive sulfide belt as the Greens Creek Mine.

PURPOSE

The purpose of this investigation and technical report is to document fish use and sediment and fish element concentrations in water bodies draining to Hawk Inlet near the Greens Creek Mine.

AQUATIC STUDIES

Between May 15 and August 8, 2018, we collected sediment samples at 12 locations and fish samples at nine locations in water bodies draining to Hawk Inlet near the Greens Creek Mine (Table 1; Figure 2).

Hecla annually voluntarily removes lead acid batteries and other debris disposed at the Hawk Inlet site during cannery operation (C. Wallace, Environmental Manager, Hecla, Juneau, personal communication).

^e For contaminated sediments; the marine water column meets Alaska water quality standards (DEC 2017).

Table 1.–2018 sample sites (WGS84 datum).

Sample Site	Sample Date	Lattitude	Longitude
Hawk Inlet Head Creek Site 2061	05/15/18	58.1939	-134.7414
Unnamed Creek Site 2062	05/15/18	58.1892	-134.7523
Jimmy Green Creek Site 2063	05/15/18	58.1767	-134.7595
Empire Creek Site 2064	05/16/18	58.1693	-134.7712
Piledriver Creek Site 2065	05/16/18	58.0708	-134.7673
Zinc Creek Site 371	05/16/18	58.0910	-134.7358
Cannery Creek Site 37	07/12/18	58.1220	-134.7450
Tributary Creek Site 9	07/12/18	58.1047	-134.7449
Tributary Creek Site 1847	07/12/18	58.1018	-134.7458
Greens Creek Site 54	07/10/18	58.0785	-134.6473
Greens Creek Site 63A	07/11/18	58.0829	-134.6295
Greens Creek Site 63B	08/08/18	58.0835	-134.6255

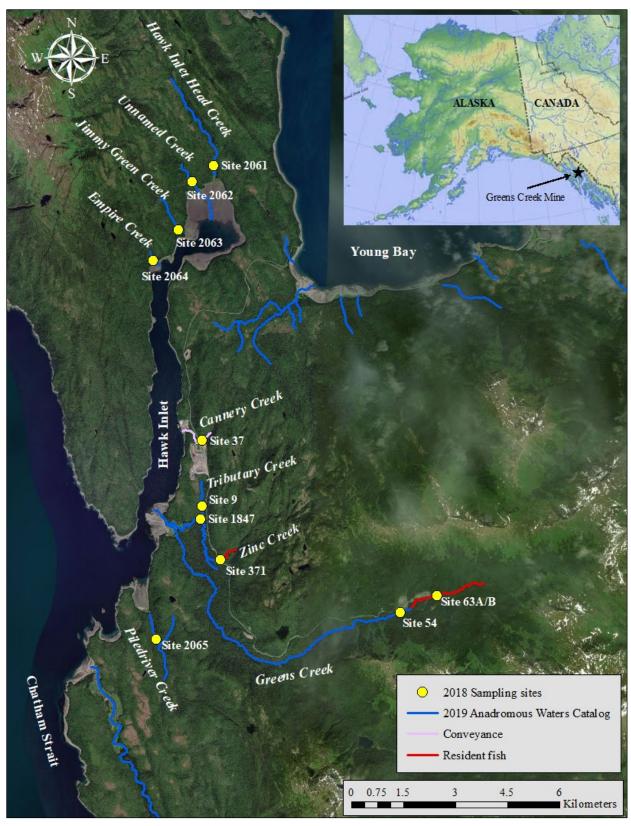


Figure 2.–2018 sampling site map.

STUDY AREA

Hawk Inlet Head Creek

Hawk Inlet Head Creek (Stream No. 112-65-10150; Johnson and Blossom 2019), the northern most drainage to Hawk Inlet, provides habitat for chum salmon *Oncorhynchus keta* and pink salmon *O. gorbuscha* (Figure 3). We captured juvenile coho salmon *O. kisutch* and Dolly Varden char in the water body. About 320 m upstream of the mouth, a 9 m waterfall prevents anadromous fish migration (Figure 4). Below the falls, the stream gradient is 3–4%, gravel substrate provides salmon spawning habitat, and we observed a tributary of 15–20% gradient about 18 m downstream of the falls on river right.

We collected sediment and fish samples about 250 m upstream of tidal influence at Hawk Inlet Head Creek Site 2061 where the stream is characterized as a small moderate gradient mixed control channel (Paustian 2010).

Figure 3.-Hawk Inlet Head Creek Site 2061.

Figure 4.-Hawk Inlet Head Creek barrier falls.

Nomination No. 09-153; we submitted Nomination No. 19-503 to correct the stream course and include coho salmon rearing (Appendix A).

6

Unnamed Creek

Unnamed Creek (Stream No. 112-65-10140; Johnson and Blossom 2019), located about 600 m southwest of Hawk Inlet Head Creek, provides habitat for chum and pink salmon.^g We captured juvenile coho and pink salmon, cutthroat trout *O. clarkii*, and Dolly Varden char in the water body. Low-gradient gravel substrate provides salmon spawning habitat near the stream mouth (Figure 5). About 60 m upstream of the mouth, stream gradient increases to 3–5% and large gravel and cobble substrates are dominant. About 450 m upstream of the mouth, the channel splits into two braids that rejoin near tidal influence (Figure 6). We also observed a stagnant tributary about 120 m upstream of the mouth on river right with iron floc prevalent (Figure 7).

We collected sediment and fish samples about 200 m upstream of tidal influence at Unnamed Creek Site 2062 where the stream is characterized as a small moderate gradient mixed control channel (Paustian 2010).

Figure 5.-Unnamed Creek, tidally influenced reach.

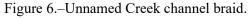


Figure 7.—Unnamed Creek tributary.

Nomination No. 84-710; we submitted Nomination No. 19-506 to correct the lower stream course and include coho salmon rearing (Appendix A).

Jimmy Green Creek

Jimmy Green Creek (Stream No. 112-65-10120; Johnson and Blossom 2019), located about 1,300 m southwest of Unnamed Creek, provides habitat for chum salmon. We captured Dolly Varden char in the water body. About 60 m upstream of tidal influence, a 2.5 m tall debris jam (Figure 8) recently caused the stream to flood through the forest on both sides, creating three new channels (Figure 9); upstream fish passage through the developing channels is limited to the 0.5–1.2 m wide main channel. Where the channels converge, salmonid spawning gravel and rearing habitats are present (Figure 10). About 220 m upstream of tidal influence, the channel gradient increases to 15% and steepens to greater than 25% about 380 m upstream from the mouth, indicating the upper extent of anadromous fish habitat.

We collected sediment and fish samples about 200 m upstream of tidal influence at Jimmy Green Creek Site 2063 where the stream is characterized as a low incision high gradient contained channel (Paustian 2010).

Figure 8.-Jimmy Green Creek debris jam.

Figure 9.–Jimmy Green Creek new channel.

Figure 10.—Jimmy Green Creek spawning gravel.

h Nomination No. 09-153; we submitted Nomination No. 19-504 to correct the stream course (Appendix A).

Empire Creek

Empire Creekⁱ (Stream No. 112-65-10110; Johnson and Blossom 2019), located about 1,300 m southwest of Jimmy Green Creek, provides habitat for chum and pink salmon.^j We captured juvenile coho and pink salmon, rainbow trout *O. mykiss*, and Dolly Varden char in the water body. At the mouth, the stream gradient is 3–4% and the substrate is composed of shale cobble with gravel, providing salmon spawning habitat (Figure 11). About 80 m upstream of tidal influence, the stream gradient increases to 5% and the streambed contains cobble and boulder substrates; about 100 m upstream of tidal influence, the stream gradient increases to 12–18% and several debris jams and step falls prevent anadromous fish migration (Figures 12, 13).

Given the limited fish habitat available for sampling, we collected sediment and fish samples within 100 m of tidal influence at Empire Creek Site 2064 where the stream is characterized as a small moderate gradient mixed control channel (Paustian 2010).

Figure 11.-Empire Creek near tidal influence.

Figure 13.–Empire Creek.

Figure 12.–Empire Creek.

Named for the abandoned Empire Mine that operated between 1931 and 1942 near the creek headwaters at 300 m elevation. In 2014, U.S. Forest Service, DEC, and ADF&G staffs studied contaminated soils at the site and aquatic resources in Empire Creek, finding arsenic, cadmium, copper, lead, mercury, and nickel concentrations in lower Empire Creek sediment samples exceeding background concentrations and screening guidelines (Buchman 2008), and aluminum, cadmium, iron, nickel, and zinc concentrations in lower Empire Creek water samples exceeding background concentrations and aquatic life criteria. Portage, Inc. (2015) summarizes the Empire Mine history, results from U.S. Forest Service site investigations completed in the 1990s, and the 2014 sampling results.

Nomination No. 87-210; we submitted Nomination No. 19-502 to correct the stream course and include coho salmon rearing (Appendix A).

Piledriver Creek

Piledriver Creek (Stream No. 112-65-10280; Johnson and Blossom 2019), the southernmost drainage near the mouth of Hawk Inlet, provides habitat for pink salmon. We captured juvenile coho and pink salmon, cutthroat trout, and Dolly Varden char in the water body. Throughout the lower 800 m of Piledriver Creek, the stream gradient is 1–2%, and we observed many remnant pink salmon redds from the prior year (Figures 14–16). About 200 m upstream of tidal influence, an unnamed tributary (Stream No. 112-65-10280-2006; Johnson and Blossom 2019) joins Piledriver Creek on river right and provides habitat for pink salmon.

We collected sediment and fish samples about 400 m upstream of tidal influence at Piledriver Creek Site 2065 where the stream is characterized as a narrow low gradient flood plain channel (Paustian 2010).

Figure 14.-Piledriver Creek.

Figure 15.—Piledriver Creek, tidally influenced reach.

Figure 16.-Piledriver Creek.

Nomination # 09-153; we submitted Nomination No. 19-505 to correct the lower stream course and include coho salmon rearing (Appendix A).

Cannery Creek

Cannery Creek, which crosses the Greens Creek Mine B Road near the TDF, does not support resident or anadromous fish populations though suitable resident rearing, spawning, and overwintering habitats exist.¹ Bedrock falls near the upper extent of tidal influence prevent anadromous fish migration. Between the falls and the B Road, mean streambed gradient is 7% and debris and historic timber dams from cannery operations remain in the creek. Streambed gradients range 8–15% within 100 m upstream of the road.

We collected sediment samples within 50 m upstream of the B Road at Cannery Creek Site 37 (Figures 17–19), upstream of mine influence, where the stream is characterized as a low incision high gradient contained channel (Paustian 2010).

Figure 17.-Cannery Creek Site 37.

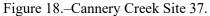


Figure 19.-Cannery Creek.

Greg Albrecht, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Tributary and Cannery Creeks fish resource investigations trip report; dated 10/8/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd Street, Douglas, AK.

Zinc Creek

Zinc Creek (Stream No. 112-65-10230; Johnson and Blossom 2019), a tributary of Greens Creek that crosses the Greens Creek Mine B Road, provides habitat for chum, coho, and pink salmon and Dolly Varden char. Under the bridge, about 1.2 km upstream of tidal influence, a 7.5–9 m waterfall prevents anadromous fish migration (Figure 20). Above the falls, the streambed is composed of bedrock, cobble, and boulders with pockets of gravel, the gradient ranges 8–15% within 150 m of the falls (Figures 21, 22), and the stream supports a resident Dolly Varden char population.^m

We collected sediment and fish samples within 50 m above the falls at Zinc Creek Site 371, upstream of the road and mine influence, where the stream is characterized as a low incision high gradient contained channel (Paustian 2010).

Figure 20.–Zinc Creek and the barrier falls.

Figure 22.-Zinc Creek Site 371.

Mate Kanouse and Benjamin Brewster, Habitat Biologists, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Zinc Creek investigation trip report; dated 9/21/2012. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd Street, Douglas, AK.

Tributary Creek

Tributary Creek (Stream No. 112-65-10230-2007; Johnson and Blossom 2019), a tributary of Zinc Creek, provides habitat for coho and pink salmon and Dolly Varden char. We captured juvenile coho salmon, Dolly Varden char, and sculpin *Cottus* sp. The Greens Creek Mine TDF is located at the original headwaters of the creek, and ADF&G has completed annual aquatic biomonitoring studies at Tributary Creek Site 9 since 2001, also finding cutthroat in the system (Figure 23; Zutz 2018a). Streambed gradient varies 1–2% and organics and sand substrates are common throughout the 1.6 km stream; spawning habitat for pink salmon and small salmonids is present near the mouth (Figures 24, 25).°

We collected sediment and fish samples at Tributary Creek Site 9, and sediment at Site 1847, where the stream is characterized as a narrow low gradient flood plain channel (Paustian 2010).

Figure 23.-Tributary Creek Site 9.

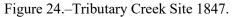


Figure 25.—Tributary Creek mouth.

Johnny Zutz, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: 2018 Greens Creek Mine aquatic biomonitoring; dated 9/13/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd Street, Douglas, AK.

Oreg Albrecht, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Tributary and Cannery Creeks fish resource investigations trip report; dated 10/8/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd Street, Douglas, AK.

^p We did not sample fish at Tributary Creek Site 1847 given its proximity to Zinc Creek and unknown fish residency time in Tributary Creek.

Greens Creek

Greens Creek (Stream No. 112-65-10240; Johnson and Blossom 2019) provides habitat for chum, coho, and pink salmon, and Dolly Varden char. Greens Creek flows adjacent to Greens Creek Mine development and operations,^q and Hecla maintains a concrete weir fish pass in a natural bedrock chute about 5.6 km upstream of the mouth that would otherwise prevent anadromous fish migration. Since 2001, ADF&G has completed annual aquatic biomonitoring studies at Greens Creek Site 54 and captured juvenile coho salmon and Dolly Varden char (Zutz 2018a); we also captured juvenile coho salmon and Dolly Varden char.^r Streambed gradient varies 2–4% and cobble is the dominant substrate at Site 54.

We collected sediment and fish samples at Greens Creek Site 54 (Figures 26–28) where the stream is characterized as a medium width mixed control channel (Paustian 2010).

Figure 26.-Greens Creek Site 54.

Figure 28.-Greens Creek.

Such as the portal, mill facilities, waste rock storage sites, and storm water ponds.

Johnny Zutz, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: 2018 Greens Creek Mine aquatic biomonitoring; dated 9/13/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd Street, Douglas, AK.

Upstream of mine development and operations,^s ADF&G completed annual aquatic biomonitoring studies capturing Dolly Varden char 2001–2017 at Greens Creek Site 48 (Zutz 2018a), a reference sampling site for comparing data collected downstream of mining at Greens Creek Site 54.^t In fall 2017, river evulsion bypassed Site 48, and in July 2018, ADF&G established and sampled aquatic resources at Greens Creek Site 63 instead, within about 100 m downstream of Site 48, also capturing Dolly Varden char.^{u,v} Future sampling at the site will depend on site stability and change observed each year.

We collected sediment and fish samples at Greens Creek Site 63 (Site 63A; Figure 29), and sediment upstream of the newly carved channel (Site 63B; Figures 30, 31), where the stream is characterized as a medium width mixed control channel (Paustian 2010).

Figure 29.-Greens Creek Site 63A.

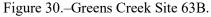


Figure 31.—Greens Creek new channel.

s Except mineral exploration drilling.

t Hecla's infiltration gallery concrete weir in Greens Creek near the mine portal prevents upstream fish migration.

^u Kate Kanouse and Johnny Zutz, Habitat Biologists, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: GCM Greens Creek sampling sites 48 and 63; dated 9/6/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd Street, Douglas, AK.

V Johnny Zutz, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: 2018 Greens Creek Mine aquatic biomonitoring; dated 9/13/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd Street, Douglas, AK.

W To compare sediment element concentrations above and below the new channel; Site 63B is located downstream of the Big Sore Creek tributary confluence and upstream of the new Greens Creek channel.

We did not sample fish at Greens Creek Site 63B as those fish are of the same population at Greens Creek Site 63A.

METHODS

SEDIMENT COMPOSITION AND ELEMENT CONCENTRATIONS

Sediment element concentrations are influenced by a variety of factors, such as geochemical composition and weathering within the watershed, sediment grain size, organic content, and development (Tchounwou et al. 2012). Subsequently, sediment element concentrations influence benthic aquatic productivity.

We sampled fine sediments for total organic carbon, total volatile solids, total solids, total sulfide, and total concentrations of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), selenium (Se), and zinc (Zn) at 12 sites in water bodies draining to Hawk Inlet (Table 2).

	<u> </u>	
No known mining	Downstream of mining	Upstream of mining
Hawk Inlet Head Creek Site 2061	Empire Creek Site 2064	Greens Creek Site 63A
Unnamed Creek Site 2062	Tributary Creek Site 9	Greens Creek Site 63B
Jimmy Green Creek Site 2063	Tributary Creek Site 1847	
Piledriver Creek Site 2065	Greens Creek Site 54	
Zinc Creek Site 371		

Table 2.–2018 sediment sampling sites.

Sample Collection and Analysis

Cannery Creek Site 37

Wearing latex gloves, we opportunistically collected 1 sample each from submerged sand and silt deposits and retained 3 replicate samples in glass jars for composition and element analyses. We stored the samples in a camp refrigerator while onsite, and shipped the sediment samples in coolers with ice packs via overnight air freight to the ALS Environmental lab in Kelso, WA.

ALS Environmental measured particle size, total solids, total volatile solids, total organic carbon, total sulfide, and total concentrations of Cd, Cu, Hg, Pb, Se, and Zn, on a dry-weight basis using methods listed in Table 3. The laboratory provided Tier II quality control information, including results for matrix spikes, sample blanks, and sample duplicates.

Test Description	Analyte	Method
Standard test method for particle-size analysis of soils	Particle size determination	ASTM D422M
Total solids on liquids, modified for solids	Total solids	EPA 160.3 Modified
Total volatile solids, modified for solids	Total volatile solids	EPA 160.4 Modified
Puget Sound Estuary Program sediment total organic carbon	Total organic carbon	PSEP TOC
Puget Sound Estuary Program sediment sulfide	Total sulfide	PSEP Sulfide
Mercury in solid or semisolid waste	Hg	EPA 7471B
Determination of trace elements in waters and wastes by ICP/M	S Cd, Cu, Pb, Se, Zn	EPA 200.8

We incidentally collected the Se concentration data; Se was not an element of concern listed in the TMDL (DEC 2017).

Data Presentation

We present the minimum, median, and maximum sediment element concentrations by site in figures, and median concentration data comparisons in a table, using mean values when sample duplicate data are available and the method reporting limits for element concentrations not detected.

We compare the element concentration data with the 2016–2018 Glacier Creek sediment data (Legere and Kanouse 2018), and with the threshold effects concentrations (TEC) and the probable effects concentrations (PEC) sediment toxicity guidelines developed by the National Oceanic and Atmospheric Administration (Buchman 2008). The guidelines are based on results of controlled laboratory bioassays, wherein element concentrations below the TECs are not expected to adversely affect aquatic life survival and growth, and element concentrations above the PECs are expected to adversely affect aquatic life survival and growth more often than not (MacDonald et al. 2000). Appendix B contains the sediment element concentrations data in tables and the 2018 laboratory reports.

RESIDENT FISH ELEMENT CONCENTRATIONS

Heavy metals bioavailability and bioaccumulation depends on physical and chemical factors and interactions among biological communities (Tchounwou et al. 2012). Similar to other studies in Alaska (Legere and Kanouse 2018, Legere and Timothy 2016, Zutz 2018a), we sampled resident Dolly Varden char and measured whole body concentrations of Cd, Cu, Pb, Hg, Se, and Zn in water bodies draining to Hawk Inlet (Table 4).

Table 4.–2018 resident fish sampling sites.

	• •	
No known mining	Downstream of mining	Upstream of mining
Hawk Inlet Head Creek Site 2061	Empire Creek Site 2064	Greens Creek Site 63A
Unnamed Creek Site 2062	Tributary Creek Site 9	
Jimmy Green Creek Site 2063	Greens Creek Site 54	
Piledriver Creek Site 2065		
Zinc Creek Site 371		

Note: Greens Creek Site 63A is downstream of the newly carved river channel.

Sample Collection and Analysis

We captured fish using a Smithroot LR-24 backpack electrofisher and retained 6 whole body Dolly Varden char samples in each water body. We attempted to only retain fish measuring 90–130 mm FL as other Southeast Alaska Dolly Varden char sampling programs require (Legere and Timothy 2016, Timothy and Kanouse 2014, Zutz 2018a), however we found few fish in several water bodies and retained fish measuring 81–155 mm FL. A 90 mm fish generally provides the 5 g minimum weight requirement for laboratory testing, while a 130 mm fish is 2–3 years old and young enough to reasonably conclude it is resident. We retained fish as they were captured, and each sample contained only one fish.

We wore latex gloves when handling fish, placed each fish in an individually labeled plastic bag, and measured FL to the nearest 1 mm. We placed samples from each site in a larger plastic bag labeled with the sample location. We stored the samples in a cooler with frozen icepacks during

-

Except, at biomonitoring sites Tributary Creek Site 9, Greens Creek Site 54, and Greens Creek Site 63A we captured fish using baited minnow traps and retained 10 samples per the Freshwater Monitoring Plan (Hecla 2014).

transport, in a camp freezer while onsite, and in a -20 °C freezer in the ADF&G Douglas laboratory. Upon returning to the lab, we measured fish weight to the nearest 0.1 g in the sample bag and corrected for bag weight.

We shipped the samples to ALS Environmental in Kelso, WA in a cooler with frozen icepacks via overnight air freight and maintained written chain of custody documentation. ALS Environmental measured total concentrations of silver, a Cd, Cu, Pb, Hg, Se, and Zn in each sample on a dry-weight basis, following method EPA 1631E (Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry) for Hg, and method EPA 200.8 for the other elements. The laboratory provided Tier II quality control information including results for sample duplicates and sample blanks, matrix spikes, and standard reference materials.

Data Presentation

We present the minimum, median, and maximum whole body Dolly Varden char element concentrations by site in figures, and median concentration data comparisons in a table, using mean values when sample duplicate data are available and the method reporting limits for element concentrations not detected.

We compare the data with the 2001–2017 biomonitoring data collected per Hecla's (2014) Freshwater Monitoring Plan (Zutz 2018a)^{bb}, the 2016–2018 whole body Dolly Varden char data collected at Glacier Creek (Legere and Kanouse 2018), and the 2014 Empire Creek whole body Dolly Varden char data collected by ADF&G Habitat staff^{cc}. Appendix C contains the fish element concentrations data for each sample in tables and the 2018 laboratory reports.

_

^{aa} We obtained silver concentration data as required in the Freshwater Monitoring Plan (Hecla 2014) for the annual aquatic biomonitoring whole body Dolly Varden char samples. The data are included in the laboratory reports in Appendix C, however we do not report silver concentration data for this investigation.

Excluding the 2012 Cu data as we suspect those fish samples were contaminated by the laboratory, given the above normal Cu concentrations observed at all sites that year.

Gordon Willson-Naranjo and Benjamin Brewster, Habitat Biologists, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Empire Mine investigation Stream No. 112-65-10110; dated 7/24/2015. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd Street, Douglas, AK.

RESULTS

SEDIMENT COMPOSITION AND ELEMENT CONCENTRATIONS

The 2018 sediment samples were predominantly composed of sand; the Tributary Creek Site 9, Zinc Creek, and Cannery Creek samples contained the coarsest material. Sulfide was not detected in any of the samples, and total organic carbon varied among sites with the greatest percentage observed in the Empire Creek samples.

We found similar sediment median Cd, Cu, Hg, Pb, and Zn concentrations among sites undisturbed and near historic and active hard rock mining activities. Figures 32–37 present the 2018 sediment element concentrations and the 2016–2018 Glacier Creek sediment data (Legere and Kanouse 2018)^{dd} with the National Oceanic and Atmospheric Administration's freshwater sediment toxicity screening guidelines (Buchman 2008)^{ee}, and show:

- Cd concentrations exceeding the TEC value at many sample sites, and one sample from Zinc Creek exceeding the PEC value;
- Cu concentrations exceeding the TEC value at all sample sites, except at Cannery Creek and Tributary Creek Site 1847;
- Hg concentrations exceeding the TEC value at Empire Creek;
- Pb concentration in one sample at Greens Creek Site 63A exceeding the TEC value, and one sample at Zinc Creek exceeding the PEC value; and
- Zn concentrations exceeding the TEC value at many sample sites, and one sample each from Zinc Creek and Greens Creek Site 63A exceeding the PEC value.

Comparing the 2018 aquatic biomonitoring site sediment data to the 2013 sample results for each site (Kanouse and Brewster 2014)^{ff,gg}, we found the 2013 sample concentrations for:

- Tributary Creek Site 9 within the range of the 2018 concentrations, except the Se concentration was lower:
- Greens Creek Site 54 greater than the 2018 concentrations, except the Hg and Zn concentrations were lower; and
- Greens Creek Site 48 had similar Cd and Se concentrations compared to Site 63B, a greater Cu concentration, and lower Pb, Hg, and Zn concentrations.

We found greater Cu, Hg, Pb, and Se concentrations among the 2018 Empire Creek sediment samples compared to the 2014 sediment samples, and similar Cd concentrations. hh,ii

dd Sample size n=22.

ee Guidelines are not published for Se (Buchman 2008).

Of note, we used a 1.7 mm sieve to avoid coarse material while collecting the 2013 sediment samples; we no longer sieve sediment samples to ensure the samples represent natural conditions (Zutz 2018b).

In 2014, we sampled five tributaries to Greens Creek near sites 48 and 54 for the same elements, and found greater concentrations in tributaries compared to the 2013 Greens Creek sites 54 and 48 results (Kanouse 2015).

Alaska Department of Environmental Conservation Division of Water, Contaminated Sites Program. Trip Report: August 6–7, 2014 USFS Empire Mine, Admiralty Island, Alaska. Unpublished document, can be obtained from the Contaminated Sites Program Manager, DEC Division of Spill Prevention and Response, 555 Cordova Street, Anchorage, AK.

DEC staff collected random sediment samples using a trowel and the samples included larger particle sizes than the 2018 sediment samples; the DEC Environmental Health laboratory in Anchorage, AK analyzed the 2014 samples using EPA method 6020.

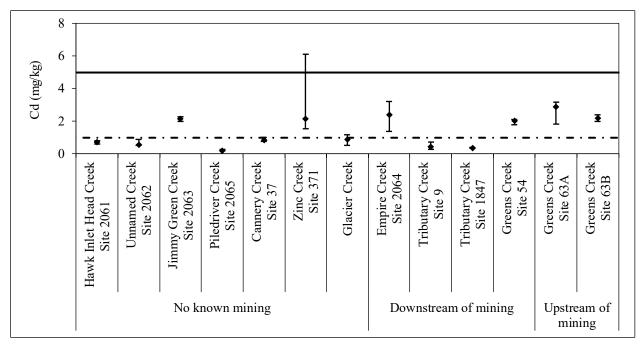


Figure 32.—Sediment cadmium concentrations.

Note: Minimum, median (•), and maximum concentrations presented. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008).

Note: Including the 2016–2018 Glacier Creek data (Legere and Kanouse 2018).

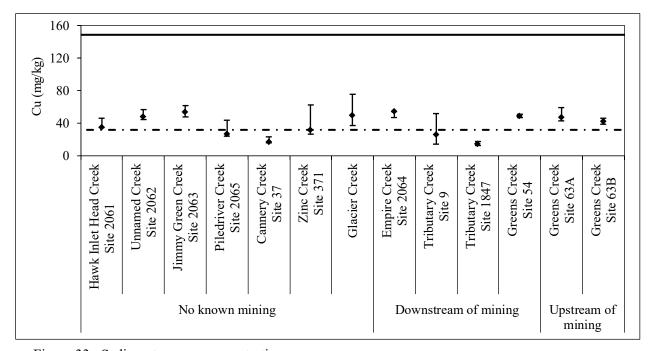


Figure 33.—Sediment copper concentrations.

Note: Minimum, median (•), and maximum concentrations presented. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008).

Note: Including the 2016–2018 Glacier Creek data (Legere and Kanouse 2018).

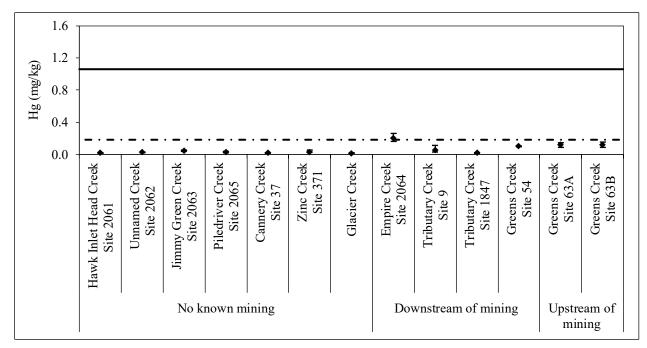


Figure 34.—Sediment mercury concentrations.

Note: Minimum, median (•), and maximum concentrations presented. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008).

Note: Including the 2016–2018 Glacier Creek data (Legere and Kanouse 2018).

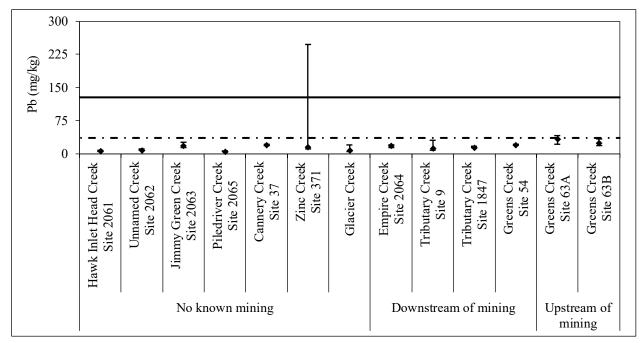


Figure 35.—Sediment lead concentrations.

Note: Minimum, median (•), and maximum concentrations presented. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008).

Note: Including the 2016–2018 Glacier Creek data (Legere and Kanouse 2018).

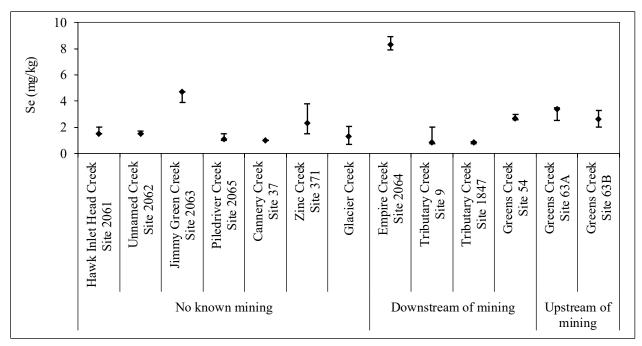


Figure 36.—Sediment selenium concentrations.

Note: Minimum, median (♦), and maximum concentrations presented. The TEC and PEC for Se in freshwater sediments are not published in Buchman (2008).

Note: Including the 2016–2018 Glacier Creek data (Legere and Kanouse 2018).

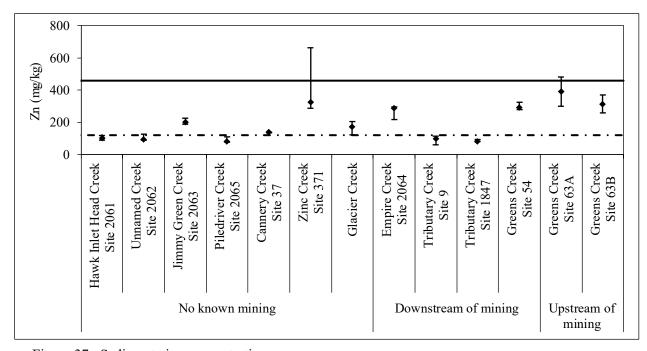


Figure 37.—Sediment zinc concentrations.

Note: Minimum, median (•), and maximum concentrations presented. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008).

Note: Including the 2016–2018 Glacier Creek data (Legere and Kanouse 2018).

In Table 5, we compare the freshwater sediment element concentrations data to the 1984–2015 Hawk Inlet sediment element concentrations data summarized in DEC (2017), finding the range of median Cd, Cu, Hg, Pb, and Zn concentrations generally similar among the freshwater and marine data sets, except at the ore concentrate loading dock where median Cu, Hg, Pb, and Zn concentrations were elevated, and at Empire Creek where the median Hg concentration also was elevated. Excluding the ore concentrate loading dock data, we found greater median Cd, Cu, Hg, Pb, and Zn concentrations in the freshwater sediments than in the marine sediments.

At the head of Hawk Inlet, the Jimmy Green Creek sediment median Cd, Cu, Pb, and Zn concentrations were greater than the Site S-3 marine sediment medians, and the Hawk Inlet Head Creek and Unnamed Creek sediment median Cd, Cu, Pb, and Zn concentrations were generally similar to the Site S-3 marine sediment medians; Hg concentrations were low or undetectable in the Jimmy Green Creek, Unnamed Creek, and Hawk Inlet Head Creek sediment samples.

Table 5.—Fresh water and marine sediment median element concentration comparisons.

	Median concentration (mg/kg dry weight)					
	Data Years	Cd	Cu	Hg	Pb	Zn
2018 Fresh Water Sample Data	_					
Hawk Inlet Head Creek Site 2061	2018	0.70	35.1	0.021	7.2	103
Unnamed Creek Site 2062	2018	0.53	48.2	0.030	8.3	93
Jimmy Green Creek Site 2063	2018	2.13	53.4	0.044	19.7	201
Piledriver Creek Site 2065	2018	0.21	26.4	0.029	5.2	81
Cannery Creek Site 37	2018	0.85	16.5	0.024	20.5	140
Zinc Creek Site 371	2018	2.13	31.1	0.030	15.9	325
Empire Creek Site 2064	2018	2.39	54.5	0.204	19.4	288
Tributary Creek Site 9	2013, 2018	0.41	20.8	0.045	12.5	83
Tributary Creek Site 1847	2018	0.36	14.6	0.023	14.7	83
Greens Creek Site 54	2013, 2018	2.05	49.7	0.103	21.6	287
Greens Creek Site 63A	2018	2.86	46.7	0.126	34.7	393
Greens Creek Site 63B	2018	2.18	42.5	0.125	25.1	314
Greens Creek Site 48	2013	1.84	60.8	0.048	12.8	232
Marine Data Comparisons						
Hawk Inlet Outfall 002 Site S-1	1984–2015	0.15	14.9	0.03	6.6	94.2
Hawk Inlet Mouth Site S-2	1984-2015	0.13	9.5	0.02	2.0	41.0
Hawk Inlet Head Site S-3	1984-2015	0.67	35	0.07	13.2	121
Hawk Inlet Cannery Site S-4	1986-2015	0.30	20.7	0.03	23.6	65.4
Hawk Inlet Dock Site S-5N	1989–2015	2.00	105	0.20	288	471
Hawk Inlet Dock Site S-5S	1994-2015	2.89	80.7	0.28	267	707

Note: The 2013 Tributary Creek Site 9 and Greens Creek sites 54 and 48 data are in Kanouse and Brewster (2014) and n=1 for each element, each site. The Hawk Inlet data is summarized in DEC (2017) and sample sizes range n=89 to n=115 for each element, each site.

RESIDENT FISH ELEMENT CONCENTRATIONS

Figures 38–43 present the 2018 whole body juvenile Dolly Varden char element concentrations data. We found similar median Cu, Pb, and Zn concentrations in fish among sites undisturbed and near historic and active hard rock mining activities. Median Cd concentrations were greater among the Greens Creek fish samples, above and below active mining operations, and median Hg concentration was greatest among the Tributary Creek fish samples.

In Table 6, we compare the 2018 whole body Dolly Varden char median Cd, Cu, Hg, Pb, Se, and Zn concentrations for each site with the 2014 Empire Creek data, ij,kk 2001–2017 Tributary Creek Site 9 and Greens Creek sites 54 and 48 data (Zutz 2018a), and 2016-2018 Glacier Creek data (Legere and Kanouse 2018), finding greater median concentrations in the 2018 samples for:

- Cd and Se at Greens Creek sites 54 and 63A;
- Cu at Empire Creek and Greens Creek sites 54 and 63A;
- Hg at Tributary Creek; and
- Zn at Zinc Creek and Greens Creek sites 54 and 63A.

The median Pb concentration observed in Tributary Creek fish 2001–2017 was greater than the median concentrations observed in 2018 and the other data sets. We found greater median element concentrations among the 2018 Empire Creek fish samples than the 2014 fish samples, except median Pb concentrations were similar. Most element concentrations were within the ranges observed in whole body Dolly Varden char samples collected from reference and exploration sites elsewhere in Alaska (Legere and Timothy 2016).

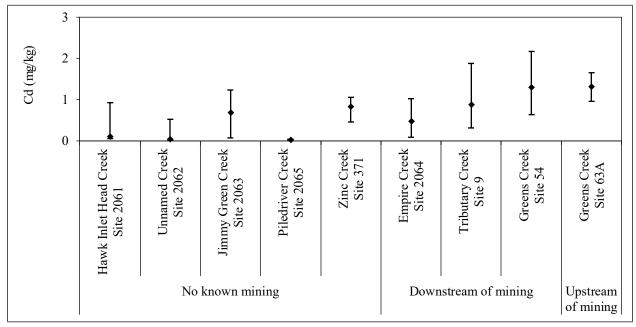


Figure 38.–2018 whole body Dolly Varden char cadmium concentrations.

Note: Minimum, median (\blacklozenge), and maximum concentrations presented.

Gordon Willson-Naranjo and Benjamin Brewster, Habitat Biologists, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Empire Mine investigation Stream No. 112-65-10110; dated 7/24/2015. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd Street, Douglas, AK.

The DEC Environmental Health laboratory in Anchorage, AK analyzed the 2014 fish samples using different EPA methods than the ALS laboratory; method EPA 7473 for Hg, and method EPA 6020 for all other elements.

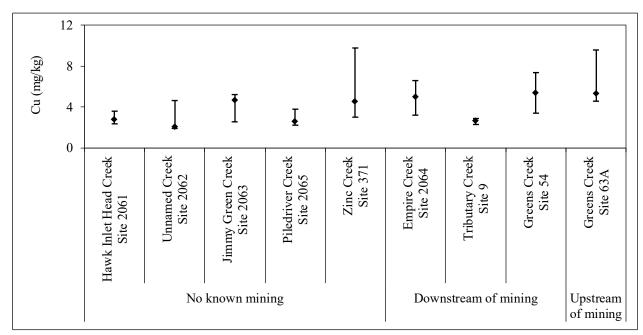


Figure 39.–2018 whole body Dolly Varden char copper concentrations. *Note*: Minimum, median (\blacklozenge), and maximum concentrations presented.

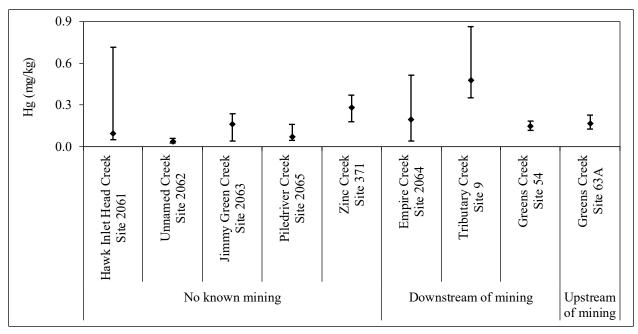


Figure 40.–2018 whole body Dolly Varden char mercury concentrations. *Note*: Minimum, median (•), and maximum concentrations presented.

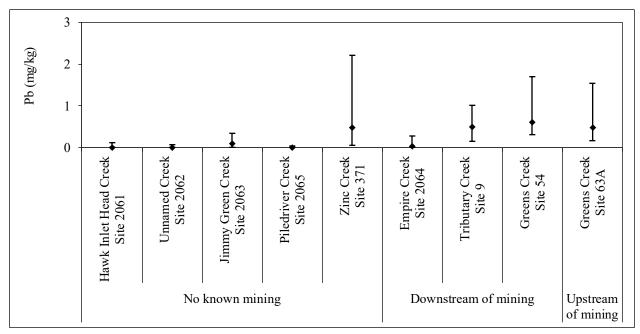


Figure 41.–2018 whole body Dolly Varden char lead concentrations. *Note*: Minimum, median (•), and maximum concentrations presented.

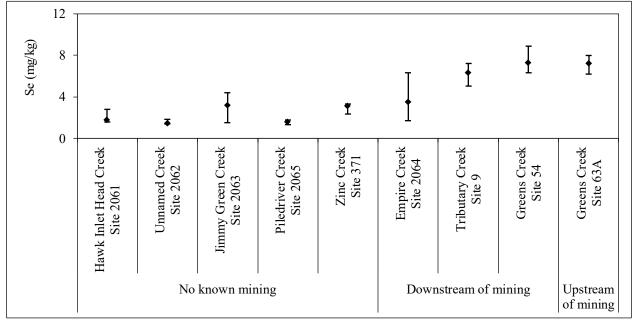


Figure 42.–2018 whole body Dolly Varden char selenium concentrations. *Note*: Minimum, median (♠), and maximum concentrations presented.

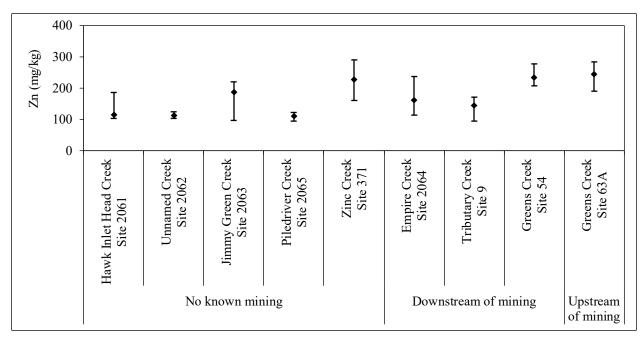


Figure 43.–2018 whole body Dolly Varden char zinc concentrations.

Note: Minimum, median (•), and maximum concentrations presented.

Table 6.-Whole body Dolly Varden char median element concentration comparisons.

		Median concentration (mg/kg dry weight)				weight)	
	Data Years	Cd	Cu	Hg	Pb	Se	Zn
2018 Sample Data	_						
Hawk Inlet Head Creek Site 2061	2018	0.11	2.79	0.091	0.024	1.76	114
Unnamed Creek Site 2062	2018	0.04	2.09	0.037	0.020	1.49	111
Jimmy Green Creek Site 2063	2018	0.69	4.71	0.161	0.109	3.20	187
Piledriver Creek Site 2065	2018	0.02	2.60	0.069	0.020	1.60	110
Zinc Creek Site 371	2018	0.84	4.59	0.280	0.485	3.15	225
Empire Creek Site 2064	2018	0.47	5.02	0.193	0.044	3.53	160
Tributary Creek Site 9	2018	0.88	2.68	0.474	0.511	6.31	144
Greens Creek Site 54	2018	1.30	5.44	0.147	0.622	7.26	232
Greens Creek Site 63A	2018	1.32	5.38	0.163	0.488	7.19	244
Data Comparisons	_						
Empire Creek Site 2064	2014	0.13	0.70	0.070	0.050	1.90	54
Tributary Creek Site 9	2001-2017	0.92	3.80	0.301	0.860	6.13	134
Greens Creek Site 54	2001-2017	0.91	4.70	0.112	0.370	5.90	199
Greens Creek Site 48	2001-2017	0.98	4.70	0.142	0.205	5.60	194
Glacier Creek	2016–2018	0.51	4.13	0.045	0.102	6.33	144

Note: For the 2014 Empire Creek data n=10 (data source provided in footnote jj); the 2001–2017 Tributary and Greens Creek data are in Zutz (2018a) and n=109 for Cd, Pb, Se and Zn, n=103 for Cu, and n=54 for Hg; and the 2016–2018 Glacier Creek are in Legere and Kanouse (2018) and n=52.

REFERENCES CITED

- Buchman, M. F. 2008. NOAA screening quick reference tables, National Oceanic and Atmospheric Administration, Office of Response and Restoration Division, Report 08-1, Seattle, WA.
- DEC. 2017. Total maximum daily load for metals in the marine sediments of Hawk Inlet near Juneau, Alaska. Alaska Department of Environmental Conservation, Anchorage, AK.
- Hecla. 2014. General plan of operations. Appendix 1: integrated monitoring plan.
- Johnson, J. and B. Blossom. 2019. Catalog of waters important for the spawning, rearing, or migration of anadromous fishes – Southeastern Region. Effective June 1, 2019. Alaska Department of Fish and Game, Special Publication No. 19-04, Anchorage, AK.
- Kanouse, K. M. and B. Brewster. 2014. Aquatic biomonitoring at Greens Creek Mine, 2013. Alaska Department of Fish and Game, Technical Report 14-05, Douglas, AK.
- Kanouse, K. M. 2015. Aquatic biomonitoring at Greens Creek Mine, 2014. Alaska Department of Fish and Game, Technical Report 15-03, Douglas, AK.
- Legere, N. M. and J. Timothy. 2016. Tulsequah Chief acid mine drainage and Dolly Varden char metals concentrations. Alaska Department of Fish and Game, Technical Report No. 16-06, Douglas, AK.
- Legere, N. M. and K. M. Kanouse. 2018. Glacier Creek aquatic studies, 2018. Alaska Department of Fish and Game, Technical Report 18-09, Douglas, AK.
- MacDonald, D. D., C. G. Ingersoll, and T. A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination Toxicology 39(1):20–31.
- Paustian, S. 2010. Channel type user guide revision 2010. U.S. Forest Service, R-10-TP-26.
- Portage, Inc. 2015. Empire Mine preliminary assessment/site inspection report. Prepared for the U.S. Forest Service, Idaho Falls, ID.
- Tchounwou, P. B., C. G. Yedjou, A. K. Patlolla, D. J. Sutton. 2012. Heavy metal toxicity and the environment. Pages 133-164 [*In*] Experimentia Supplementum: Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology. Springer Basel.
- Timothy, J. and K. M. Kanouse. 2014. Aquatic studies at Kensington Gold Mine, 2013. Alaska Department of Fish and Game, Technical Report No. 14-01, Douglas, AK.
- USFS. 2003. Greens Creek tailings disposal final impact statement. U.S. Forest Service, R10-MB-482a.
- USFS. 2013. Greens Creek Mine tailings disposal facility expansion final environmental impact statement and record of decision. U.S. Department of Agriculture, Forest Service, Alaska Region.
- Zutz, J. 2018a. Aquatic biomonitoring at Greens Creek Mine, 2017. Alaska Department of Fish and Game, Technical Report No. 18-01, Douglas, AK.
- Zutz, J. 2018b. Aquatic biomonitoring at Kensington Mine, 2017. Alaska Department of Fish and Game, Technical Report No. 18-02, Douglas, AK.

APPENDIX A: ANADROMOUS WATERS CATALOG NOMINATIONS

112-65-10150 CORRECTION

Water body name: Hawk Inlet Head Creek
Watershed: Fishery Creek-Frontal Chatham Strait
Species & Lifestage: CHp, Pp

MTR: C042S065E Quad: Juneau A-3

Findings: We surveyed this stream using minnow traps, an electrofisher and a GPS. We found an anadromous fish barrier below the cataloged upper extent of anadromy (Table 1; Figure 1). **Recommendations:** Correct Stream No. 112-65-10150 to reflect field verified stream course

(Figure 2).

Table 1.–112-65-10150 survey data.

Waypoint	Latitude	Longitude	Notes	Sample Effort	Sample Results
623	58.1918	-134.7408	Top of tidal influence on Hawk		
			Inlet Head Creek.		
624	58.1938	-134.7416	9 m tall barrier falls. Tributary		
			enters river right and is 15-20%		
			gradient with marginal rearing		
			habitat only.		
625	58.1935	-134.7419	1 CO EF. 4 minnow traps set,	EF/MT	1 CO
			no fish caught.		
626	58.1935	-134.7420	1 DV 88 mm.	EF	1 DV
627	58.1935	-134.7425	2 DV 111, 104 mm.	EF	2 DV
628	58.1937	-134.7419	HIHCS1 sediment sample		
			taken at 1022 on river right.		
			HIHCS2 sediment sample		
			taken at 1030 on river left side.		
629	58.1933	-134.7418	3 DV 109, 129, 137 mm.	EF	3 DV
			HIHC3 sediment sample taken		
			here at 1040 on river left.		

Figure 1.-Anadromous fish barrier on Hawk Inlet Head Creek.

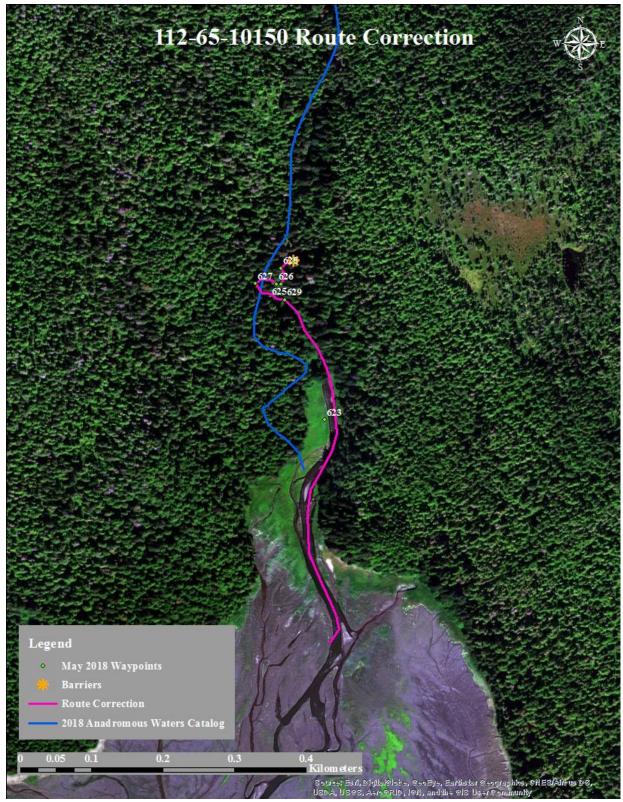


Figure 2.–112-65-10150 route correction map.

112-65-10140 CORRECTION

Water body name: Survey date: 5/15/2018 Watershed: Fishery Creek-Frontal Chatham Strait Species & Lifestage: CHs, Ps

MTR: C042S065E Quad: Juneau A-3

Findings: We surveyed this stream using minnow traps, an electrofisher and a GPS. We captured rearing coho salmon, pink salmon fry, Dolly Varden char, and cutthroat trout (Table 1; Figure 1).

Recommendations: Correct Stream No. 112-65-10140 to reflect field verified path. Add rearing coho salmon to the Anadromous Waters Catalog (Figure 2).

Table 1.–112-65-10140 survey data.

Waypoint	Latitude	Longitude	Notes	Sample Effort	Sample Results
630	58.1877	-134.7504	Top of tidal influence on		
			Unnamed Creek. This Creek is		
			7.5-10.5 m wide at the mouth		
			with spawning gravel present,		
			then transitions to cobble within		
			about 60 m and gradient is 3-		
			5%, cobble and gravel substrate		
			and two distinct channel braids.		
631	58.1886	-134.7514	Iron floc tributary.		
632	58.1890	-134.7521	200 mm CT captured here.	EF	CT
633	58.1895	-134.7529	4 minnow traps set, no fish	MT	No Fish
			caught. Two braids present		
			here.		
634	58.1900	-134.7531	2 DV 70, 65 mm left in a pool	EF	2 DV
			but not retained for sampling.		
635	58.1900	-134.7537	2 DV 78, 90 mm.	EF	2 DV
636	58.1901	-134.7539	1 CO.	EF	1 CO
637	58.1903	-134.7543	2 CO, 3 DV 84, 134, 124 mm.	EF	2 CO, 3 DV
638	58.1912	-134.7545	2 CO, 2 P fry with visual on	EF	2 CO, 2 P
			dozens of other fry.		
639	58.1909	-134.7539	1 DV 88 mm, combined with	EF	2 DV, 1 P
			78 mm sample, 1 P fry, 1 DV		
			118 mm.		
640	58.1894	-134.7529	UNC1 sediment sample taken		
			at 1223.		
641	58.1892	-134.7519	UNC2 sediment sample taken		
			here at 1233.		
642	58.1896	-134.7528	UNC3 sediment sample taken		
			here at 1240.		
643	58.1890	-134.7521	1 DV 124 mm.	EF	1 DV

Figure 1.—Rearing coho salmon captured in Stream No. 112-65-10140.

Figure 2.–112-65-10140 route correction map.

112-65-10120 CORRECTION

Water body name: Jimmy Green Creek

Watershed: Fishery Creek-Frontal Chatham Strait

Species & Lifestage: CHp

MTR: C043S065E Quad: Juneau A-3

Findings: We surveyed this stream using an electrofisher and GPS, finding an anadromous fish barrier below upper extent of the current anadromous waters catalog. We captured Dolly Varden char in this creek (Table 1).

Recommendations: Correct Stream No. 112-65-10120 to reflect field verified upper extent of

anadromous fish passage (Figure 1).

Table 1.–112-65-10120 survey data.

Waypoint	Latitude	Longitude	Notes	Sample Effort	Sample Results
645	58.1761	-134.7556	Top of tidal influence on Jimmy		
			Green Creek. Debris jam 60 m		
			upstream of this point has		
			caused the channel to flood		
			through the forest on either side,		
			creating 3 channels probably		
			within the last year. Debris jam		
			is 2.5 m tall with minimal		
			passage through developing side		
			channels. Main channel is 0.5-		
			1.2 m wide with some spawning		
			gravel and rearing habitat.		
646	58.1768	-134.7590	4 minnow traps set here, no fish	MT/EF	1 DV
			caught. Gradient is 15%,		
			boulder dominated and very		
			unstable. 1 DV 155 mm.		
647	58.1773	-134.7593	1 DV 113 mm.	EF	1 DV
648	58.1776	-134.7594	2 DV 88, 77 mm.	EF	2 DV
649	58.1778	-134.7600	1 DV 141 mm.	EF	1 DV
650	58.1781	-134.7600	2 DV 113, 92 mm. Boulders	EF	2 DV
			and >15% gradient.		
651	58.1781	-134.7604	1 DV 131 mm. Base of	EF	1 DV
			transition to >25% step falls		
			reach with 1-1.5 m cascades		
			and increasing gradient		
			upstream and likely end of fish		
			habitat based on topo map.		
652	58.1772	-134.7593	JGC1 sediment sample taken		
			here at 1440 on river left.		
653	58.1764	-134.7583	JGC2 sediment sample taken in		
			this area at 1453.		
654	58.1765	-134.7579	JGC3 sediment sample taken		
			here at 1458.		

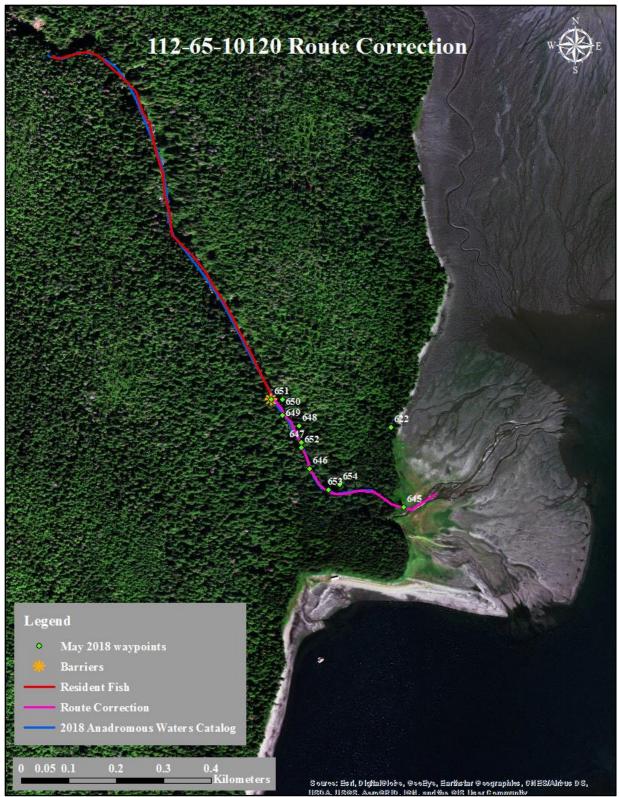


Figure 1.–112-65-10120 route correction map.

112-65-10110 CORRECTION

Water body name: Empire Creek

Watershed: Fishery Creek-Frontal Chatham Strait

Species & Lifestage: CHs, Ps

MTR: C043S065E Quad: Juneau A-3

Findings: We surveyed this stream using an electrofisher, minnow traps, and a GPS. We captured Dolly Varden char, juvenile coho salmon, pink salmon fry, and a rainbow trout (Table 1; Figures 1-3).

Recommendations: Correct Stream No. 112-65-10110 to reflect field verified path. Add rearing

coho to the anadromous waters catalog (Figure 4).

Table 1.–112-65-10110 survey data.

Waypoint	Latitude	Longitude	Notes	Sample Effort	Sample Results
655	58.1683	-134.7707	Top of tidal influence on Empire		
			Creek. Stream is 2 m wide, 3-		
			4% gradient, flat shaley cobble		
			sized substrate with some		
			gravel, intertidal spawning is		
			higher quality.		
656	58.1689	-134.7710	Gradient increases to 5% then		
			to $>5\%$ upstream of here. Flat		
			cobble sized shale dominates		
			but spawning and rearing habitat		
			are present.		
657	58.1692	-134.7710	Base of 12% reach with debris		
			jams and step falls, that would		
			exclude most pink salmon.		
658	58.1692	-134.7713	4 minnow traps set, no fish	MT	No Fish
			caught. Two braids present		
			here.		
659	58.1698	-134.7714	2 DV 58, 134 mm. This reach	EF	2 DV
			is bouldery and 10% gradient.		
660	58.1702	-134.7714	Bouldery debris jam reach 12-	EF	1 DV
			18% gradient and incised		
			canyon. 1 DV 121 mm.		
661	58.1702	-134.7714	1 DV 113 mm.	EF	1 DV
662	58.1692	-134.7712	220 mm RBT.	EF	1 RT
663	58.1690	-134.7710	3 DV 135, 137, 150 mm, 2	EF	3 DV, 2 CO, 11 P
			CO, 11 P fry. Upstream of		
			some 0.5 m step falls,		
			unfortunately close to intertidal		
			though, due to lack of fish		
			upstream. ECS3 sediment		
			sample taken here at 1040.		

Table 1.—Continued.

Waypoint	Latitude	Longitude	Notes	Sample Effort	Sample Results
664	58.1688	-134.7709	ECS1 sediment sample taken in		
			this area at 1030. broke the lid		
			on this jar, but maintained cover		
			until new lid installed.		
665	58.1685	-134.7711	ECS2 sediment sample taken		
			here at 1045 about 3 m		
			downstream of an iron seep on		
			the opposite bank. May be		
			some mixing with iron water.		

Figure 1.—Juvenile coho salmon captured in Empire Creek.

Figure 2.—Pink salmon fry captured in Empire Creek.

Figure 3.–Rainbow trout captured in Empire Creek.

Figure 4.–112-65-10110 route correction map.

112-65-10280 CORRECTION

Water body name: Piledriver Creek
Watershed: Fishery Creek-Frontal Chatham Strait
Species & Lifestage: Pp

MTR: C044S065E Quad: Juneau A-3

Findings: We surveyed this stream using and electrofisher, minnow traps and a GPS. We captured juvenile coho salmon, pink salmon fry, Dolly Varden char, and cutthroat trout (Table 1; Figures 1, 2).

Recommendations: Correct Stream No. 112-65-10280 to match field verified route, add rearing

coho salmon to the anadromous waters catalog (Figure 3).

Table 1.–112-65-10280 survey data.

Waypoint	Latitude	Longitude	Notes	Sample Effort	Sample Results
666	58.0778	-134.7703	Open beach necks down to estuary behind guard timber on Pile Driver Creek. Pink salmon		
667	58.0726	-134.7678	redds everywhere. Top of tidal influence. Gradient <1% to here with pink fry in	VI	P
			water and average creek width of 6 m. Nice spawning and rearing habitat upstream and woody debris abound.		
668	58.0710	-134.7665	2 DV 126, 124 mm, 3 CO, 12 P fry. Tributary enters river right, gear stashed and begin fishing here. 4 minnow traps set in the area after finding few fish, 1 CO captured. "Spru-lock" tree about 30 m downstream of confluence on river right. PCS1 sediment sample taken here from river right bank at 1325 and is predominantly clay. PCS2 sediment sample taken here on the river left bank at 1325 about 6 m downstream.	EF/MT	2 DV, 3 CO, 12 P
669	58.0706	-134.7663	Predominantly clay and silt. 2 P fry, 1 CO.	EF	1 CO, 2 P

Table 1.—Continued.

Waypoint	Latitude	Longitude	Notes	Sample Effort	Sample Results
670	58.0702	-134.7671	4 CO, 1 DV 148 mm, 2 P fry. Channel 6-10.5 m wide <2% downstream of here with slight increase to 3% upstream. Great spawning and rearing habitat, clay evident in eroded banks.	EF	4 CO, 1 DV, 2 P
671	58.0698	-134.7669	2 CO, 2 DV 124, 121 mm.	EF	2 CO, 2 DV
672	58.0695	-134.7649	1 CO, 2 P fry.	EF	1 CO, 2 P
673	58.0692	-134.7648	2 P fry, 1 DV 111 mm, channel still 2-3% with spawning and rearing habitat.	EF	2 P, 1 DV
674	58.0689	-134.7651	1 CT 180 mm.	EF	1 CT
675	58.0685	-134.7648	1 DV 121 mm, 2 P fry, 2 CO.	EF	1 DV, 2 P, 2 CO
676	58.0705	-134.7666	PCS3 sediment sample taken here at 1330. This site is slightly sandier substrate than other which are clay dominated. This site in direct influence from an iron seep.		

Figure 1.—Juvenile coho salmon captured in Piledriver Creek.

Figure 2.—Cutthroat trout captured in Piledriver Creek.

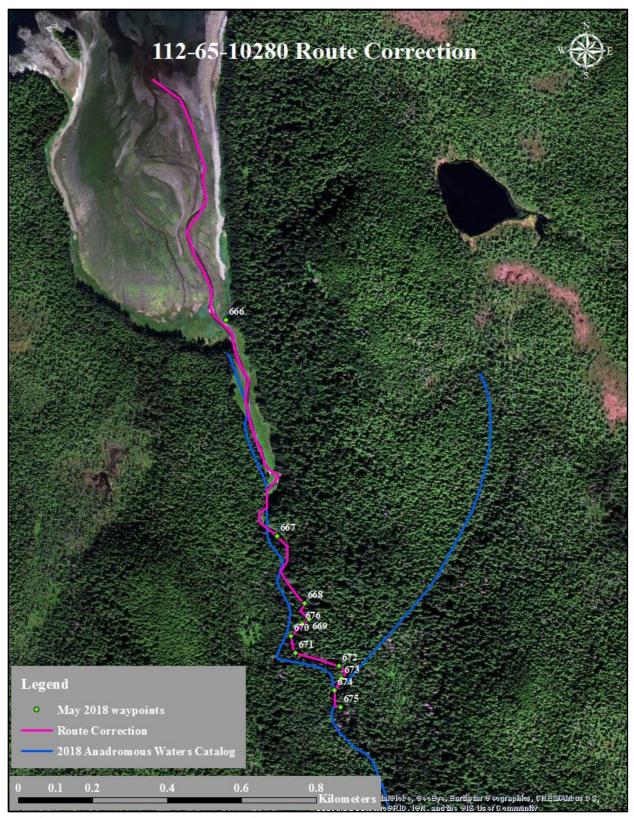


Figure 3.–112-65-10280 route correction map.

APPENDIX B: SEDIMENT DATA AND LABORATORY REPORTS

Appendix B.1–Sediment sample compositions.

<u>-</u>		Particle S	ize Data					
				% Coarse		% Total	Total	% Total
				material	% Total	Volatile	Sulfide	Organic
Sample No.	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Solids	(mg/kg)	Carbon
Hawk Inlet Head Creek 2061								
2018HIHC-S1	0.1	1.6	90.7	3.6	79.2	2.80	<2.4	0.785
2018HIHC-S2	0.5	5.8	88.1	0.1	71.8	2.60	< 2.6	0.790
2018HIHC-S3	1.0	7.3	84.9	6.1	64.3	4.70	<2.7	1.13
Unnamed Creek Site 2062								
2018UC-S1	0.8	8.8	93.4	0.3	59.7	4.00	<2.7	1.41
2018UC-S2	0.5	6.3	84.9	2.4	52.0	5.90	<3.3	1.27
2018UC-S3	0.5	5.2	88.8	2.7	59.9	3.90	<2.9	1.00
Jimmy Green Creek Site 2063								
2018JC-S1	0.3	3.0	85.2	5.2	69.3	3.80	<2.3	1.57
2018JC-S2	0.3	3.8	96.8	2.5	64.2	3.75	<3.1	1.55
2018JC-S3	0.5	6.7	93.9	0.1	60.3	4.30	< 3.0	2.23
Empire Creek Site 2064								
2018EC-S1	0.2	1.9	83.1	6.1	69.4	5.40	< 2.7	2.64
2018EC-S2	0.2	1.4	85.6	7.0	65.8	5.60	< 2.1	2.95
2018EC-S3	0.0	2.3	87.9	9.7	63.2	4.90	< 3.0	2.58
Piledriver Creek Site 2065								
2018PC-S1	3.7	7.0	77.1	9.6	62.2	3.30	<2.4	0.772
2018PC-S2	1.3	3.1	75.4	21.7	77.2	2.90	<2.1	0.608
2018PC-S3	0.6	2.3	86.0	4.9	78.4	3.30	<2.1	0.674
Cannery Creek Site 37								
2018CC-S1	0.4	1.5	63.6	41.3	69.6	4.00	< 2.8	1.54
2018CC-S2	0.5	2.1	76.5	21.5	69.7	4.90	< 2.6	2.42
2018CC-S3	0.3	1.3	57.7	40.3	74.7	3.90	< 2.6	1.11
Zinc Creek Site 371								
2018ZC-S1	0.0	1.3	82.6	18.8	72.3	3.90	< 2.7	0.915
2018ZC-S2	0.0	1.7	90.3	6.2	64.6	5.30	< 2.8	1.10
2018ZC-S3	0.1	0.2	79.2	25.0	69.0	3.90	< 2.8	0.745
Tributary Creek Site 9								
GCM Site #9 (2013 data) ^a	3.0	90.0	7.0	0.10	ND	ND	ND	ND
2018TC9-S1	2.4	6.1	61.3	31.9	74.8	3.30	< 2.6	1.35
2018TC9-S2	2.1	21.3	72.8	2.1	34.7	4.75	<5.5	8.57
2018TC9-S3	0.6	3.9	83.1	26.4	73.3	3.80	<2.2	4.53
Tributary Creek Site 1847								
2018TC1847-S1	0.5	4.3	90.4	4.6	71.1	4.00	< 2.7	0.596
2018TC1847-S2	0.4	3.5	89.8	5.9	70.1	3.90	< 2.8	1.39
2018TC1847-S3	0.3	3.1	93.1	4.0	72.4	3.40	<2.8	1.00
Greens Creek Site 54								
GCM Site #54 (2013 data) ^a	5.0	94.0	1.0	0.06	ND	ND	ND	ND
2018GC54-S1	0.4	1.8	97.6	0.2	67.8	3.00	<2.2	0.528
2018GC54-S2	0.5	1.4	96.5	0.8	68.9	3.10	<2.4	0.481
2018GC54-S3	0.4	1.3	94.5	4.4	68.8	3.00	<2.3	0.548
Greens Creek Site 63A ^b	0.1	1.5	71.5		00.0	5.00	2.3	0.5 10
2018GC48-S1	0.9	4.1	96.0	0.3	67.1	2.45	<2.4	0.807
2018GC48-S2	0.6	1.1	97.4	0.4	70.0	2.90	<2.3	0.486
2018GC48-S3	1.0	6.1	90.2	0.1	61.0	2.80	<3.0	1.21
Greens Creek Site 63B	1.0	0.1	70.2	0.1	01.0	2.00	-5.0	1.21
GCM Site #48 (2013 data) ^{a,c}	3.0	92.0	5.0	< 0.05	ND	ND	ND	ND
GC63B-S1	0.2	1.6	92.6	6.0	71.0	2.90	<2.2	0.504
GC63B-S2	0.2	1.0	92.6	5.1	71.0	2.90	<2.2	0.304
GC63B-S3	0.2	0.9	99.3 81.4	8.1	77.7	2.70	<2.2	0.548
a Reported in Kanouse and Brey			01.4	0.1	//./	2.70	\2.0	0.540

a Reported in Kanouse and Brewster (2014).
b The Greens Creek Site 63A sample codes were mislabeled as Greens Creek Site 48.
c Sample collected at former reference site Greens Creek Site 48.

Appendix B.2-Sediment sample element concentrations.

_	Concentration (mg/kg dry weight)							
	Cd	Cu	Pb	Hg	Se	Z		
Hawk Inlet Head Creek 2061								
2018HIHC-S1	0.699	35.1	7.15	0.021	1.5	10		
2018HIHC-S2	0.591	35.1	6.15	< 0.020	1.5	91		
2018HIHC-S3	0.791	46.1	8.67	< 0.024	2.0	11		
Unnamed Creek Site 2062								
2018UC-S1	0.522	48.2	8.25	< 0.027	<1.5	89		
2018UC-S2	0.869	56.9	11.4	0.030	<1.7	12		
2018UC-S3	0.533	44.6	8.03	0.035	<1.5	92		
Jimmy Green Creek Site 2063								
2018JC-S1	1.98	53.4	26.3	0.036	4.7	19		
2018JC-S2	2.13	47.5	15.2	0.054	3.9	20		
2018JC-S3	2.26	61.4	19.7	0.044	4.7	22		
Empire Creek Site 2064								
2018EC-S1	3.20	54.7	21.1	0.263	8.9	29		
2018EC-S2	1.38	47.2	14.0	0.162	7.9	2		
2018EC-S3	2.39	54.5	19.4	0.204	8.3	28		
Piledriver Creek Site 2065				·				
2018PC-S1	0.283	43.7	7.45	< 0.029	<1.5	1		
2018PC-S2	0.194	24.1	5.09	< 0.024	<1.0	77		
2018PC-S3	0.205	26.4	5.18	0.036	<1.1	80		
Cannery Creek Site 37								
2018CC-S1	0.758	16.5	19.7	0.026	<1.0	14		
2018CC-S2	0.981	16.3	20.5	0.024	<1.0	14		
2018CC-S3	0.852	23.3	22.1	< 0.021	<1.0	13		
Zinc Creek Site 371								
2018ZC-S1	2.13	31.1	11.5	0.030	1.5	32		
2018ZC-S2	6.08	62.3	248	0.054	2.3	66		
2018ZC-S3	1.53	26.2	15.9	0.030	3.8	28		
Tributary Creek Site 9								
GCM Site #9 (2013 data) ^a	0.390	15.5	11.8	< 0.0357	0.309	68		
2018TC9-S1	0.437	51.6	13.2	0.030	< 0.84	97		
2018TC9-S2	0.701	26.0	31.7	0.112	< 2.0	1		
2018TC9-S3	0.253	14.7	8.90	0.054	< 0.77	59		
Tributary Creek Site 1847								
2018TC1847-S1	0.410	14.6	17.3	0.024	< 0.84	94		
2018TC1847-S2	0.343	17.5	14.7	0.023	< 0.89	83		
2018TC1847-S3	0.358	12.7	14.6	< 0.020	< 0.76	79		
Greens Creek Site 54								
GCM Site #54 (2013 data) ^a	3.63	51.7	29.8	0.0784	4.44	23		
2018GC54-S1	2.01	48.5	20.7	0.098	3.0	29		
2018GC54-S2	2.09	50.9	22.5	0.108	2.66	32		
2018GC54-S3	1.79	47.1	20.6	0.107	2.59	28		
Greens Creek Site 63Ab								
2018GC48-S1	2.86	46.7	34.7	0.126	3.4	39		
2018GC48-S2	1.82	43.1	21.4	0.091	2.5	30		
2018GC48-S3	3.16	59.4	42.2	0.148	3.5	48		
Greens Creek Site 63B								
GCM Site #48 (2013 data) ^{a,c}	1.84	60.8	12.8	0.0476	2.59	23		
GC63B-S1	1.97	38.9	33.4	0.089	2.0	20		
	2.38	46.4	25.1	0.125	3.3	3		
GC63B-S2						٠.		

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

June 13, 2018

Analytical Report for Service Request No: K1804793

Kate Kanouse Alaska Department of Fish and Game Division of Habitat 802 3rd Street P.O. Box 110024 Douglas, AK 99811-0024

RE: Greens Creek Mine Project

Dear Kate.

Enclosed are the results of the sample(s) submitted to our laboratory May 21, 2018 For your reference, these analyses have been assigned our service request number **K1804793**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3356. You may also contact me via email at Kurt.Clarkson@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Sr. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

General Chemistry

Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- \boldsymbol{Q} $\;\;$ See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client:Alaska Department of Fish and GameService Request: K1804793Project:Greens Creek Mine ProjectDate Received: 05/21/2018

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt:

Nine soil samples were received for analysis at ALS Environmental on 05/21/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Metals:

Method 200.8, 06/01/2018: The matrix spike recovery of Copper for the Batch QC sample was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

General Chemistry:

Approved by ___

160.4M TVS- Due to an analyst error, the samples were analyzed past hold. The error has been documented under Non-Conformance report KL1404.

Date	06/18/2018
Date	00/10/2010

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

chain of custody 89306

001	 	 	

SR#_	3,8047	93
COC Set	Lof_L	
000#		

Erliferriesikei

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

Page 1 of 1

reject Name Areuns Creek Mine (Project N	umber:				R	5	28D	180D		D666	iagiob	al Com			\neg							,	J	
roject Manager Late Kanouse					ιg	\vdash	-	-	T	\dashv	<u>6</u>			T		-									
ompany ADF1G					CONTAINERS		- 5					j	İ			İ									
802 3rd St, Dow	glas, Ak	- 998	24		1 NC	Ş	P T0C	ļ		artsiz	γ	refig.	- {	- (
hone # (907) 445-4290 ampler Signature	Kate.1	Canpuse	e@alask	a.gov	9 0 0	L/ pai	SEP TOC / PSEP	ı	F S	STM D422M / Partsize	/ pa	S													
O.	1				BER (Modifi	00	ξ	Meta	D422	Modifi	A				ı									
28t.Wa	Gu	eg Hi	brecht	·	NUMBER	60.4 Modified / TVS	SEP	471B / Hg	00.8 / Metals	STM	60.3 Modified / TS	1PSEP					Rema	arks	l						
CLIENT SAMPLE ID	LABID	SAM Date	IPLING Time	Matrix																					
2018JCS1	····	5/15	1440	soil	2	-	-	v	<u> </u>	V	_	4		\perp		\perp		1-11	i						
2018 JCS2		5/15	1453	soil	2	~	<u> </u>	V	<u> </u>	4	v	~	_												
2018 JCS3		5 5	1458	Soil	2	V	싀	4	<u> </u>	<u> </u>	4	V							[
2018H1HCS1		5/15	1033	Soil	2	<u> </u>	4	<u> </u>	4	4	4	1				4		· · · · · · · · · · · · · · · · · · ·							
2018 HIHCS2		<u> 5 15 </u>	1030	Soil	2	~	4	4	4		V	4		\perp		\downarrow									
2018 H14CS3		5/15	1040	Soil	2	V	\triangleleft	-	<u>~ </u>	1	V	4			_ _	4		d-u-							
2018UCS1		5/15	1973	Soil	2	<u> </u>	<u>~</u>	<u> </u>		4	<u> </u>	1	_	_		4									
2018UCS2		5/15	1333	Soil	2	<u> </u>	<u> </u>	4	4	4	_	4		4	_	4		****							
2018WS3		5/15	1740	soil	2	<u> </u>	4	<u> </u>	<u> </u>	<u> </u>	~	<u> </u>		4	_	4	-								
$0. \times \times \times \bot$																ᆚ	***************************************			······································					
Report Requirements	P.O.#	ice into	rmation													C	ircle which me	tals are to t	e an <u>alyzed</u>						ĺ
I. Routine Report: Method Blank, Surrogate, as		Heclo	Green	_		Т	otal i	Metal	s: Al	As	Sb	Ва	Ве	в	Ca/C	(b)	co cr(Cy)	Fe (Pb)	Mg Mn Mo M	Ni K Ag Na	(Se)	Sr Ti Sn \	/(Zn)(Hg)	1
required	Creek	Mini	15 Compo	204											_		•		Mg Mn Mo		-		•		
II. Report Dup., MS, MSD as required			····	Sn	ecial														Procedure:					cle One	∍)
III. CLP Like Summary	E .		quiremen	its	,		••••																<u> </u>		
(no raw data)	24	Dav	48 hr.																						
IV. Data Validation Report	Sta	andard																							Ì
V. EDD		Requested Repo	ort Date																						
Relinquished By:		eceived	By:			nqui	she	d B	y:				Re	cei	ved	Ву	•		Relinquishe	ed By:		Rec	eived By	/: 	
gnature Down, Ult	Signature	Vona	M	Signa							Ľ	natu						Signatu				nature			
inted Name Greg Albrecht	Printed Na			Printe	d Nar	ne					L.		Nam	e				Printed	Name	···		nted Name		<u></u>	
^m ADFeG	Firm 5/2	-1/18	0945								Firr							Firm	· · · · · · · · · · · · · · · · · · ·	:	Fin				
te/Time 5/16/18 1612	Date/Time			Date/	Time						Dat	e/Tir	me					Date/Tir	ne		Da	te/Time			

7/25/16

PC KC

Page____

of

						_			tion Fori				
Client	Alaska	DUPT	of T	ash +	Go	lme	S	eryice	Request I	(18047	93		
	5/21		Opened:			By:	4	<u> </u>	Unloa	ded: 5 (2	2-1 18 By:	A.	·
I. Sample	s were rece	ived via?	USPS (Fed Ex	$) v_i$	PS	DHL	P	DX Co	urier Han	d Delivered		
2. Sample	s were rece	ived in: (ci	rcle) (Cooler	Box	E	nvelop		Other			NA	
_	ustody seals			NA (Y	j			-	where?			
If preso	ent, were cu	stody seals	intact?	<u>(Y</u>	ノ ト -	1				y signed and		<u>(Y)</u>	N
Raw Cooler Temp	Corrected.	Raw Temp Blank	Corrected Temp Blank	Corr. Factor	The	momete ID	er (Cooler	COC ID NA		Tracking Numb		A Filed
16.5	16.4	16.9	16.8	-0.(3	91		ς	39306	7733 5	412653	3	
		<u> </u>]	<u> </u>	 							·	
					<u> </u>		_						_
							1_						
4. Packir	ng material:	Inserts	Baggies (Bubble W	rap) (Gel Pac	ks J	Vet Ico	e Dry Ice	Sleeves [nelted gel	pack	<u> </u>
5. Were	custody pap	ers properl	y filled out	(ink, signe	d, etc.)	?					N/	4 '(Y)	N
6. Were	samples rec	•		•			•				N.	A Y	N
7. Were	all sample la	~	oplicable, ti: lete (i.e ana	-				Froz	en Partic	ally Thawed	<i>Thawed</i> N	A (V)	N
	•	•	,	•		,		or disc	repancies i	n the table on		<u> </u>	N
	appropriate	-	_	• •	•		-		•		. 0 N	$A \bigcirc \bigcirc$	N
10. Were	the pH-pre	served bott	tles (see SM	O GEN SOF) recei	ved at t	he app	ropria	te pH? <i>Indi</i>	cate in the tal	ble below (N	AY	N
11. Were	e VOA vials	s received v	vithout head	dspace? In	dicate	in the to	able be	elow.			CN	A Y	N
12. Was	C12/Res ne	egative?									(N	A Y	N
	0	Dettle			S	l- ID	200				Idanisia bu		
ļ <u></u>	Sample ID	on Bottle			Samp	le ID on	COL				Identified by:		
							···	 _					
			Bott	le Count	Out of	Head-				Volume	Reagent Lot		
47	Sample	ID 10/ES	Bot	tle Type		space	Broke	рH	Reagen	t added	Number	Initials	Time
ALC	2/1/1/												
ļ					 		 					1	
					 							11	<u> </u>
Notes, 1	Discrepano	cies, & Res	solutions:	Recid	/	402	i lik i r	Su	m p(e	2018 HI	HCS/ Cra	acked	K.
			- $ -$	el Salie	15 -	eck	/)		sferre	5	plo to		
			0,00	VOVEIG	le 1	Clea	u	Lar					
								1					
												·	

Page 10 of 55

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Date Collected: 05/15/18 **Project:** Greens Creek Mine Project **Date Received:** 05/21/18

Sample Matrix: Soil

Analysis Method: 160.3 Modified Units: Percent

Prep Method: Basis: As Received None

Solids, Total

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
2018JCS1	K1804793-001	69.3	=	=	1	05/25/18 16:30	
2018JCS2	K1804793-002	63.8	-	-	1	05/25/18 16:30	
2018JCS3	K1804793-003	60.3	-	-	1	05/25/18 16:30	
2018HIHCS1	K1804793-004	79.2	-	-	1	05/25/18 16:30	
2018HIHCS2	K1804793-005	71.8	-	-	1	05/25/18 16:30	
2018HIHCS3	K1804793-006	64.3	-	-	1	05/25/18 16:30	
2018UCS1	K1804793-007	59.7	-	-	1	05/25/18 16:30	
2018UCS2	K1804793-008	52.0	-	-	1	05/25/18 16:30	
2018UCS3	K1804793-009	59.9	-	-	1	05/25/18 16:30	
Method Blank	K1804793-MB	ND U	-	-	1	05/25/18 16:30	

Service Request: K1804793

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1804793

Project Greens Creek Mine Project **Date Collected:** 05/15/18

Sample Matrix: Soil

Date Received: 05/21/18 **Date Analyzed:** 05/25/18

Replicate Sample Summary

Inorganic Parameters

Sample Name:

2018JCS2

Units: Percent

Lab Code:

K1804793-002

Basis: As Received

Duplicate Sample

K1804793-

Sample

002DUP

Analyte Name Analysis Method Solids, Total 160.3 Modified

MRL MDL

Result 63.8

Result 64.5

RPD Limit Average 64.2

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/7/2018 4:17:24 PM

Superset Reference:18-0000466875 rev 00

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Date Collected: 05/15/18 **Project:** Greens Creek Mine Project **Date Received:** 05/21/18

Sample Matrix: Soil

Analysis Method:

160.4 Modified Units: Percent

Prep Method: Basis: Dry, per Method None

Solids, Total Volatile

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
2018JCS1	K1804793-001	3.80	0.10	-	1	05/25/18 16:30	*
2018JCS2	K1804793-002	3.80	0.10	-	1	05/25/18 16:30	*
2018JCS3	K1804793-003	4.30	0.10	-	1	05/25/18 16:30	*
2018HIHCS1	K1804793-004	2.80	0.10	-	1	05/25/18 16:30	*
2018HIHCS2	K1804793-005	2.60	0.10	-	1	05/25/18 16:30	*
2018HIHCS3	K1804793-006	4.70	0.10	-	1	05/25/18 16:30	*
2018UCS1	K1804793-007	4.00	0.10	-	1	05/25/18 16:30	*
2018UCS2	K1804793-008	5.90	0.10	-	1	05/25/18 16:30	*
2018UCS3	K1804793-009	3.90	0.10	-	1	05/25/18 16:30	*
Method Blank	K1804793-MB	ND U	0.10	-	1	05/25/18 16:30	

Service Request: K1804793

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1804793

Project Greens Creek Mine Project **Date Collected:** 05/15/18 **Date Received:** 05/21/18

Sample Matrix: Soil

Date Analyzed: 05/25/18

Replicate Sample Summary General Chemistry Parameters

Sample Name:

2018JCS2

Units: Percent

Lab Code:

K1804793-002

Basis: Dry, per Method

Duplicate

Sample

K1804793-

Sample

Analyte Name Solids, Total Volatile **Analysis Method** 160.4 Modified

0.10

Result 3.80

002DUP Result 3.70

Average

RPD Limit

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/7/2018 4:17:24 PM

Superset Reference:18-0000466875 rev 00

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client:Alaska Department of Fish and GameService Request:K1804793Project:Greens Creek Mine ProjectDate Collected:5/15/2018

Project:Greens Creek Mine ProjectDate Collected:5/15/2018Sample Matrix:SoilDate Received:5/21/2018Date Analyzed:5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018JCS1 Lab Code: K1804793-001

Sand Fraction:Dry Weight (Grams)38.2752Sand Fraction:Weight Recovered (Grams)38.1194Sand Fraction:Percent Recovery99.59

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.3502	0.81
Gravel, Fine	-2 Ø to -1 Ø	1.9119	4.42
Sand, Very Coarse	-1 to 0 Ø	5.7198	13.23
Sand, Coarse	0 to 1 Ø	8.6217	19.93
Sand, Medium	1 to 2 Ø	8.0526	18.62
Sand, Fine	2 to 3 Ø	10.1066	23.37
Sand, Very Fine	3 to 4 Ø	2.1250	4.91
75.0 µm	4 Ø	2.2350	5.17
31.3 μm	5 Ø	0.7400	1.71
15.6 μm	6 Ø	0.4000	0.92
7.8 µm	7 Ø	0.1350	0.31
3.9 µm	8 Ø	0.0250	0.06
1.95 μm	9 Ø	0.0800	0.18
0.98 μm	> 10 Ø	0.0700	0.16
		40.5728	93.81

K1804793WET.SC1 \6/7/2018 Page No.:

Client:Alaska Department of Fish and GameService Request:K1804793Project:Greens Creek Mine ProjectDate Collected:5/15/2018

Project:Greens Creek Mine ProjectDate Collected:5/15/2018Sample Matrix:SoilDate Received:5/21/2018Date Analyzed:5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018JCS2 Lab Code: K1804793-002

Sand Fraction:Dry Weight (Grams)38.5200Sand Fraction:Weight Recovered (Grams)38.4095Sand Fraction:Percent Recovery99.71

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0029	0.01
Gravel, Fine	-2 Ø to -1 Ø	0.9880	2.46
Sand, Very Coarse	-1 to 0 Ø	4.2526	10.60
Sand, Coarse	0 to 1 Ø	7.6556	19.08
Sand, Medium	1 to 2 Ø	9.4762	23.62
Sand, Fine	2 to 3 Ø	11.8729	29.59
Sand, Very Fine	3 to 4 Ø	2.6426	6.59
75.0 μm	4 Ø	2.9300	7.30
31.3 μm	5 Ø	0.8550	2.13
15.6 μm	6 Ø	0.4750	1.18
7.8 µm	7 Ø	0.1700	0.42
3.9 µm	8 Ø	0.0400	0.10
1.95 μm	9 Ø	0.0750	0.19
0.98 µm	> 10 Ø	0.0550	0.14
		41.4908	103.41

Client:Alaska Department of Fish and GameService Request:K1804793Project:Greens Creek Mine ProjectDate Collected:5/15/2018

Project:Greens Creek Mine ProjectDate Collected:5/15/2018Sample Matrix:SoilDate Received:5/21/2018Date Analyzed:5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018JCS3 Lab Code: K1804793-003

Sand Fraction:Dry Weight (Grams)31.7660Sand Fraction:Weight Recovered (Grams)31.6703Sand Fraction:Percent Recovery99.70

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0416	0.11
Sand, Very Coarse	-1 to 0 Ø	0.8098	2.22
Sand, Coarse	0 to 1 Ø	3.8615	10.60
Sand, Medium	1 to 2 Ø	6.9766	19.15
Sand, Fine	2 to 3 Ø	13.9214	38.22
Sand, Very Fine	3 to 4 Ø	3.7732	10.36
75.0 µm	4 Ø	4.8600	13.34
31.3 μm	5 Ø	1.3850	3.80
15.6 μm	6 Ø	0.7400	2.03
7.8 µm	7 Ø	0.1900	0.52
3.9 µm	8 Ø	0.1350	0.37
1.95 μm	9 Ø	0.1050	0.29
0.98 µm	> 10 Ø	0.0850	0.23
		36.8841	101.25

K1804793WET.SC1 \6/7/2018 Page No.:

Client:Alaska Department of Fish and GameService Request:K1804793Project:Greens Creek Mine ProjectDate Collected:5/15/2018

Project:Greens Creek Mine ProjectDate Collected:5/15/2018Sample Matrix:SoilDate Received:5/21/2018Date Analyzed:5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018HIHCS1 Lab Code: K1804793-004

Sand Fraction:Dry Weight (Grams)41.5918Sand Fraction:Weight Recovered (Grams)41.5239Sand Fraction:Percent Recovery99.84

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.1015	0.23
Gravel, Fine	-2 Ø to -1 Ø	1.5087	3.38
Sand, Very Coarse	-1 to 0 Ø	3.5606	7.99
Sand, Coarse	0 to 1 Ø	10.2434	22.98
Sand, Medium	1 to 2 Ø	15.1097	33.90
Sand, Fine	2 to 3 Ø	9.0859	20.38
Sand, Very Fine	3 to 4 Ø	1.3125	2.94
75.0 µm	4 Ø	1.1250	2.52
31.3 μm	5 Ø	0.3400	0.76
15.6 μm	6 Ø	0.2150	0.48
7.8 µm	7 Ø	0.0750	0.17
3.9 µm	8 Ø	0.0800	0.18
1.95 μm	9 Ø	0.0200	0.04
0.98 μm	> 10 Ø	0.0050	0.01
		42.7823	95.97

Client:Alaska Department of Fish and GameService Request:K1804793Project:Greens Creek Mine ProjectDate Collected:5/15/2018

Project: Greens Creek Mine Project Date Collected: 5/15/2018
Sample Matrix: Soil Date Received: 5/21/2018
Date Analyzed: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018HIHCS2 Lab Code: K1804793-005

Sand Fraction:Dry Weight (Grams)47.5410Sand Fraction:Weight Recovered (Grams)47.3930Sand Fraction:Percent Recovery99.69

	77.4.00	Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0488	0.08
Sand, Very Coarse	-1 to 0 Ø	0.6113	1.05
Sand, Coarse	0 to 1 Ø	5.4795	9.43
Sand, Medium	1 to 2 Ø	12.9639	22.30
Sand, Fine	2 to 3 Ø	20.0792	34.54
Sand, Very Fine	3 to 4 Ø	5.5057	9.47
75.0 µm	4 Ø	6.5600	11.28
31.3 μm	5 Ø	1.9850	3.41
15.6 μm	6 Ø	0.8050	1.38
7.8 µm	7 Ø	0.4450	0.77
3.9 µm	8 Ø	0.1250	0.22
1.95 μm	9 Ø	0.1550	0.27
0.98 μm	> 10 Ø	0.1350	0.23
		54.8984	94.43

Client:Alaska Department of Fish and GameService Request:K1804793Project:Greens Creek Mine ProjectDate Collected:5/15/2018

Project:Greens Creek Mine ProjectDate Collected:5/15/2018Sample Matrix:SoilDate Received:5/21/2018Date Analyzed:6/4/2018

Particle Size Determination ASTM D422M

Sample Name: 2018HIHCS3 Lab Code: K1804793-006

Sand Fraction:Dry Weight (Grams)56.9243Sand Fraction:Weight Recovered (Grams)56.6712Sand Fraction:Percent Recovery99.56

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	1.4181	2.19
Gravel, Fine	-2 Ø to -1 Ø	2.5155	3.89
Sand, Very Coarse	-1 to 0 Ø	5.1936	8.03
Sand, Coarse	0 to 1 Ø	12.0737	18.68
Sand, Medium	1 to 2 Ø	10.6123	16.42
Sand, Fine	2 to 3 Ø	18.0088	27.86
Sand, Very Fine	3 to 4 Ø	4.1702	6.45
75.0 µm	4 Ø	4.8000	7.43
31.3 μm	5 Ø	2.4050	3.72
15.6 μm	6 Ø	0.8650	1.34
7.8 µm	7 Ø	0.9200	1.42
3.9 µm	8 Ø	0.5550	0.86
1.95 μm	9 Ø	0.3500	0.54
0.98 μm	> 10 Ø	0.2950	0.46
		64.1822	99.29

Client:Alaska Department of Fish and GameService Request:K1804793Project:Greens Creek Mine ProjectDate Collected:5/15/2018

Project:Greens Creek Mine ProjectDate Collected:5/15/2018Sample Matrix:SoilDate Received:5/21/2018Date Analyzed:6/4/2018

Particle Size Determination ASTM D422M

Sample Name: 2018HIHCS3 Lab Code: K1804793-006DUP

Sand Fraction:Dry Weight (Grams)57.5014Sand Fraction:Weight Recovered (Grams)57.3892Sand Fraction:Percent Recovery99.80

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.1517	0.24
Gravel, Fine	-2 Ø to -1 Ø	1.9736	3.06
Sand, Very Coarse	-1 to 0 Ø	4.3824	6.80
Sand, Coarse	0 to 1 Ø	11.3314	17.58
Sand, Medium	1 to 2 Ø	13.2627	20.57
Sand, Fine	2 to 3 Ø	20.2616	31.43
Sand, Very Fine	3 to 4 Ø	3.9568	6.14
75.0 µm	4 Ø	3.7800	5.86
31.3 μm	5 Ø	2.0300	3.15
15.6 μm	6 Ø	0.7050	1.09
7.8 µm	7 Ø	0.8050	1.25
3.9 µm	8 Ø	0.4800	0.74
1.95 μm	9 Ø	0.2700	0.42
0.98 μm	> 10 Ø	0.2400	0.37
		63.6302	98.69

Client:Alaska Department of Fish and GameService Request:K1804793Project:Greens Creek Mine ProjectDate Collected:5/15/2018

Project:Greens Creek Mine ProjectDate Collected:5/15/2018Sample Matrix:SoilDate Received:5/21/2018Date Analyzed:5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018UCS1 Lab Code: K1804793-007

Sand Fraction:Dry Weight (Grams)31.1473Sand Fraction:Weight Recovered (Grams)31.0300Sand Fraction:Percent Recovery99.62

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
•		· · · · · · · · · · · · · · · · · · ·	ŭ
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0962	0.26
Sand, Very Coarse	-1 to 0 Ø	0.2357	0.64
Sand, Coarse	0 to 1 Ø	1.0704	2.92
Sand, Medium	1 to 2 Ø	4.4492	12.13
Sand, Fine	2 to 3 Ø	16.1495	44.04
Sand, Very Fine	3 to 4 Ø	5.3601	14.62
75.0 µm	4 Ø	7.0000	19.09
31.3 μm	5 Ø	1.8450	5.03
15.6 μm	6 Ø	0.7150	1.95
7.8 µm	7 Ø	0.3650	1.00
3.9 µm	8 Ø	0.2850	0.78
1.95 μm	9 Ø	0.1950	0.53
0.98 µm	> 10 Ø	0.1150	0.31
		37.8811	103.30

Client:Alaska Department of Fish and GameService Request:K1804793Project:Greens Creek Mine ProjectDate Collected:5/15/2018

Project:Greens Creek Mine ProjectDate Collected:5/15/2018Sample Matrix:SoilDate Received:5/21/2018Date Analyzed:5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018UCS2 Lab Code: K1804793-008

Sand Fraction:Dry Weight (Grams)29.6697Sand Fraction:Weight Recovered (Grams)29.6146Sand Fraction:Percent Recovery99.81

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.8557	2.36
Sand, Very Coarse	-1 to 0 Ø	2.4263	6.68
Sand, Coarse	0 to 1 Ø	4.1465	11.41
Sand, Medium	1 to 2 Ø	6.4367	17.72
Sand, Fine	2 to 3 Ø	10.5254	28.97
Sand, Very Fine	3 to 4 Ø	3.2191	8.86
75.0 µm	4 Ø	4.0950	11.27
31.3 µm	5 Ø	1.3550	3.73
15.6 μm	6 Ø	0.5500	1.51
7.8 µm	7 Ø	0.2750	0.76
3.9 µm	8 Ø	0.0900	0.25
1.95 μm 0.98 μm	9 Ø	0.0900	0.25
0.98 μm_	> 10 Ø	0.1050	0.29
		34.1697	94.04

Client:Alaska Department of Fish and GameService Request:K1804793Project:Greens Creek Mine ProjectDate Collected:5/15/2018

Sample Matrix: Soil

Date Collected: 5/15/2018

Date Received: 5/21/2018

Date Analyzed: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018UCS3 Lab Code: K1804793-009

Sand Fraction:Dry Weight (Grams)34.0176Sand Fraction:Weight Recovered (Grams)33.9165Sand Fraction:Percent Recovery99.70

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	1.0650	2.72
Sand, Very Coarse	-1 to 0 Ø	3.0011	7.68
Sand, Coarse	0 to 1 Ø	6.7551	17.28
Sand, Medium	1 to 2 Ø	7.6971	19.69
Sand, Fine	2 to 3 Ø	10.8704	27.80
Sand, Very Fine	3 to 4 Ø	2.7517	7.04
75.0 µm	4 Ø	3.6350	9.30
31.3 μm	5 Ø	1.2100	3.09
15.6 μm	6 Ø	0.4900	1.25
7.8 µm	7 Ø	0.2500	0.64
3.9 µm	8 Ø	0.0700	0.18
1.95 μm	9 Ø	0.0850	0.22
0.98 µm	> 10 Ø	0.1250	0.32
		38.0054	97.21

Client:Alaska Department of Fish and GameService Request:K1804793Project:Greens Creek Mine ProjectDate Collected:5/15/2018

Project: Greens Creek Mine Project Date Collected: 5/15/2018
Sample Matrix: Soil Date Received: 5/21/2018
Date Analyzed: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018UCS3

Lab Code: K1804793-009DUP

Sand Fraction:Dry Weight (Grams)38.1613Sand Fraction:Weight Recovered (Grams)38.0857Sand Fraction:Percent Recovery99.80

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.1607	0.37
Gravel, Fine	-2 Ø to -1 Ø	1.4265	3.30
Sand, Very Coarse	-1 to 0 Ø	2.8690	6.63
Sand, Coarse	0 to 1 Ø	7.2520	16.75
Sand, Medium	1 to 2 Ø	9.6072	22.19
Sand, Fine	2 to 3 Ø	12.1370	28.04
Sand, Very Fine	3 to 4 Ø	3.0573	7.06
75.0 µm	4 Ø	3.9600	9.15
31.3 μm	5 Ø	1.2600	2.91
15.6 μm	6 Ø	0.5300	1.22
7.8 µm	7 Ø	0.2150	0.50
3.9 µm	8 Ø	0.1900	0.44
1.95 μm	9 Ø	0.0200	0.05
0.98 µm	> 10 Ø	0.0850	0.20
		42.7697	98.80

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804793 **Date Collected:** 05/15/18 **Project:** Greens Creek Mine Project

Date Received: 05/21/18 **Sample Matrix:** Soil

Analysis Method: PSEP Sulfide Units: mg/Kg **Prep Method:** Method Basis: Dry

Sulfide, Total

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2018JCS1	K1804793-001	ND U	2.3	0.7	1	05/22/18 17:56	5/22/18	
2018JCS2	K1804793-002	ND U	3.1	0.99	1	05/22/18 17:56	5/22/18	
2018JCS3	K1804793-003	ND U	3.0	0.96	1	05/22/18 17:56	5/22/18	
2018HIHCS1	K1804793-004	ND U	2.4	0.8	1	05/22/18 17:56	5/22/18	
2018HIHCS2	K1804793-005	ND U	2.6	0.8	1	05/22/18 17:56	5/22/18	
2018HIHCS3	K1804793-006	ND U	2.7	0.9	1	05/22/18 17:56	5/22/18	
2018UCS1	K1804793-007	1.0 J	2.7	0.9	1	05/22/18 17:56	5/22/18	
2018UCS2	K1804793-008	ND U	3.3	1.1	1	05/22/18 17:56	5/22/18	
2018UCS3	K1804793-009	ND U	2.9	0.9	1	05/22/18 17:56	5/22/18	
Method Blank	K1804793-MB	ND U	1.0	0.3	1	05/22/18 17:56	5/22/18	

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Greens Creek Mine Project

Soil

Service Request: K1804793

Date Collected: 05/15/18

Date Received: 05/21/18

Date Analyzed: 05/22/18

Units: mg/Kg

Basis: Dry

Triplicate Sample Summary General Chemistry Parameters

Sample Name: 2018JCS1

Project

Sample Matrix:

Lab Code: K1804793-001

Analysis Method: PSEP Sulfide

Prep Method: Method

Analyte Name	MRL	MDL	Sample Result	Duplicate K1804793- 001DUP Result	Triplicate K1804793- 001TRP Result	Average	RSD	RSD Limit
Sulfide, Total	2.3	0.7	ND	ND	ND	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/7/2018 2:46:55 PM

SuperSet Reference:18-0000466875 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Greens Creek Mine Project

Sample Matrix: Soil

Service Request: Date Collected:

K1804793

Date Received:

05/15/18 05/21/18

Date Analyzed:

05/22/18

Date Extracted:

05/22/18

Duplicate Matrix Spike Summary

Sulfide, Total

Sample Name: 2018J

2018JCS1

Units: Basis:

mg/Kg Dry

Lab Code: Analysis Method:

Prep Method:

Project:

K1804793-001

PSEP Sulfide

Method

Matrix Spike

Duplicate Matrix Spike

K1804793-001MS

K1804793-001DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Sulfide, Total	ND U	820	900	91	780	930	84	28-175	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/7/2018 2:46:55 PM Superset Reference:18-0000466875 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K1804793

Project: Greens Creek Mine Project

Date Analyzed:

05/22/18

Sample Matrix:

Soil

Date Extracted:

05/22/18

Lab Control Sample Summary

Sulfide, Total

Analysis Method: PSEP Sulfide

Units:

mg/Kg

Prep Method:

Method

Basis:

Dry

Analysis Lot:

592097

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1804793-LCS	397	410	97	39-166

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804793 **Date Collected:** 05/15/18 **Project:** Greens Creek Mine Project

Date Received: 05/21/18 **Sample Matrix:** Soil

Analysis Method: PSEP TOC Units: Percent

Prep Method: ALS SOP Basis: Dry, per Method

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2018JCS1	K1804793-001	1.56	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018JCS2	K1804793-002	1.55	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018JCS3	K1804793-003	2.23	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018HIHCS1	K1804793-004	0.785	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018HIHCS2	K1804793-005	0.790	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018HIHCS3	K1804793-006	1.13	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018UCS1	K1804793-007	1.41	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018UCS2	K1804793-008	1.27	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018UCS3	K1804793-009	1.00	0.050	0.020	1	05/29/18 14:15	5/29/18	
Method Blank	K1804793-MB	ND U	0.050	0.020	1	05/29/18 14:15	5/29/18	

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project Greens Creek Mine Project

Sample Matrix: Soil

Service Request: K1804793

Date Collected: 05/15/18 **Date Received:** 05/21/18

Date Analyzed: 05/29/18

Units: Percent

Basis: Dry, per Method

Triplicate Sample Summary General Chemistry Parameters

Sample Name: 2018JCS1

Lab Code: K1804793-001

Analysis Method:

PSEP TOC

Prep Method: ALS SOP

Analyte Name	MRL	MDL	Sample Result	Duplicate K1804793- 001DUP Result	Triplicate K1804793- 001TRP Result	Average	RSD	RSD Limit
Carbon, Total Organic (TOC)	0.050	0.020	1.56	1.58	1.57	1.57	<1	27

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/7/2018 2:46:56 PM

SuperSet Reference:18-0000466875 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game **Service Request: Date Collected:**

K1804793

Project: Sample Matrix:

Greens Creek Mine Project

05/15/18

Soil

Date Received:

05/21/18

Date Analyzed: **Date Extracted:** 05/29/18 05/29/18

Duplicate Matrix Spike Summary

Carbon, Total Organic (TOC)

Units:

Percent

Sample Name: Lab Code:

2018JCS1

Basis:

Dry, per Method

Analysis Method:

Prep Method:

K1804793-001

PSEP TOC ALS SOP

Matrix Spike

Duplicate Matrix Spike

K1804793-001MS

K1804793-001DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organic (TOC)	1.56	4.81	3.27	99	4.72	3.17	100	69-123	1	27

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/7/2018 2:46:56 PM Superset Reference: 18-0000466875 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Greens Creek Mine Project

Sample Matrix:

Prep Method:

Project:

Soil

Service Request: Date Analyzed: K1804793 05/29/18

Date Extracted:

05/29/18

Lab Control Sample Summary

Carbon, Total Organic (TOC)

Analysis Method: PSEP TOC

ALS SOP

Units:

Percent

Basis:

Dry, per Method

Analysis Lot:

592766

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1804793-LCS	0.568	0.603	94	74-118

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Service Request: K1804793

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project Date Collected: 05/15/18 14:40

Sample Matrix: Soil Date Received: 05/21/18 09:45

Sample Name: 2018JCS1 Basis: Dry

Lab Code: K1804793-001

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	1.98	mg/Kg	0.025	0.009	5	06/01/18 10:28	05/31/18	
Copper	200.8	53.4	mg/Kg	0.13	0.05	5	06/01/18 10:28	05/31/18	
Lead	200.8	26.3	mg/Kg	0.064	0.025	5	06/01/18 10:28	05/31/18	
Mercury	7471B	0.036	mg/Kg	0.025	0.003	1	06/11/18 12:30	06/11/18	
Selenium	200.8	4.7	mg/Kg	1.3	0.09	5	06/01/18 10:28	05/31/18	
Zinc	200.8	191	mg/Kg	0.64	0.25	5	06/01/18 10:28	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804793 **Date Collected:** 05/15/18 14:53 **Project:** Greens Creek Mine Project

Date Received: 05/21/18 09:45 **Sample Matrix:** Soil

Sample Name: 2018JCS2 Basis: Dry

Lab Code: K1804793-002

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	2.13	mg/Kg	0.028	0.010	5	06/01/18 10:30	05/31/18	
Copper	200.8	47.5	mg/Kg	0.14	0.06	5	06/01/18 10:30	05/31/18	
Lead	200.8	15.2	mg/Kg	0.071	0.028	5	06/01/18 10:30	05/31/18	
Mercury	7471B	0.054	mg/Kg	0.024	0.002	1	06/11/18 12:31	06/11/18	
Selenium	200.8	3.9	mg/Kg	1.4	0.10	5	06/01/18 10:30	05/31/18	
Zinc	200.8	201	mg/Kg	0.71	0.28	5	06/01/18 10:30	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804793 **Date Collected:** 05/15/18 14:58 **Project:** Greens Creek Mine Project

Date Received: 05/21/18 09:45 **Sample Matrix:** Soil

Sample Name: 2018JCS3 Basis: Dry

Lab Code: K1804793-003

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	2.26	mg/Kg	0.024	0.008	5	06/01/18 10:32	05/31/18	
Copper	200.8	61.4	mg/Kg	0.12	0.05	5	06/01/18 10:32	05/31/18	
Lead	200.8	19.7	mg/Kg	0.059	0.024	5	06/01/18 10:32	05/31/18	
Mercury	7471B	0.044	mg/Kg	0.027	0.003	1	06/11/18 12:33	06/11/18	
Selenium	200.8	4.7	mg/Kg	1.2	0.08	5	06/01/18 10:32	05/31/18	
Zinc	200.8	227	mg/Kg	0.59	0.24	5	06/01/18 10:32	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804793 **Date Collected:** 05/15/18 10:22 **Project:** Greens Creek Mine Project

Date Received: 05/21/18 09:45 **Sample Matrix:** Soil

Sample Name: 2018HIHCS1 Basis: Dry

Lab Code: K1804793-004

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.699	mg/Kg	0.022	0.008	5	06/01/18 10:34	05/31/18	
Copper	200.8	35.1	mg/Kg	0.11	0.04	5	06/01/18 10:34	05/31/18	
Lead	200.8	7.15	mg/Kg	0.056	0.022	5	06/01/18 10:34	05/31/18	
Mercury	7471B	0.021	mg/Kg	0.019	0.002	1	06/11/18 12:35	06/11/18	
Selenium	200.8	1.5	mg/Kg	1.1	0.08	5	06/01/18 10:34	05/31/18	
Zinc	200.8	103	mg/Kg	0.56	0.22	5	06/01/18 10:34	05/31/18	

Analytical Report

Service Request: K1804793

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project Date Collected: 05/15/18 10:30

Sample Matrix: Soil Date Received: 05/21/18 09:45

Sample Name: 2018HIHCS2 Basis: Dry

Lab Code: K1804793-005

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.591	mg/Kg	0.024	0.008	5	06/01/18 10:36	05/31/18	
Copper	200.8	35.1	mg/Kg	0.12	0.05	5	06/01/18 10:36	05/31/18	
Lead	200.8	6.15	mg/Kg	0.059	0.024	5	06/01/18 10:36	05/31/18	
Mercury	7471B	0.016 J	mg/Kg	0.020	0.002	1	06/11/18 12:36	06/11/18	
Selenium	200.8	1.5	mg/Kg	1.2	0.08	5	06/01/18 10:36	05/31/18	
Zinc	200.8	91.9	mg/Kg	0.59	0.24	5	06/01/18 10:36	05/31/18	

Analytical Report

Service Request: K1804793

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project Date Collected: 05/15/18 10:40

Sample Matrix: Soil Date Received: 05/21/18 09:45

Sample Name: 2018HIHCS3 Basis: Dry

Lab Code: K1804793-006

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.791	mg/Kg	0.026	0.009	5	06/01/18 10:38	05/31/18	
Copper	200.8	46.1	mg/Kg	0.13	0.05	5	06/01/18 10:38	05/31/18	
Lead	200.8	8.67	mg/Kg	0.064	0.026	5	06/01/18 10:38	05/31/18	
Mercury	7471B	0.022 J	mg/Kg	0.024	0.002	1	06/11/18 12:38	06/11/18	
Selenium	200.8	2.0	mg/Kg	1.3	0.09	5	06/01/18 10:38	05/31/18	
Zinc	200.8	117	mg/Kg	0.64	0.26	5	06/01/18 10:38	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804793 **Date Collected:** 05/15/18 12:23 **Project:** Greens Creek Mine Project

Date Received: 05/21/18 09:45 **Sample Matrix:** Soil

Sample Name: 2018UCS1 Basis: Dry

Lab Code: K1804793-007

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.522	mg/Kg	0.030	0.010	5	06/01/18 10:44	05/31/18	
Copper	200.8	48.2	mg/Kg	0.15	0.06	5	06/01/18 10:44	05/31/18	
Lead	200.8	8.25	mg/Kg	0.074	0.030	5	06/01/18 10:44	05/31/18	
Mercury	7471B	0.022 J	mg/Kg	0.027	0.003	1	06/11/18 12:43	06/11/18	
Selenium	200.8	1.1 J	mg/Kg	1.5	0.1	5	06/01/18 10:44	05/31/18	
Zinc	200.8	89.3	mg/Kg	0.74	0.30	5	06/01/18 10:44	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804793 **Date Collected:** 05/15/18 12:33 **Project:** Greens Creek Mine Project

Date Received: 05/21/18 09:45 **Sample Matrix:** Soil

Sample Name: 2018UCS2 Basis: Dry

Lab Code: K1804793-008

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.869	mg/Kg	0.033	0.012	5	06/01/18 10:46	05/31/18	
Copper	200.8	56.9	mg/Kg	0.17	0.07	5	06/01/18 10:46	05/31/18	
Lead	200.8	11.4	mg/Kg	0.083	0.033	5	06/01/18 10:46	05/31/18	
Mercury	7471B	0.030	mg/Kg	0.025	0.002	1	06/11/18 12:44	06/11/18	
Selenium	200.8	1.7 J	mg/Kg	1.7	0.1	5	06/01/18 10:46	05/31/18	
Zinc	200.8	129	mg/Kg	0.83	0.33	5	06/01/18 10:46	05/31/18	

Analytical Report

Service Request: K1804793

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project **Date Collected:** 05/15/18 12:40

Sample Matrix: Soil Date Received: 05/21/18 09:45

Sample Name: 2018UCS3 Basis: Dry

Lab Code: K1804793-009

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.539	mg/Kg	0.030	0.010	5	06/01/18 10:48	05/31/18	
Copper	200.8	47.4	mg/Kg	0.15	0.06	5	06/01/18 10:48	05/31/18	
Lead	200.8	8.02	mg/Kg	0.074	0.030	5	06/01/18 10:48	05/31/18	
Mercury	7471B	0.035	mg/Kg	0.029	0.003	1	06/11/18 12:46	06/11/18	
Selenium	200.8	1.1 J	mg/Kg	1.5	0.1	5	06/01/18 10:48	05/31/18	
Zinc	200.8	88.9	mg/Kg	0.74	0.30	5	06/01/18 10:48	05/31/18	

Analytical Report

Service Request: K1804793

Client: Alaska Department of Fish and Game

Greens Creek Mine Project Date Collected: NA

Sample Matrix: Soil Date Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1807093-05

Project:

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	ND U	mg/Kg	0.020	0.007	5	06/01/18 09:58	05/31/18	
Copper	200.8	ND U	mg/Kg	0.10	0.04	5	06/01/18 09:58	05/31/18	
Lead	200.8	ND U	mg/Kg	0.05	0.020	5	06/01/18 09:58	05/31/18	
Selenium	200.8	ND U	mg/Kg	1.0	0.07	5	06/01/18 09:58	05/31/18	
Zinc	200.8	0.33 J	mg/Kg	0.5	0.20	5	06/01/18 09:58	05/31/18	

Analytical Report

Service Request: K1804793

Client: Alaska Department of Fish and Game

> Date Collected: NA Greens Creek Mine Project

Project: Date Received: NA **Sample Matrix:** Soil

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1807091-03

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Mercurv	7471B	ND U	mg/Kg	0.02	0.002	1	06/11/18 12:04	06/11/18	

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game **Service Request:** K1804793

Project Greens Creek Mine Project Date Collected: NA

Sample Matrix: Soil

Date Received: NA **Date Analyzed:** 06/01/18

Replicate Sample Summary

Total Metals

Sample Name: Units: mg/Kg Batch QC Lab Code: K1804762-009

Basis: Dry

Analyte Name	Analysis Method	MRL	MDL	Sample Result	Duplicate Sample KQ1807093-01 Result	Average	RPD	RPD Limit
Cadmium	200.8	0.024	0.008	2.39	2.39	2.39	<1	30
Copper	200.8	0.12	0.05	48.0	60.9	54.5	24	30
Lead	200.8	0.059	0.024	21.7	17.1	19.4	24	30
Selenium	200.8	1.2	0.08	7.6	9.0	8.3	16	30
Zinc	200.8	0.59	0.24	270	305	288	12	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Date Collected: 05/15/18

Project Greens Creek Mine Project

Service Request: K1804793

Sample Matrix: Soil **Date Received:** 05/21/18

Date Analyzed: 06/01/18

Replicate Sample Summary

Total Metals

Sample Name: 2018UCS3 Units: mg/Kg Lab Code: K1804793-009

Basis: Dry

Duplicate Sample **Analysis** KQ1807093-03 Sample **Analyte Name** Method **MRL MDL** Result Result Average **RPD RPD Limit** 200.8 0.539 Cadmium 0.030 0.011 0.527 0.533 30 3 Copper 200.8 0.15 0.06 47.4 41.7 44.6 13 30 Lead 200.8 0.076 0.030 8.02 8.04 8.03 <1 30 Selenium 1.0 J 13 30 200.8 1.5 0.11.1 J 1.1 Zinc 200.8 0.76 0.30 88.9 96.5 92.7 8 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game **Service Request:** K1804793

Greens Creek Mine Project

Date Collected: NA

Sample Matrix: Soil

Project

Date Received: NA **Date Analyzed:** 06/11/18

Replicate Sample Summary

Total Metals

Sample Name: Batch QC Units: mg/Kg

Lab Code: K1804762-009 Basis: Dry

Duplicate

Sample

Analysis KQ1807091-01 Sample

Analyte Name Method MRL **MDL** Result Result Average **RPD RPD Limit** 7471B 0.206 Mercury 0.027 0.003 0.202 0.204 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

Greens Creek Mine Project

Sample Matrix: Soil

Service Request:

K1804793

Date Collected:

N/A N/A

Date Received: Date Analyzed:

06/1/18

Date Extracted:

05/31/18

Matrix Spike Summary

Total Metals

Sample Name: Batch QC

K1804762-009

Units: Basis:

mg/Kg Dry

Analysis Method:

Lab Code:

Project:

200.8

Prep Method: EPA 3050B

Matrix Spike

KQ1807093-02

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	2.39	16.8	13.1	110	70-130
Copper	48.0	144	65.8	147 N	70-130
Lead	21.7	150	131	97	70-130
Selenium	7.6	149	131	107	70-130
Zinc	270	408	131	105	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project

Sample Matrix: Soil

Date Collected:05/15/18Date Received:05/21/18Date Analyzed:06/1/18

Date Extracted:

Service Request:

05/31/18

K1804793

Matrix Spike Summary

Total Metals

Sample Name: 2018UCS3

Lab Code: K1804793-009

Analysis Method: 200.8

Prep Method: EPA 3050B

Units: Basis:

mg/Kg Dry

Matrix Spike

KQ1807093-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	0.539	16.6	15.4	104	70-130
Copper	47.4	123	76.8	98	70-130
Lead	8.02	159	154	98	70-130
Selenium	1.1 J	166	154	107	70-130
Zinc	88.9	242	154	100	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1804793

Project:Greens Creek Mine ProjectDate Collected:N/ASample Matrix:SoilDate Received:N/A

Date Analyzed: 06/11/18

Date Extracted: 06/11/18

Matrix Spike Summary

Total Metals

 Sample Name:
 Batch QC
 Units:
 mg/Kg

 Lab Code:
 K1804762-009
 Basis:
 Dry

Analysis Method: 7471B **Prep Method:** Method

Matrix Spike KQ1807091-02

Analyte NameSample ResultResultSpike Amount% Rec% Rec LimitsMercury0.2060.9960.66311980-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/12/2018 3:50:25 PM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project

Sample Matrix: Soil

Service Request: K1804793 Date Analyzed: 06/01/18

Lab Control Sample Summary Total Metals

Units:mg/Kg Basis:Dry

Lab Control Sample

KQ1807093-06

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	200.8	217	211	103	70-117
Copper	200.8	172	166	104	71-119
Lead	200.8	116	111	104	71-129
Selenium	200.8	212	191	111	64-122
Zinc	200.8	186	199	94	67-125

Printed 6/12/2018 3:50:25 PM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project

Sample Matrix: Soil

Service Request: K1804793 Date Analyzed: 06/11/18

Lab Control Sample Summary Total Metals

> Units:mg/Kg Basis:Dry

Lab Control Sample KQ1807091-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7471B	12.2	11.5	106	60-139

Printed 6/12/2018 3:50:25 PM Superset Reference:

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

June 14, 2018

Analytical Report for Service Request No: K1804762

Kate Kanouse Alaska Department of Fish and Game Division of Habitat 802 3rd Street P.O. Box 110024 Douglas, AK 99811-0024

RE: 2018 Greens Creek Mine Project Request - ADF&G

Dear Kate.

Enclosed are the results of the sample(s) submitted to our laboratory May 18, 2018 For your reference, these analyses have been assigned our service request number **K1804762**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3356. You may also contact me via email at Kurt.Clarkson@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kurt Clarkson

Sr. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

General Chemistry

Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOO Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client: Alaska Department of Fish and Game Service Request: K1804762

Project: 2018 Greens Creek Mine Project Request - ADF&G Date Received: 05/18/2018

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt:

Nine soil samples were received for analysis at ALS Environmental on 05/18/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Metals:

Method 200.8, 06/01/2018: The matrix spike recovery of Copper for sample 2018ECS3 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

General Chemistry:

No significant anomalies were noted with this analysis.

	Kust	Classon	
Approved by			

Date	06/14/2018
Date	00/14/2010

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

CHAIN OF CUSTODY 89306

01	SR# 1 1 3 0 1 1 0 2
	COC Set of
	COC#

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068
water algorithm com

						www.alsglobal.com									Page 1 of 1			
Broject Name Greek Mike Project Manager	Project No	umber:			Б	4	28D	1800	000	999D		****				ļ		
Project Manager Kate Kanouse	,			S	├─┼	-	-	- 	-	63	\neg	Г		\neg		ļ		
Freda/Ar Dep		sh e Game		INER		F O			e.		2			- [
802 3rd St, Do	nglas,	4K 99824		N.	ş	2			artsiz	y)	ġΪ			1		<u> </u>		
Phone # (907) 445 - 4290 Sampler Signature	Sampler F	· Kanouse Pal	aska.go	R OF CONTAINERS	lified / T	C / PSE	5	etals T	22M / Pe	# !	SwRide				ĺ	<u> </u>		
288 T. W	J Gar	eg Albrecht		NUMBER	160.4 Modified / TVS	PSEP TOC / PSEP TOC	7471B / Hg	200.8 / Metals	ASTM D422M / Partsize	160.3 Modified / TS	82	L 63	3	4	2	Remarks		
CLIENT SAMPLE ID	LABID	SAMPLING Date Time	Matrix															
1. 2018 ECS1		5 16 1523	Soil	2	V	V	~	4	~		<u> </u>			_				
2. 2018 ECS2		5/16 1520	SOIL	2		긔			<u> </u>	_	긔			4			_	
3. 2018ZCS3		5/16 1516	5011	2	V	4	4	\leq	1	_	<u> </u>		_		_ }			
1. 2018 PCS1		5/16 1325	Soll	\mathcal{Z}	V	᠘	4	\leq	\angle	1	V		_		[
5. 2018 PCS2		5/16 1375	Soil	2	✓	4	4	<u> </u>	<u> </u>	1	4		_		_			
5. 2018 PCS3		5 16 1330	Soi'l	2		\checkmark	4		싀	<u> </u>	싀			4	_			
7. 2018 ECS1		6/16 1030	Soi	2	4	4	4	4	4	<u> </u>	4		\dashv		_			
3. 2018 ECS2		5/16 1045	soi\	2	<u> </u>	<u> </u>	4	4	4	4	4							
9. 2018ECS3		5/16 1040	Soil	2	4	4	<u> </u>	<u> </u>	4	4	4		4	Į_	4			
10. ×××									\perp				\perp	⊥.				
Report Requirements	P.O.#	oice Information	-												<u>C</u>	Circle which metals are	e to be analyzed	
Routine Report: Method Blank, Surrogate, as		Hecla Greens Cr.	eex.		Т	otal I	Metai	s: Al	As	Sb	Ва	а Ве	В	Ca ((p)	Co Cr 🛍 Fe	(b) Mg Mn Mo Ni K Ag N	Na (Se) Sr Ti Sn V (Zn) (Ag)
required	Mini	ng Company		Total Metals: Al As Sb Ba Be B Ca (cd) Co Cr (cu) Fe (b) Mg Mn Mo Ni K Ag Na (Se) Sr Tl Sn V (zn) (fg) Dissolved Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Tl Sn V Zn Hg														
II. Report Dup., MS, MSD as required		J		ecial													rbon Procedure: AK CA W	
III. CLP Like Summary		und Requiremer	nts	Jeciai	1113010	CHO	113/0	OHIN	icii.	э.			ı	mu	Cal	e State Hydroca	IDOIT FIOCEGUIE. AN CA VI	(Circle Offe)
(no raw data)	24	hr48 hr. Day	ľ															
IV. Data Validation Report	5 t	andard																
V. EDD		Requested Report Date																
Relinquished By:		Received By:		Rel	nqui	she	d B	y:				R	ecei	ved	Ву	:	Relinquished By:	Received By:
Signature T. WH	Signature	1 lost	Signa	ture						Sig	natu	ıre				Sign	nature	Signature
Printed Name Greg Albrecht	Printed Na	me 425	Printe	ted Name				Pri	Printed Name				Prin	ted Name	Printed Name			
irm ADFeG	Firm / 5 / 8	118 0930	Firm	1			Fin	n					Firm		Firm			
Date/Time SIVING 1610	Date/Time		Date/	Time						Dat	e/Ti	ime				Date	e/Time	Date/Time

Cooler Receipt and Preservation Form Client Service Request *K18* Opened: 5 Unloaded: Received: By: Fed Ex DHL PDX Hand Delivered Samples were received via? USPS < **UPS** Courier Cooler Other Box Envelope NA Samples were received in: (circle) Y (N) If yes, how many and where? Were custody seals on coolers? NA Y If present, were custody seals intact? N If present, were they signed and dated? Υ Ν Cooler/COC ID /> **Tracking Number** Corr. Thermometer Corrected. Raw Corrected NA NΑ Filed Factor Cooler Temp Packing material: Inserts Baggies Bubble Wrap Gel Packs , Wet Ice Dry Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? NA N) Were samples received in good condition (temperature, unbroken)? *Indicate in the table below*. NA If applicable, tissue samples were received: Partially Thawed Frozen Thawed 7. Were all sample labels complete (i.e analysis, preservation, etc.)? NA Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA N 8. Were appropriate bottles/containers and volumes received for the tests indicated? NA 9. N Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below N Were VOA vials received without headspace? Indicate in the table below. 12. Was C12/Res negative? N Sample ID on Bottle Sample ID on COC identified by:

Sample ID	Bottle Count Bottle Type	Out of Temp	Broke	Hq	Reagent	Volume added	Reagent Lot Number	Initials	Time
x 2018 ZCS2	1402 1-1602		X			}			
& 2018 PUSI	1-1602		X						

					'			<u> </u>		<u></u>
Note	s, Discrepancies, &	k Resolutions:								
Ä	s, Discrepancies, & ETrwsteved	toner	iars							
			J							- <u> </u>
-										
_										

7/25/16

Page of

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix: Soil

160.3 Modified Units: Percent

Analysis Method: Prep Method: Basis: As Received None

Solids, Total

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
2018ZCS1	K1804762-001	71.7	=	=	1	05/25/18 16:30	
2018ZCS2	K1804762-002	64.6	-	-	1	05/25/18 16:30	
2018ZCS3	K1804762-003	69.0	-	-	1	05/25/18 16:30	
2018PCS1	K1804762-004	62.2	-	-	1	05/25/18 16:30	
2018PCS2	K1804762-005	77.2	-	-	1	05/25/18 16:30	
2018PCS3	K1804762-006	78.4	-	-	1	05/25/18 16:30	
2018ECS1	K1804762-007	69.4	-	-	1	05/25/18 16:30	
2018ECS2	K1804762-008	65.8	-	-	1	05/25/18 16:30	
2018ECS3	K1804762-009	63.2	-	-	1	05/25/18 16:30	
Method Blank	K1804762-MB	ND U	=	=	1	05/25/18 16:30	

Date Received: 05/18/18

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Alaska Department of Fish and Game Client:

Service Request: K1804762

Project 2018 Greens Creek Mine Project Request - ADF&G **Date Collected:** 05/16/18

Sample Matrix: Soil **Date Received:** 05/18/18 **Date Analyzed:** 05/25/18

Replicate Sample Summary Inorganic Parameters

Sample Name:

2018ZCS1

Units: Percent

Lab Code:

K1804762-001

Basis: As Received

Duplicate Sample

K1804762-

Sample

001DUP

Analyte Name **Analysis Method** **MRL MDL** Result

Result

Average

RPD Limit

Solids, Total

160.3 Modified

71.7

72.9

72.3

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/7/2018 4:23:52 PM

Superset Reference:18-0000466874 rev 00

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix: Soil

160.4 Modified Units: Percent

Analysis Method: Prep Method: Basis: Dry, per Method None

Solids, Total Volatile

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
2018ZCS1	K1804762-001	3.80	0.10	-	1	05/25/18 16:30	*
2018ZCS2	K1804762-002	5.30	0.10	-	1	05/25/18 16:30	*
2018ZCS3	K1804762-003	3.90	0.10	-	1	05/25/18 16:30	*
2018PCS1	K1804762-004	3.30	0.10	-	1	05/25/18 16:30	*
2018PCS2	K1804762-005	2.90	0.10	-	1	05/25/18 16:30	*
2018PCS3	K1804762-006	3.30	0.10	-	1	05/25/18 16:30	*
2018ECS1	K1804762-007	5.40	0.10	-	1	05/25/18 16:30	*
2018ECS2	K1804762-008	5.60	0.10	-	1	05/25/18 16:30	*
2018ECS3	K1804762-009	4.90	0.10	-	1	05/25/18 16:30	*
Method Blank	K1804762-MB1	ND U	0.10	-	1	05/25/18 16:30	

Date Received: 05/18/18

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1804762

Project 2018 Greens Creek Mine Project Request - ADF&G **Date Collected:** 05/16/18

Sample Matrix: Soil **Date Received:** 05/18/18 **Date Analyzed:** 05/25/18

Replicate Sample Summary General Chemistry Parameters

Sample Name:

2018ZCS1

Units: Percent

Lab Code:

Basis: Dry, per Method

K1804762-001

Duplicate

Sample

K1804762-

Sample

001DUP

Analyte Name Solids, Total Volatile **Analysis Method** 160.4 Modified

0.10

MRL

Result 3.80

Result 4.00

Average

3.90

RPD Limit

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/7/2018 4:23:52 PM

Superset Reference:18-0000466874 rev 00

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client:Alaska Department of Fish and GameService Request:K1804762Project:2018 Greens Creek Mine Project Request - ADFDate Collected:5/16/2018

Sample Matrix: Soil

Date Collected: 5/16/2018

Date Received: 5/18/2018

Date Analyzed: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018ZCS1 Lab Code: K1804762-001

Sand Fraction:Dry Weight (Grams)59.2011Sand Fraction:Weight Recovered (Grams)59.1594Sand Fraction:Percent Recovery99.93

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.6103	1.04
Gravel, Fine	-2 Ø to -1 Ø	10.4037	17.75
Sand, Very Coarse	-1 to 0 Ø	26.1896	44.68
Sand, Coarse	0 to 1 Ø	14.8591	25.35
Sand, Medium	1 to 2 Ø	4.4243	7.55
Sand, Fine	2 to 3 Ø	2.0971	3.58
Sand, Very Fine	3 to 4 Ø	0.3650	0.62
75.0 µm	4 Ø	0.4850	0.83
31.3 μm	5 Ø	0.3600	0.61
15.6 μm	6 Ø	0.1550	0.26
7.8 µm	7 Ø	0.1200	0.20
3.9 µm	8 Ø	0.1100	0.19
1.95 μm	9 Ø	0.0150	0.03
0.98 µm	> 10 Ø	0.0000	0.00
		60.1941	102.70

K1804762WET.SC1 \6/12/2018 Page No.:

Client:Alaska Department of Fish and GameService Request:K1804762Project:2018 Greens Creek Mine Project Request - ADFDate Collected:5/16/2018

Sample Matrix: Soil

Date Conected: 5/10/2018

Date Received: 5/18/2018

Date Analyzed: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018ZCS2 Lab Code: K1804762-002

Sand Fraction:Dry Weight (Grams)57.3906Sand Fraction:Weight Recovered (Grams)57.2614Sand Fraction:Percent Recovery99.77

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	3.7091	6.23
Sand, Very Coarse	-1 to 0 Ø	19.8975	33.40
Sand, Coarse	0 to 1 Ø	22.3433	37.51
Sand, Medium	1 to 2 Ø	8.0894	13.58
Sand, Fine	2 to 3 Ø	2.5598	4.30
Sand, Very Fine	3 to 4 Ø	0.4286	0.72
75.0 µm	4 Ø	0.4750	0.80
31.3 μm	5 Ø	0.4450	0.75
15.6 μm	6 Ø	0.3100	0.52
7.8 µm	7 Ø	0.1350	0.23
3.9 µm	8 Ø	0.1050	0.18
1.95 μm	9 Ø	0.0150	0.03
0.98 μm	> 10 Ø	0.0000	0.00
		58.5127	98.23

K1804762WET.SC1 \6/12/2018 Page No.:

Client:Alaska Department of Fish and GameService Request:K1804762Project:2018 Greens Creek Mine Project Request - ADFDate Collected:5/16/2018

Sample Matrix: Soil

Date Collected: 5/16/2018

Date Received: 5/18/2018

Date Analyzed: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018ZCS3 Lab Code: K1804762-003

Sand Fraction:Dry Weight (Grams)56.9416Sand Fraction:Weight Recovered (Grams)56.9361Sand Fraction:Percent Recovery99.99

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	5.8452	10.68
Gravel, Fine	-2 Ø to -1 Ø	7.8446	14.33
Sand, Very Coarse	-1 to 0 Ø	19.3084	35.28
Sand, Coarse	0 to 1 Ø	18.0094	32.91
Sand, Medium	1 to 2 Ø	4.5480	8.31
Sand, Fine	2 to 3 Ø	1.2345	2.26
Sand, Very Fine	3 to 4 Ø	0.1131	0.21
75.0 μm	4 Ø	0.1450	0.26
31.3 μm	5 Ø	0.0500	0.09
15.6 μm	6 Ø	0.0250	0.05
7.8 µm	7 Ø	0.0150	0.03
3.9 µm	8 Ø	0.0300	0.05
1.95 μm	9 Ø	0.0550	0.10
0.98 μm	> 10 Ø	0.0150	0.03
		57.2382	104.58

Client:Alaska Department of Fish and GameService Request:K1804762Project:2018 Greens Creek Mine Project Request - ADFDate Collected:5/16/2018

Sample Matrix: Soil

Date Collected: 5/16/2018

Date Received: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018PCS1 Lab Code: K1804762-004

Sand Fraction:Dry Weight (Grams)32.3366Sand Fraction:Weight Recovered (Grams)32.2463Sand Fraction:Percent Recovery99.72

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	<-2 Ø	0.5540	1.44
Gravel, Fine	-2 Ø to -1 Ø	3.1245	8.12
Sand, Very Coarse	-1 to 0 Ø	10.1618	26.41
Sand, Coarse	0 to 1 Ø	8.6104	22.38
Sand, Medium	1 to 2 Ø	5.4644	14.20
Sand, Fine	2 to 3 Ø	3.1764	8.26
Sand, Very Fine	3 to 4 Ø	0.7688	2.00
75.0 µm	4 Ø	1.4950	3.89
31.3 µm	5 Ø	0.8250	2.14
15.6 μm	6 Ø	0.8500	2.21
7.8 µm	7 Ø	0.4900	1.27
3.9 µm	8 Ø	0.5450	1.42
1.95 µm	9 Ø	0.4550	1.18
0.98 µm	> 10 Ø	0.9550	2.48
		37.4753	97.40

Client:Alaska Department of Fish and GameService Request:K1804762Project:2018 Greens Creek Mine Project Request - ADFDate Collected:5/16/2018

Sample Matrix: Soil

Date Collected: 5/16/2018

Date Received: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018PCS2 Lab Code: K1804762-005

Sand Fraction:Dry Weight (Grams)45.5353Sand Fraction:Weight Recovered (Grams)45.4518Sand Fraction:Percent Recovery99.82

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	2.4042	5.02
Gravel, Fine	-2 Ø to -1 Ø	7.9718	16.64
Sand, Very Coarse	-1 to 0 Ø	15.2956	31.92
Sand, Coarse	0 to 1 Ø	12.3321	25.74
Sand, Medium	1 to 2 Ø	4.3260	9.03
Sand, Fine	2 to 3 Ø	2.2864	4.77
Sand, Very Fine	3 to 4 Ø	0.5640	1.18
75.0 μm	4 Ø	1.3100	2.73
31.3 μm	5 Ø	0.6450	1.35
15.6 μm	6 Ø	0.3400	0.71
7.8 µm	7 Ø	0.2450	0.51
3.9 µm	8 Ø	0.2650	0.55
1.95 μm	9 Ø	0.1850	0.39
0.98 μm	> 10 Ø	0.4450	0.93
		48.6151	101.47

Client:Alaska Department of Fish and GameService Request:K1804762Project:2018 Greens Creek Mine Project Request - ADFDate Collected:5/16/2018

Sample Matrix: Soil

Date Conected: 5/10/2018

Date Received: 5/18/2018

Date Analyzed: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018PCS3 Lab Code: K1804762-006

Sand Fraction:Dry Weight (Grams)47.9433Sand Fraction:Weight Recovered (Grams)47.9128Sand Fraction:Percent Recovery99.94

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.2647	0.50
Gravel, Fine	-2 Ø to -1 Ø	2.3401	4.38
Sand, Very Coarse	-1 to 0 Ø	11.0863	20.77
Sand, Coarse	0 to 1 Ø	19.5636	36.65
Sand, Medium	1 to 2 Ø	9.1739	17.18
Sand, Fine	2 to 3 Ø	4.7550	8.91
Sand, Very Fine	3 to 4 Ø	0.5564	1.04
75.0 µm	4 Ø	0.7850	1.47
31.3 μm	5 Ø	0.5150	0.96
15.6 μm	6 Ø	0.3700	0.69
7.8 µm	7 Ø	0.2250	0.42
3.9 µm	8 Ø	0.1250	0.23
1.95 μm	9 Ø	0.1100	0.21
0.98 μm	> 10 Ø	0.1950	0.37
	_	50.0650	93.78

Client:Alaska Department of Fish and GameService Request:K1804762Project:2018 Greens Creek Mine Project Request - ADFDate Collected:5/16/2018

Sample Matrix: Soil

Date Collected: 5/16/2018

Date Received: 5/18/2018

Date Analyzed: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018ECS1 Lab Code: K1804762-007

Sand Fraction:Dry Weight (Grams)42.3738Sand Fraction:Weight Recovered (Grams)42.4255Sand Fraction:Percent Recovery100.12

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	<-2 Ø	0.5804	1.21
Gravel, Fine	-2 Ø to -1 Ø	2.3478	4.89
Sand, Very Coarse	-1 to 0 Ø	6.9674	14.50
Sand, Coarse	0 to 1 Ø	11.3050	23.52
Sand, Medium	1 to 2 Ø	10.8868	22.65
Sand, Fine	2 to 3 Ø	8.8196	18.35
Sand, Very Fine	3 to 4 Ø	0.9946	2.07
75.0 µm	4 Ø	0.9550	1.99
31.3 µm	5 Ø	0.4850	1.01
15.6 μm	6 Ø	0.2650	0.55
7.8 µm	7 Ø	0.0550	0.11
3.9 µm	8 Ø	0.0850	0.18
1.95 μm	9 Ø	0.0950	0.20
0.98 µm	> 10 Ø	0.0100	0.02
		43.8516	91.25

Client:Alaska Department of Fish and GameService Request:K1804762Project:2018 Greens Creek Mine Project Request - ADFDate Collected:5/16/2018

Sample Matrix: Soil

Date Conected: 5/10/2018

Date Received: 5/18/2018

Date Analyzed: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018ECS2 Lab Code: K1804762-008

Sand Fraction:Dry Weight (Grams)42.8225Sand Fraction:Weight Recovered (Grams)42.7801Sand Fraction:Percent Recovery99.90

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	1.2992	2.79
Gravel, Fine	-2 Ø to -1 Ø	1.9487	4.19
Sand, Very Coarse	-1 to 0 Ø	9.1848	19.76
Sand, Coarse	0 to 1 Ø	12.5655	27.03
Sand, Medium	1 to 2 Ø	10.1269	21.78
Sand, Fine	2 to 3 Ø	6.5626	14.12
Sand, Very Fine	3 to 4 Ø	0.7443	1.60
75.0 μm	4 Ø	0.6250	1.34
31.3 μm	5 Ø	0.4600	0.99
15.6 μm	6 Ø	0.0850	0.18
7.8 µm	7 Ø	0.0650	0.14
3.9 µm	8 Ø	0.0450	0.10
1.95 μm	9 Ø	0.0250	0.05
0.98 μm	> 10 Ø	0.0600	0.13
		43.7970	94.20

K1804762WET.SC1 \6/12/2018 Page No.:

Client:Alaska Department of Fish and GameService Request:K1804762Project:2018 Greens Creek Mine Project Request - ADFDate Collected:5/16/2018

Sample Matrix: Soil

Date Conected: 5/10/2018

Date Received: 5/18/2018

Date Analyzed: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018ECS3 Lab Code: K1804762-009

Sand Fraction:Dry Weight (Grams)39.0380Sand Fraction:Weight Recovered (Grams)39.0323Sand Fraction:Percent Recovery99.99

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	<-2 Ø	0.6419	1.58
Gravel, Fine	-2 Ø to -1 Ø	3.2734	8.07
Sand, Very Coarse	-1 to 0 Ø	6.6196	16.33
Sand, Coarse	0 to 1 Ø	10.9001	26.89
Sand, Medium	1 to 2 Ø	8.6817	21.41
Sand, Fine	2 to 3 Ø	7.2983	18.00
Sand, Very Fine	3 to 4 Ø	1.0353	2.55
75.0 µm	4 Ø	1.1050	2.73
31.3 µm	5 Ø	0.5300	1.31
15.6 μm	6 Ø	0.1750	0.43
7.8 µm	7 Ø	0.1500	0.37
3.9 µm	8 Ø	0.0550	0.14
1.95 μm	9 Ø	0.0100	0.02
0.98 µm	> 10 Ø	0.0100	0.02
-		40.4853	99.86

Client:Alaska Department of Fish and GameService Request:K1804762Project:2018 Greens Creek Mine Project Request - ADFDate Collected:5/16/2018

Sample Matrix: Soil

Date Conected: 5/10/2018

Date Received: 5/18/2018

Date Analyzed: 5/29/2018

Particle Size Determination ASTM D422M

Sample Name: 2018ECS3

Lab Code: K1804762-009DUP

Sand Fraction:Dry Weight (Grams)41.3032Sand Fraction:Weight Recovered (Grams)41.3010Sand Fraction:Percent Recovery99.99

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	1.6547	3.96
Gravel, Fine	-2 Ø to -1 Ø	4.6384	11.10
Sand, Very Coarse	-1 to 0 Ø	7.6001	18.19
Sand, Coarse	0 to 1 Ø	11.2608	26.96
Sand, Medium	1 to 2 Ø	8.5138	20.38
Sand, Fine	2 to 3 Ø	6.1799	14.79
Sand, Very Fine	3 to 4 Ø	1.0022	2.40
75.0 µm	4 Ø	1.0950	2.62
31.3 μm	5 Ø	0.4700	1.13
15.6 μm	6 Ø	0.1950	0.47
7.8 µm	7 Ø	0.0500	0.12
3.9 µm	8 Ø	0.1600	0.38
1.95 μm	9 Ø	0.0200	0.05
0.98 μm	> 10 Ø	0.0350	0.08
		42.8749	102.63

K1804762WET.SC1 \6/12/2018 Page No.:

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix: Soil

Analysis Method: PSEP Sulfide Prep Method: Method

Date Received: 05/18/18

Units: mg/Kg Basis: Dry

Sulfide, Total

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2018ZCS1	K1804762-001	ND U	2.7	0.9	1	05/22/18 17:56	5/22/18	
2018ZCS2	K1804762-002	ND U	2.8	0.9	1	05/22/18 17:56	5/22/18	
2018ZCS3	K1804762-003	ND U	2.8	0.9	1	05/22/18 17:56	5/22/18	
2018PCS1	K1804762-004	ND U	2.4	0.8	1	05/22/18 17:56	5/22/18	
2018PCS2	K1804762-005	1.0 J	2.1	0.7	1	05/22/18 17:56	5/22/18	
2018PCS3	K1804762-006	ND U	2.1	0.7	1	05/23/18 18:24	5/23/18	
2018ECS1	K1804762-007	ND U	2.7	0.9	1	05/23/18 18:24	5/23/18	
2018ECS2	K1804762-008	0.8 J	2.1	0.7	1	05/23/18 18:24	5/23/18	
2018ECS3	K1804762-009	ND U	3.0	0.97	1	05/23/18 18:24	5/23/18	
Method Blank	K1804762-MB1	ND U	1.0	0.3	1	05/22/18 17:56	5/22/18	
Method Blank	K1804762-MB2	ND U	1.0	0.3	1	05/23/18 18:24	5/23/18	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1804762

Project 2018 Greens Creek Mine Project Request - ADF&G **Date Collected:** 05/16/18

Sample Matrix: Soil

Date Received: 05/18/18 **Date Analyzed:** 05/23/18

Triplicate Sample Summary General Chemistry Parameters

Sample Name: 2018PCS3 Units: mg/Kg

Lab Code: K1804762-006 Basis: Dry

Analysis Method: PSEP Sulfide Prep Method:

Method

Analyte Name	MRL	MDL	Sample Result	Duplicate K1804762- 006DUP Result	Triplicate K1804762- 006TRP Result	Average	RSD	RSD Limit
Sulfide, Total	1.9	0.6	ND	ND	ND	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/12/2018 11:28:14 AM

SuperSet Reference: 18-0000466874 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game **Project:**

Service Request: Date Collected:

K1804762

2018 Greens Creek Mine Project Request - ADF&G

Date Analyzed:

05/16/18

Sample Matrix: Soil **Date Received:**

05/18/18

Date Extracted:

05/23/18 05/23/18

Duplicate Matrix Spike Summary

Sulfide, Total

Sample Name: 2018PCS3 **Units:**

mg/Kg

Lab Code:

K1804762-006

Basis: Dry

Analysis Method: Prep Method:

PSEP Sulfide

Method

Matrix Spike

Duplicate Matrix Spike

K1804762-006MS

K1804762-006DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Sulfide, Total	ND U	670	720	93	670	710	94	28-175	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/12/2018 11:28:14 AM Superset Reference: 18-0000466874 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K1804762

Project: 2018 Greens Creek Mine Project Request - ADF&G

Date Analyzed:

05/22/18

Sample Matrix:

Soil

Date Extracted:

05/22/18

Lab Control Sample Summary

Sulfide, Total

Analysis Method:

PSEP Sulfide

Units:

mg/Kg

Prep Method:

Method

Basis:

Dry

Analysis Lot:

592097

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1804762-LCS1	397	410	97	39-166

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request:

K1804762

Project:

2018 Greens Creek Mine Project Request - ADF&G

Date Analyzed:

05/23/18

Sample Matrix:

Soil

Date Extracted:

05/23/18

Lab Control Sample Summary

Sulfide, Total

Analysis Method:

PSEP Sulfide

Units:

mg/Kg

Prep Method:

Method

Basis:

III₅/ IX

Analysis Lot:

Dry

592192

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1804762-LCS2	421	390	108	39-166

Analytical Report

Alaska Department of Fish and Game **Client:**

Service Request: K1804762 **Date Collected:** 05/16/18 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix:

Analysis Method:

Soil

PSEP TOC Units: Percent

Prep Method: ALS SOP Basis: Dry, per Method

Date Received: 05/18/18

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2018ZCS1	V1904762 001	0.915	0.050	0.020	1	05/29/18 14:15	5/29/18	
	K1804762-001		0.050		1		0, 2, 1	
2018ZCS2	K1804762-002	1.10	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018ZCS3	K1804762-003	0.745	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018PCS1	K1804762-004	0.722	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018PCS2	K1804762-005	0.608	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018PCS3	K1804762-006	0.674	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018ECS1	K1804762-007	2.64	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018ECS2	K1804762-008	2.95	0.050	0.020	1	05/29/18 14:15	5/29/18	
2018ECS3	K1804762-009	2.58	0.050	0.020	1	05/29/18 14:15	5/29/18	
Method Blank	K1804762-MB1	ND U	0.050	0.020	1	05/29/18 14:15	5/29/18	

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K

K1804762

Project:

2018 Greens Creek Mine Project Request - ADF&G

Date Analyzed:

05/29/18

Sample Matrix:

Prep Method:

Soil

Date Extracted:

05/29/18

Lab Control Sample Summary

Carbon, Total Organic (TOC)

Analysis Method: PSEI

PSEP TOC ALS SOP **Units:**

Percent

Basis:

Dry, per Method

Analysis Lot:

592766

		Spike			% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1804762-LCS1	0.568	0.603	94	74-118

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 15:23 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 05/18/18 09:30 **Sample Matrix:** Soil

Sample Name: 2018ZCS1 Basis: Dry

Lab Code: K1804762-001

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	2.13	mg/Kg	0.027	0.010	5	06/01/18 10:02	05/31/18	
Copper	200.8	31.1	mg/Kg	0.14	0.05	5	06/01/18 10:02	05/31/18	
Lead	200.8	11.5	mg/Kg	0.069	0.027	5	06/01/18 10:02	05/31/18	
Mercury	7471B	0.030	mg/Kg	0.026	0.003	1	06/11/18 12:07	06/11/18	
Selenium	200.8	1.5	mg/Kg	1.4	0.10	5	06/01/18 10:02	05/31/18	
Zinc	200.8	325	mg/Kg	0.69	0.27	5	06/01/18 10:02	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 15:20 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 05/18/18 09:30 **Sample Matrix:** Soil

Sample Name: 2018ZCS2 Basis: Dry

Lab Code: K1804762-002

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	6.08	mg/Kg	0.030	0.011	5	06/01/18 10:04	05/31/18	
Copper	200.8	62.3	mg/Kg	0.15	0.06	5	06/01/18 10:04	05/31/18	
Lead	200.8	248	mg/Kg	0.076	0.030	5	06/01/18 10:04	05/31/18	
Mercury	7471B	0.054	mg/Kg	0.031	0.003	1	06/11/18 12:09	06/11/18	
Selenium	200.8	2.3	mg/Kg	1.5	0.1	5	06/01/18 10:04	05/31/18	
Zinc	200.8	663	mg/Kg	0.76	0.30	5	06/01/18 10:04	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 15:16 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 05/18/18 09:30 **Sample Matrix:** Soil

Sample Name: 2018ZCS3 Basis: Dry

Lab Code: K1804762-003

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	1.53	mg/Kg	0.027	0.010	5	06/01/18 10:06	05/31/18	
Copper	200.8	26.2	mg/Kg	0.14	0.05	5	06/01/18 10:06	05/31/18	
Lead	200.8	15.9	mg/Kg	0.068	0.027	5	06/01/18 10:06	05/31/18	
Mercury	7471B	0.030	mg/Kg	0.028	0.003	1	06/11/18 12:10	06/11/18	
Selenium	200.8	3.8	mg/Kg	1.4	0.10	5	06/01/18 10:06	05/31/18	
Zinc	200.8	286	mg/Kg	0.68	0.27	5	06/01/18 10:06	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 13:25 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 05/18/18 09:30 **Sample Matrix:** Soil

Sample Name: 2018PCS1 Basis: Dry

Lab Code: K1804762-004

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.283	mg/Kg	0.031	0.011	5	06/01/18 10:08	05/31/18	
Copper	200.8	43.7	mg/Kg	0.15	0.06	5	06/01/18 10:08	05/31/18	
Lead	200.8	7.45	mg/Kg	0.076	0.031	5	06/01/18 10:08	05/31/18	
Mercury	7471B	0.018 J	mg/Kg	0.029	0.003	1	06/11/18 12:12	06/11/18	
Selenium	200.8	0.5 J	mg/Kg	1.5	0.1	5	06/01/18 10:08	05/31/18	
Zinc	200.8	110	mg/Kg	0.76	0.31	5	06/01/18 10:08	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 13:25 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 05/18/18 09:30 **Sample Matrix:** Soil

Sample Name: 2018PCS2 Basis: Dry

Lab Code: K1804762-005

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.194	mg/Kg	0.021	0.007	5	06/01/18 10:10	05/31/18	
Copper	200.8	24.1	mg/Kg	0.10	0.04	5	06/01/18 10:10	05/31/18	
Lead	200.8	5.09	mg/Kg	0.052	0.021	5	06/01/18 10:10	05/31/18	
Mercury	7471B	0.016 J	mg/Kg	0.024	0.002	1	06/11/18 12:14	06/11/18	
Selenium	200.8	0.4 J	mg/Kg	1.0	0.07	5	06/01/18 10:10	05/31/18	
Zinc	200.8	77.6	mg/Kg	0.52	0.21	5	06/01/18 10:10	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 13:30 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 05/18/18 09:30 **Sample Matrix:** Soil

Sample Name: 2018PCS3 Basis: Dry

Lab Code: K1804762-006

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.205	mg/Kg	0.022	0.008	5	06/01/18 10:12	05/31/18	
Copper	200.8	26.4	mg/Kg	0.11	0.04	5	06/01/18 10:12	05/31/18	
Lead	200.8	5.18	mg/Kg	0.055	0.022	5	06/01/18 10:12	05/31/18	
Mercury	7471B	0.036	mg/Kg	0.023	0.002	1	06/11/18 12:15	06/11/18	
Selenium	200.8	0.3 J	mg/Kg	1.1	0.08	5	06/01/18 10:12	05/31/18	
Zinc	200.8	80.5	mg/Kg	0.55	0.22	5	06/01/18 10:12	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 10:30 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 05/18/18 09:30 **Sample Matrix:** Soil

Sample Name: 2018ECS1 Basis: Dry

Lab Code: K1804762-007

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	3.20	mg/Kg	0.024	0.009	5	06/01/18 10:14	05/31/18	
Copper	200.8	54.7	mg/Kg	0.12	0.05	5	06/01/18 10:14	05/31/18	
Lead	200.8	21.1	mg/Kg	0.061	0.024	5	06/01/18 10:14	05/31/18	
Mercury	7471B	0.263	mg/Kg	0.027	0.003	1	06/11/18 12:17	06/11/18	
Selenium	200.8	8.9	mg/Kg	1.2	0.09	5	06/01/18 10:14	05/31/18	
Zinc	200.8	296	mg/Kg	0.61	0.24	5	06/01/18 10:14	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 10:45 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 05/18/18 09:30 **Sample Matrix:** Soil

Sample Name: 2018ECS2 Basis: Dry

Lab Code: K1804762-008

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	1.38	mg/Kg	0.028	0.010	5	06/01/18 10:16	05/31/18	
Copper	200.8	47.2	mg/Kg	0.14	0.06	5	06/01/18 10:16	05/31/18	
Lead	200.8	14.0	mg/Kg	0.069	0.028	5	06/01/18 10:16	05/31/18	
Mercury	7471B	0.162	mg/Kg	0.028	0.003	1	06/11/18 12:18	06/11/18	
Selenium	200.8	7.9	mg/Kg	1.4	0.10	5	06/01/18 10:16	05/31/18	
Zinc	200.8	218	mg/Kg	0.69	0.28	5	06/01/18 10:16	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Date Collected:** 05/16/18 10:40 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 05/18/18 09:30 **Sample Matrix:** Soil

Sample Name: 2018ECS3 Basis: Dry

Lab Code: K1804762-009

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	2.39	mg/Kg	0.023	0.008	5	06/01/18 10:22	05/31/18	
Copper	200.8	48.0	mg/Kg	0.11	0.05	5	06/01/18 10:22	05/31/18	
Lead	200.8	21.7	mg/Kg	0.057	0.023	5	06/01/18 10:22	05/31/18	
Mercury	7471B	0.206	mg/Kg	0.025	0.002	1	06/11/18 12:23	06/11/18	
Selenium	200.8	7.6	mg/Kg	1.1	0.08	5	06/01/18 10:22	05/31/18	
Zinc	200.8	270	mg/Kg	0.57	0.23	5	06/01/18 10:22	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1804762

Date Collected: NA **Project:** 2018 Greens Creek Mine Project Request - ADF&G Date Received: NA **Sample Matrix:** Soil

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1807093-05

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	ND U	mg/Kg	0.020	0.007	5	06/01/18 09:58	05/31/18	
Copper	200.8	ND U	mg/Kg	0.10	0.04	5	06/01/18 09:58	05/31/18	
Lead	200.8	ND U	mg/Kg	0.05	0.020	5	06/01/18 09:58	05/31/18	
Selenium	200.8	ND U	mg/Kg	1.0	0.07	5	06/01/18 09:58	05/31/18	
Zinc	200.8	0.33 J	mg/Kg	0.5	0.20	5	06/01/18 09:58	05/31/18	

Analytical Report

Client: Alaska Department of Fish and Game **Service Request:** K1804762

Project: 2018 Greens Creek Mine Project Request - ADF&G Date Collected: NA

Sample Matrix:

Soil

Date Received: NA

Sample Name:

Method Blank

Basis: Dry

Lab Code: KQ1807091-03

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Mercury	7471B	ND U	mg/Kg	0.02	0.002	1	06/11/18 12:04	06/11/18	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Total Metals

Client: Alaska Department of Fish and Game

2018 Greens Creek Mine Project Request - ADF&G

Project Sample Matrix: Soil

Date Received: 05/18/18 **Date Analyzed:** 06/01/18

Service Request: K1804762

Date Collected: 05/16/18

Replicate Sample Summary

Sample Name: 2018ECS3 Units: mg/Kg Lab Code: K1804762-009

Basis: Dry

Duplicate Sample **Analysis** Sample KQ1807093-01 **Analyte Name** Method **MRL MDL** Result Result Average RPD **RPD Limit** 2.39 Cadmium 200.8 0.024 0.008 2.39 2.39 30 <1 Copper 200.8 0.12 0.05 48.0 60.9 54.5 24 30 Lead 200.8 0.059 0.024 21.7 17.1 19.4 24 30 Selenium 9.0 30 200.8 1.2 0.08 7.6 8.3 16 Zinc 200.8 0.59 0.24 270 305 288 12 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1804762

Project 2018 Greens Creek Mine Project Request - ADF&G **Date Collected:** 05/16/18

Sample Matrix: Soil **Date Received:** 05/18/18 **Date Analyzed:** 06/11/18

Replicate Sample Summary

Total Metals

Sample Name:

2018ECS3

Units: mg/Kg

Lab Code:

K1804762-009

Basis: Dry

Duplicate

Sample

Analysis

Sample

KQ1807091-01 Result

Average

RPD

RPD Limit

Analyte Name Method 7471B Mercury

MRL 0.027 **MDL** 0.003 Result 0.206

0.202

0.204

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/13/2018 3:45:16 PM Superset Reference:

Page 47 of 51

QA/QC Report

Client: Alaska Department of Fish and Game

2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix: Soil

Project:

Date Analyzed:

K1804762 05/16/18

Date Collected: Date Received:

Service Request:

05/18/18

Date Extracted:

06/1/18 05/31/18

Matrix Spike Summary

Total Metals

2018ECS3

Units: Basis:

mg/Kg Dry

Lab Code: **Analysis Method:**

K1804762-009 200.8

Prep Method:

Sample Name:

EPA 3050B

Matrix Spike

KQ1807093-02

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	2.39	16.8	13.1	110	70-130
Copper	48.0	144	65.8	147 N	70-130
Lead	21.7	150	131	97	70-130
Selenium	7.6	149	131	107	70-130
Zinc	270	408	131	105	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix: Soil

Project:

Service Request: Date Collected: K1804762

Date Received:

05/16/18

Date Received: Date Analyzed: 05/18/18 06/11/18

Date Extracted:

06/11/18

Matrix Spike Summary

Total Metals

Sample Name: 2018ECS3

Lab Code: K1804762-009

Analysis Method: Prep Method:

7471B Method **Units:**

Basis:

mg/Kg

Dry

Matrix Spike

KQ1807091-02

Analyte NameSample ResultResultSpike Amount% Rec% Rec LimitsMercury0.2060.9960.66311980-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K1804762 **Project:** 2018 Greens Creek Mine Project Request - ADF&G **Date Analyzed:** 06/01/18

Sample Matrix: Soil

Lab Control Sample Summary Total Metals

Units:mg/Kg Basis:Dry

Lab Control Sample

KQ1807093-06

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	200.8	217	211	103	70-117
Copper	200.8	172	166	104	71-119
Lead	200.8	116	111	104	71-129
Selenium	200.8	212	191	111	64-122
Zinc	200.8	186	199	94	67-125

QA/QC Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project Request - ADF&G Date Analyzed: 06/11/18

Sample Matrix: Soil

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Service Request: K1804762

Lab Control Sample KQ1807091-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7471B	12.2	11.5	106	60-139

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

August 30, 2018

Analytical Report for Service Request No: K1806728

Kate Kanouse Alaska Department of Fish and Game Division of Habitat 802 3rd Street P.O. Box 110024 Douglas, AK 99811-0024

RE: Greens Creek Mine Project

Dear Kate.

Enclosed are the results of the sample(s) submitted to our laboratory July 18, 2018 For your reference, these analyses have been assigned our service request number **K1806728**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3356. You may also contact me via email at Kurt.Clarkson@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kurt Clarkson

Sr. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

General Chemistry

Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOO Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client: Alaska Department of Fish and Game Service Request: K1806728

Project: Greens Creek Mine Project Date Received: 07/18/2018

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt:

Fifteen soil samples were received for analysis at ALS Environmental on 07/18/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Metals:

No significant anomalies were noted with this analysis.

General Chemistry:

Method PSEP Sulfide, 07/19/2018:The Relative Percent Difference (RPD) for Total Sulfide in the replicate matrix spike analyses of sample 2018CC-S1 was outside control criteria. The associated QA/QC results (e.g. control sample, matrix spikes, method blank, calibration standards, etc.) indicate the analysis was in control. No further corrective action was appropriate.

Method PSEP Sulfide, 08/29/2018:Samples 2018GC48-S1, 2018GC48-S2, 2018GC48-S3, 2018GC54-S1, 2018GC54-S2 and 2018GC54-S3 for Total Sulfide were received past holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

Method PSEP Sulfide, 08/29/2018:The Relative Standard Difference (RSD) criterion for the replicate analysis of Total Sulfide in sample 2018GC48-S1 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

	Kust	Classicon
Approved by		

D-4-	08/30/2018
Date	U8/3U/2UT8

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

	Environmental
(ALS)	Environmental

CHAIN OF CUSTODY 1317 South 13th Ave., Kelso, WA 98626 +1 360 577 7222 +1 800 695 7222 +1 360 636 1068 (fax) PAGE														SR#_K1806728											
				98626	+13	60 577	7222	+1	800 69	5 7222	+1	360 636	6 1068	(fax)	F	PAGE		/	_OF	_6	<u>λ</u>	. CO	C#		
PROJECT NUMBER PROJECT NUMBER	r lin	ie Proj	rect				' /	1	PAHO	BTEXC	SGT[]			7	Γ,		/ Ş ^ŷ /	. /	2006[]	45745	77	Ethene	7/	$\overline{}$	
PROJECT MANAGER KANON						\Box ,	, /	18	SMIS D	\$ \Z		1 /	8151	_/	\sim l	7.4.F	` /¿	· /	75/	100 Z	¥/				1.61
TOF-1G DIV	SIDN O	f Hak	eitat _			_/ ⋚	1	18	9/ 9	Molio Pelom		\ \frac{\frac{1}{2}}{2}		0/8	ኦ / ሂ ኔ / ấ	10, 504, PO4, P	;/ <u>\$</u>	g/ g	ος/ ₁	ž / Ž		a la	. /	/,	12/
ADDRES 2 3rd St						/ <u>*</u>	/ /	19 8 P. 19 19 19 19 19 19 19 19 19 19 19 19 19				\$ \s	9141 <u>[</u> 81511 <u>M</u>		िं हैं	100 12		2 198 1 75 1 75 1 75 1 75 1 75 1 75 1 75 1 75		\g	10 ^L	12	/	7	\\$\
DOUGLAS, A	C 92	891 99	824		<i> </i>	CONTAINERS	1/2	\$ [7]	3/	2 jo de		Congeners (180		Hex-Chross		14000, TKN,	40× 198	\z\g^{\gamma}	00	hara ena		' /	<u> </u>	200
E-MAIL ADDRESS PHONE I	(dala	ska. 90	V		/	<i>≯</i> / ≥	Semivolatile C	10/2				608 Tricides/Harbicides Chlomo/ 808/Tricides	Metals, Total		_ /3	ళ్ <i>ద</i> / }	: <i>}</i> /	/و		to 8 / 6		MON	\g\\c	2 \v	ი/
407-465-42	90				NUMBER	y /	180		20 J. J. J. J. J. J. J. J. J. J. J. J. J.	0/1 & Great Dig	1 8			Syamich Per	(circle) PH.	Circle) NH3	10 % XOT	Alkalini		Pissolved P	160	م√رة	٠/۾	1/2	<i>S</i> /
SAMPLER S SENATURE KA] 🕺	1	\[\int_{\text{g}} \]	Volatile (BEE!	9 K G G	8 8			79 / E	(g)	3 8 0	'/ð	 ka			10	7. S. J.	1/20	/% DE	MARKS
SAMPLE I.D.	DATE	TIME	LAB I.D.	MATRIX	1	/	/ /	<u>, → %</u>	1-7	- / -	7/4	6/0,	\$/ \$ &	7 0	/ତ≥	/ © 7	<u> </u>	-1	/F #	12 &				- 7	IWANNO
2018GC4B-SI	, , , , , , , , , , , , , , , , , , ,	1010		(Spi)	2								•	ļ							V	'	V	V	
2018 GC48-S2	7/11/18	1010		Soil	2						\perp		V						~		~	V		-	4-4
2018 GC48-53	7/11/18	1010		soil	2								~						/		7	/		~	
2018 GC 54-51	7/10/18	1115		80i	2								/						/		~	/	<u> </u>	'	
2016 GC54-52	7/10/18	1115		soil	2								1						~			/		~	
20186654-53	7/10/18	1115		soil	2								V						~			/	•	/	
2018CC-S1	7/12/18	1520		soil	2								V						V		~	~	V	V	
2018CC-52	7/12/18	1520		SOYI	2								V						V		/	/	/	١	
2018 CC - S3	7/12/18	1520		Soil	2								1						✓		V	✓	✓	-	
\ \	}							<u></u>			4						$\neg \downarrow$	\Box		$\overline{}$			$\overline{\neg}$	$\neg \neg$	~
REPORT REQUIREM	ENTS		ICE INFOR	MATION	1	Circle	which m	etais	are to be	analyze	<u>:d:</u>					 									
I. Routine Report: N	Method	P.O. # Bill To:	Hech			Tota	l Metals:	: Al	As St	Ba B	Be B	Ca (Cd)	Co d	or G y)Fe (PD Mg	, Mn	Мо	Ni F	< Ag	Na C	Se) Si	r Ti S	Sn V⊹	Ø₽#9
Blank, Surrogate,			ace h									_				_									Zn Hg
required				ning.	com							N PROC							····						LE ONE)
✓ II. Report Dup., MS.	, MSD as	TURNAR	OUND REC	UIREM	ENTS	SPEC	IAL IN	STRU	JCTION	IS/CON	MEN	TS:								1				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
required	;	24 h	nr.	_ 48 hr.		-f	V H	n	<i>se</i>	747	IB								(Cant	aine	r Søj	àpiy l	NyAt	oer
III. CLP Like Summa (no raw data)	ıry	5 da	ıy				Ţ	ノ 	- 4		_/			,						\11			MIL	KILLI	H##
IV. Data Validation R	onort		ndard (15 wor		s)	يي	uny	rus	; sn	PPIA	α	in D Cs u	- C	<i>0016</i>	12					V.					
V. EDD	eport	Prov	ide FAX Res	ults	Ì	W	10	OPI	125	04	COC	is u	n' 1	20 +	1							799	21		
v. EDD		Red	quested Repo	ort Date		☐ Sa	mple S	Shipr	ment c	ontain	s USE)A regu	lated	soil sa	ample	s (che	ck bo	x if a	applic	able)					
, 2 , RELINQUIS	SHED BY:		T		RECE	IVED E	BY:			T		REL	INQUI	SHED	BY:			T			RE	CEIVE	D BY:	:	
Kather :	7/17/18	1000	8	22	\leq	Z-7	1484	8 6	2950				.,					_							
Kate Kanouse	Date/Tim	e e 6	Signat	ure /	اسرده	Da	te/Time 4んらべ	9		Sig	natur	9		Date	/Time	}			Signat	ure			Date/	Time	. —
Printed Name Firm Printed Name Firm Printed Name Firm Printed Name Firm																									

ALSE	nvironmental
	1317

CHAIN OF CUSTODY

SR# <u>K1806728</u> OF **2** COC#

			Kelso, WA 9	98626	+1 3	60 577	7222	+1	800 €	695 72	22	+1 36	0 636	1068			PAGE		2	OF	-	<u></u>	CO	C#		
PROJECT NAME PROJECT NUMBER PROJECT NAME use islow of c 991 coal	Habi- 824	jat_	MATRIX I		SER OF CONTAINERS	Semirolativ	<u>0</u> β/	Hydrocology BES	Cas Cabons (*80210 BTEXO) & GREAT BIEXO	PCBs HEM DH 164 S	Pesticides // Conc.	Chloropher 817.	Metals, Tetra C 81510	Syanide Cowy Dissolved	Coincie PH C Hex-Chrom 7 8	(c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	70X 902 17KN, 70C	Alkalinity Aox 16EC	Total Cos D 506D	Dissolved of ASK	160, Wethane [2]	4	N/	3/	MARKS	
2018 TC9-SI	1/12/18			soil										1								1	V	V	1	
2018TC9-52	7/12/18	1410		Soil	2									✓										_	1	
2018TC9-53	7/12/18	1410		sail	2									V								~	1	/		
2018TC1847-SI	7/12/12	1100		soil	2									√								V	~	/	/	
2018TC1847-52				sa'l	2									1								٧ 	1	<u> </u>		
2018TC1847-53	7/12/18	1100		sail	2									V								V	/		/	
\wedge			\triangle			\													\triangle							
					/_								A					4		$\frac{1}{}$			/			
	7			7			Y														\forall					
REPORT REQUIREM I. Routine Report: N Blank, Surrogate, required	Method	P.O. # Bill To: _	e@hecla	?-		Tota	ıl Metal	s: Al	As S		a Be															Zn Hg Zn Hg
II. Report Dup., MS,	MSD as	TUDNAD	MININE OUND REQ		NTC	*IND	ICATE	STA	TE H	YDRO	CARE	ON P	ROC	EDUR	E: A	K C	A W	N	ORTH	IWES	т от	HER:			(CIRC	LE ONE)
requiredIII. CLP Like Summa (no raw data)IV. Data Validation Re	ıry	24 h		48 hr. king days	For Hg USE 747 IB Container Supply Number																					
Requested Report Date Shipment contains USDA regulated soil samples (check box if applicable)																										
RELINQUISHED BY: RECEIVED BY: RECEIVED BY: 1/1/18/1000 Signature Signature Date/Time) 950		Signa		RELI	NQUIS		BY:				Signati	ure	REG	CEIVE	Date					
Printed Name Firm Printed Name Firm Printed Name Firm Printed Name Firm Printed Name Firm																										

PC C

	1	Λ	5 6	A.	_				on Form	5.1 ×	714			
ient/	ALASKA	Depr-						k.	Request K18				(-0	
ceived:_	7-18-1	<u> </u>	Opened:	7-18-18		_ By:_	B		Unloade	1: <u>7-18-1</u>	8	_By:_ <i>_</i>	H.,	
Sample: Were <u>c</u>	s were recei s were recei ustody seals ent, were cus	ved in: (cir on coolers	?	Fed Ex- Cooler NA (Ŷ			•	, how 1	Couries Other nany and what, were they s	ere?/			NA (Ŷ)	 N
Raw	Corrected.	Raw	Corrected	Corr.		nometer		ooler/C	OC ID		racking i	Number		<u> </u>
0.5	Cooler Temp	Temp Blank 5.6 4×	Temp Blank 56 48	Factor 0.0	3	1 D 74 56			NA	7818 7818	9460 9465	4152 863	<u> </u>	Filec
					45.22									
Packir	ng material:	Inserts (Baggies	Bubble W	rap & G	el Pack	s w	et Ice	Dry Ice	Sleeves _				
	custody pap samples rec	eived in go	od conditio	on (tempera	ture, un	broken)			n the table b			NA NA	(Ý)	7
	all sample la	abels comp		ilysis, prese	ervation	, etc.)?		Frozei		Thawed	Thawed	NA	(y)	N
	ll sample lab appropriate	=	=	• •	•		-		epancies in i ed?	he table on	page 2.	NA NA	(Y) (Y)	N N
	e the pH-pre e VOA vials		·				• •	•	pH? Indica	te in the tab	le below	NA NA) Y) _Y	N N
	C12/Res no		wittout nea	ospace: m	arcare r	n ine ia	ole oel	.07.				NA	Y	N
	Sample ID	on Bottle			Sampl	e ID on	coc				Identified	by:		
			4	tle Count ttle Type	Out of	Head- space	Broke	рН	Reagent	Volume added	Reager Num		Initials	Time
	Sample	ID	Во		1	1			· · · · · · · · · · · · · · · · · · ·	1 1)	1	
	Sample	ID	Во											
	Sample	iD	Во											
	Sample	ID .	Во											
Notes,	Sample													
Notes,														

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project **Date Collected:** 07/10/18 - 07/12/18

Sample Matrix: Soil Date Received: 07/18/18

Analysis Method: 160.3 Modified Units: Percent

Prep Method: None Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
2018GC48-S1	K1806728-001	67.1	-	-	1	07/25/18 15:39	
2018GC48-S2	K1806728-002	70.0	-	-	1	07/25/18 15:39	
2018GC48-S3	K1806728-003	61.0	-	-	1	07/25/18 15:39	
2018GC54-S1	K1806728-004	67.8	-	-	1	07/25/18 15:39	
2018GC54-S2	K1806728-005	68.6	-	-	1	07/25/18 15:39	
2018GC54-S3	K1806728-006	68.8	-	-	1	07/25/18 15:39	<u>.</u>
2018CC-S1	K1806728-007	69.6	-	-	1	07/25/18 15:39	
2018CC-S2	K1806728-008	69.7	-	-	1	07/25/18 15:39	
2018CC-S3	K1806728-009	74.7	-	-	1	07/25/18 15:39	
2018TC9-S1	K1806728-010	74.8	-	-	1	07/25/18 15:39	
2018TC9-S2	K1806728-011	34.7	-	-	1	07/25/18 15:39	
2018TC9-S3	K1806728-012	73.3	-	-	1	07/25/18 15:39	
2018TC1847-S1	K1806728-013	71.1	-	-	1	07/25/18 15:39	
2018TC1847-S2	K1806728-014	70.1	-	-	1	07/25/18 15:39	
2018TC1847-S3	K1806728-015	72.4	-	-	1	07/25/18 16:21	

Service Request: K1806728

QA/QC Report

Client: Alaska Department of Fish and Game

Project Greens Creek Mine Project

Sample Matrix: Soil

Analysis Method:

160.3 Modified

Prep Method: None

Service Request:K1806728

Date Collected:07/10/18 - 07/12/18

Date Received: 07/18/18

Units:Percent

Basis: As Received

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
2018GC54-S2	K1806728-005DUP	-	68.6	69.1	68.9	<1	20	07/25/18
2018TC1847-S3	K1806728-015DUP	-	72.4	72.4	72.4	<1	20	07/25/18
Batch QC	K1806931-001DUP	-	80.6	80.3	80.5	<1	20	07/25/18

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/30/2018 4:55:31 PM Superset Reference:18-0000474175 rev 00

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/10/18 - 07/12/18 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 **Sample Matrix:** Soil

Analysis Method: 160.4 Modified Units: Percent

Prep Method: None Basis: Dry, per Method

Solids, Total Volatile

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
2018GC48-S1	K1806728-001	2.40	0.10	-	1	07/19/18 18:04	
2018GC48-S2	K1806728-002	2.90	0.10	-	1	07/19/18 18:04	
2018GC48-S3	K1806728-003	2.80	0.10	-	1	07/19/18 18:04	
2018GC54-S1	K1806728-004	3.00	0.10	-	1	07/19/18 18:04	
2018GC54-S2	K1806728-005	3.10	0.10	-	1	07/19/18 18:04	
2018GC54-S3	K1806728-006	3.00	0.10	-	1	07/19/18 18:04	_
2018CC-S1	K1806728-007	4.00	0.10	-	1	07/19/18 18:04	
2018CC-S2	K1806728-008	4.90	0.10	-	1	07/19/18 18:04	
2018CC-S3	K1806728-009	3.90	0.10	-	1	07/19/18 18:04	
2018TC9-S1	K1806728-010	3.30	0.10	-	1	07/19/18 18:04	
2018TC9-S2	K1806728-011	4.90	0.10	-	1	07/19/18 18:04	
2018TC9-S3	K1806728-012	3.80	0.10	-	1	07/19/18 18:04	
2018TC1847-S1	K1806728-013	4.00	0.10	-	1	07/19/18 18:04	
2018TC1847-S2	K1806728-014	3.90	0.10	-	1	07/19/18 18:04	
2018TC1847-S3	K1806728-015	3.40	0.10	-	1	07/19/18 18:04	
Method Blank	K1806728-MB	ND U	0.10	-	1	07/19/18 18:04	

QA/QC Report

Client: Alaska Department of Fish and Game

Project Greens Creek Mine Project

Sample Matrix: Soil

Analysis Method:

160.4 Modified

Prep Method: None

Service Request:K1806728

Date Collected:07/11/18 - 07/12/18

Date Received: 07/18/18

Units:Percent

Basis:Dry, per Method

Replicate Sample Summary Solids, Total Volatile

				Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	MDL	Result	Result	Average	RPD	Limit	Analyzed
2018GC48-S1	K1806728-001DUP	0.10	-	2.40	2.50	2.45	4	20	07/19/18
2018TC9-S2	K1806728-011DUP	0.10	-	4.90	4.60	4.75	6	20	07/19/18

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/30/2018 4:55:31 PM Superset Reference:18-0000474175 rev 00

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

dba ALS Environmental Analytical Report

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/11/2018

Project:Greens Creek Mine ProjectDate Collected:7/11/2018Sample Matrix:SoilDate Received:7/18/2018Date Analyzed:7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018GC48-S1 Lab Code: K1806728-001

Sand Fraction:Dry Weight (Grams)22.8169Sand Fraction:Weight Recovered (Grams)22.8308Sand Fraction:Percent Recovery100.06

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0745	0.31
Sand, Very Coarse	-1 to 0 Ø	2.2637	9.42
Sand, Coarse	0 to 1 Ø	12.6713	52.74
Sand, Medium	1 to 2 Ø	5.2208	21.73
Sand, Fine	2 to 3 Ø	2.3941	9.97
Sand, Very Fine	3 to 4 Ø	0.0149	0.06
75.0 µm	4 Ø	0.5000	2.08
31.3 μm	5 Ø	0.2700	1.12
15.6 μm	6 Ø	0.2850	1.19
7.8 µm	7 Ø	0.2850	1.19
3.9 µm	8 Ø	0.1400	0.58
1.95 μm	9 Ø	0.0950	0.40
0.98 μm	> 10 Ø	0.1100	0.46
		24.3243	101.25

K1806728WET.SC1 \8/30/2018 Page No.:

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/11/2018

Project:Greens Creek Mine ProjectDate Collected:7/11/2018Sample Matrix:SoilDate Received:7/18/2018Date Analyzed:7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018GC48-S2 Lab Code: K1806728-002

Sand Fraction:Dry Weight (Grams)23.8933Sand Fraction:Weight Recovered (Grams)23.8636Sand Fraction:Percent Recovery99.88

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0902	0.37
Sand, Very Coarse	-1 to 0 Ø	2.4658	10.05
Sand, Coarse	0 to 1 Ø	8.9786	36.60
Sand, Medium	1 to 2 Ø	7.5729	30.87
Sand, Fine	2 to 3 Ø	4.2467	17.31
Sand, Very Fine	3 to 4 Ø	0.3993	1.63
75.0 µm	4 Ø	0.2400	0.98
31.3 µm	5 Ø	0.1550	0.63
15.6 μm	6 Ø	0.0950	0.39
7.8 µm	7 Ø	0.0100	0.04
3.9 µm	8 Ø	0.0000	0.00
1.95 μm	9 Ø	0.0200	0.08
0.98 µm	> 10 Ø	0.1150	0.47
		24.3885	99.43

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/11/2018

Project:Greens Creek Mine ProjectDate Collected:7/11/2018Sample Matrix:SoilDate Received:7/18/2018Date Analyzed:7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018GC48-S3 Lab Code: K1806728-003

Sand Fraction:Dry Weight (Grams)19.8757Sand Fraction:Weight Recovered (Grams)19.7786Sand Fraction:Percent Recovery99.51

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0254	0.11
Sand, Very Coarse	-1 to 0 Ø	0.1397	0.63
Sand, Coarse	0 to 1 Ø	1.2070	5.42
Sand, Medium	1 to 2 Ø	5.1307	23.03
Sand, Fine	2 to 3 Ø	11.9815	53.79
Sand, Very Fine	3 to 4 Ø	0.1651	0.74
75.0 µm	4 Ø	1.4750	6.62
31.3 μm	5 Ø	0.5850	2.63
15.6 μm	6 Ø	0.3900	1.75
7.8 µm	7 Ø	0.1900	0.85
3.9 µm	8 Ø	0.1950	0.88
1.95 μm	9 Ø	0.1200	0.54
0.98 μm	> 10 Ø	0.1100	0.49
		21.7144	97.48

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/10/2018

Project:Greens Creek Mine ProjectDate Collected:7/10/2018Sample Matrix:SoilDate Received:7/18/2018Date Analyzed:7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018GC54-S1 Lab Code: K1806728-004

Sand Fraction:Dry Weight (Grams)28.3941Sand Fraction:Weight Recovered (Grams)28.3502Sand Fraction:Percent Recovery99.85

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.0584	0.20
Sand, Very Coarse	-1 to 0 Ø	2.2224	7.59
Sand, Coarse	0 to 1 Ø	8.9573	30.57
Sand, Medium	1 to 2 Ø	9.6554	32.95
Sand, Fine	2 to 3 Ø	6.7923	23.18
Sand, Very Fine	3 to 4 Ø	0.5643	1.93
75.0 µm	4 Ø	0.3900	1.33
31.3 µm	5 Ø	0.2050	0.70
15.6 μm	6 Ø	0.1200	0.41
7.8 µm	7 Ø	0.1650	0.56
3.9 µm	8 Ø	0.0250	0.09
1.95 μm	9 Ø	0.0250	0.09
0.98 µm	> 10 Ø	0.0900	0.31
		29.2701	99.90

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/10/2018

Project: Greens Creek Mine Project Date Collected: 7/10/2018

Sample Matrix: Soil Date Received: 7/18/2018

Date Analyzed: 7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018GC54-S2 Lab Code: K1806728-005

Sand Fraction:Dry Weight (Grams)30.2158Sand Fraction:Weight Recovered (Grams)30.1441Sand Fraction:Percent Recovery99.76

	77.4.00	Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.2345	0.75
Sand, Very Coarse	-1 to 0 Ø	2.7848	8.92
Sand, Coarse	0 to 1 Ø	7.7341	24.78
Sand, Medium	1 to 2 Ø	9.7927	31.38
Sand, Fine	2 to 3 Ø	9.4162	30.17
Sand, Very Fine	3 to 4 Ø	0.0105	0.03
75.0 µm	4 Ø	0.3650	1.17
31.3 μm	5 Ø	0.2300	0.74
15.6 μm	6 Ø	0.0850	0.27
7.8 µm	7 Ø	0.0250	0.08
3.9 µm	8 Ø	0.0800	0.26
1.95 μm	9 Ø	0.0350	0.11
0.98 μm	> 10 Ø	0.1150	0.37
	_	30.9078	99.04

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/10/2018

Project: Greens Creek Mine Project Date Collected: 7/10/2018
Sample Matrix: Soil Date Received: 7/18/2018
Date Analyzed: 7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018GC54-S3 Lab Code: K1806728-006

Sand Fraction:Dry Weight (Grams)27.0978Sand Fraction:Weight Recovered (Grams)27.1051Sand Fraction:Percent Recovery100.03

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	1.2098	4.36
Sand, Very Coarse	-1 to 0 Ø	3.4649	12.48
Sand, Coarse	0 to 1 Ø	5.2568	18.93
Sand, Medium	1 to 2 Ø	7.7674	27.97
Sand, Fine	2 to 3 Ø	8.2829	29.83
Sand, Very Fine	3 to 4 Ø	0.9179	3.31
75.0 μm	4 Ø	0.5400	1.94
31.3 μm	5 Ø	0.0950	0.34
15.6 μm	6 Ø	0.1300	0.47
7.8 µm	7 Ø	0.1300	0.47
3.9 µm	8 Ø	0.0050	0.02
1.95 μm	9 Ø	0.0000	0.00
0.98 μm	> 10 Ø	0.1000	0.36
		27.8997	100.48

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/12/2018

Sample Matrix: Soil

Date Conected: 7/18/2018

Date Received: 7/18/2018

Date Analyzed: 7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018CC-S1 Lab Code: K1806728-007

Sand Fraction:Dry Weight (Grams)31.5801Sand Fraction:Weight Recovered (Grams)31.6133Sand Fraction:Percent Recovery100.11

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	<-2 Ø	7.5491	24.88
Gravel, Fine	-2 Ø to -1 Ø	4.9725	16.39
Sand, Very Coarse	-1 to 0 Ø	8.9471	29.49
Sand, Coarse	0 to 1 Ø	5.9452	19.59
Sand, Medium	1 to 2 Ø	2.3870	7.87
Sand, Fine	2 to 3 Ø	1.7496	5.77
Sand, Very Fine	3 to 4 Ø	0.0021	0.01
75.0 µm	4 Ø	0.2650	0.87
31.3 µm	5 Ø	0.2200	0.73
15.6 µm	6 Ø	0.1250	0.41
7.8 µm	7 Ø	0.0700	0.23
3.9 µm	8 Ø	0.0500	0.16
1.95 μm	9 Ø	0.0050	0.02
0.98 µm	> 10 Ø	0.1050	0.35
		32.3926	106.76

K1806728WET.SC1 \8/30/2018 Page No.:

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/12/2018

Project: Greens Creek Mine Project Date Collected: 7/12/2018
Sample Matrix: Soil Date Received: 7/18/2018
Date Analyzed: 7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018CC-S2 Lab Code: K1806728-008

Sand Fraction:Dry Weight (Grams)29.7715Sand Fraction:Weight Recovered (Grams)29.8104Sand Fraction:Percent Recovery100.13

Description	Phi Size	Dry Weight (Grams)	Percent of Total Weight Recovered
•		· · · · · · · · · · · · · · · · · · ·	Ŭ
Gravel, Medium	<-2 Ø	0.9527	3.10
Gravel, Fine	-2 Ø to -1 Ø	5.6463	18.40
Sand, Very Coarse	-1 to 0 Ø	11.2665	36.71
Sand, Coarse	0 to 1 Ø	7.8072	25.44
Sand, Medium	1 to 2 Ø	2.4623	8.02
Sand, Fine	2 to 3 Ø	1.3419	4.37
Sand, Very Fine	3 to 4 Ø	0.2476	0.81
75.0 μm	4 Ø	0.3450	1.12
31.3 μm	5 Ø	0.2450	0.80
15.6 μm	6 Ø	0.1850	0.60
7.8 µm	7 Ø	0.1400	0.46
3.9 µm	8 Ø	0.0700	0.23
1.95 μm	9 Ø	0.0600	0.20
0.98 μm	> 10 Ø	0.0850	0.28
		30.8545	100.53

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/12/2018

Sample Matrix: Soil

Date Collected: //12/2018

Date Received: 7/18/2018

Date Analyzed: 7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018CC-S3 Lab Code: K1806728-009

Sand Fraction:Dry Weight (Grams)35.8911Sand Fraction:Weight Recovered (Grams)35.9128Sand Fraction:Percent Recovery100.06

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	8.3924	22.76
Gravel, Fine	-2 Ø to -1 Ø	6.4480	17.49
Sand, Very Coarse	-1 to 0 Ø	9.1151	24.72
Sand, Coarse	0 to 1 Ø	8.8642	24.04
Sand, Medium	1 to 2 Ø	2.1046	5.71
Sand, Fine	2 to 3 Ø	0.9417	2.55
Sand, Very Fine	3 to 4 Ø	0.0001	0.00
75.0 µm	4 Ø	0.2550	0.69
31.3 μm	5 Ø	0.2050	0.56
15.6 μm	6 Ø	0.1400	0.38
7.8 µm	7 Ø	0.0700	0.19
3.9 µm	8 Ø	0.0450	0.12
1.95 μm	9 Ø	0.0200	0.05
0.98 μm	> 10 Ø	0.0900	0.24
		36.6911	99.51

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/12/2018

Project: Greens Creek Mine Project Date Collected: 7/12/2018
Sample Matrix: Soil Date Received: 7/18/2018
Date Analyzed: 7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018TC9-S1 Lab Code: K1806728-010

Sand Fraction:Dry Weight (Grams)30.1319Sand Fraction:Weight Recovered (Grams)30.1000Sand Fraction:Percent Recovery99.89

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	3.1415	9.52
Gravel, Fine	-2 Ø to -1 Ø	7.3831	22.38
Sand, Very Coarse	-1 to 0 Ø	8.0213	24.32
Sand, Coarse	0 to 1 Ø	4.8237	14.62
Sand, Medium	1 to 2 Ø	2.6884	8.15
Sand, Fine	2 to 3 Ø	3.2759	9.93
Sand, Very Fine	3 to 4 Ø	0.5808	1.76
75.0 µm	4 Ø	0.8450	2.56
31.3 μm	5 Ø	0.6000	1.82
15.6 μm	6 Ø	0.5400	1.64
7.8 µm	7 Ø	0.4800	1.46
3.9 µm	8 Ø	0.3950	1.20
1.95 μm	9 Ø	0.2400	0.73
0.98 μm	> 10 Ø	0.5600	1.70
		33.5747	101.78

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/12/2018

Sample Matrix: Soil

Date Collected: 7/18/2018

Date Received: 7/30/2018

Date Analyzed: 7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018TC9-S2 Lab Code: K1806728-011

Sand Fraction:Dry Weight (Grams)7.2346Sand Fraction:Weight Recovered (Grams)7.4965Sand Fraction:Percent Recovery103.62

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	0.2218	2.05
Sand, Very Coarse	-1 to 0 Ø	0.3793	3.51
Sand, Coarse	0 to 1 Ø	0.5643	5.22
Sand, Medium	1 to 2 Ø	0.9287	8.58
Sand, Fine	2 to 3 Ø	4.6761	43.22
Sand, Very Fine	3 to 4 Ø	0.0153	0.14
75.0 µm	4 Ø	1.3150	12.15
31.3 μm	5 Ø	0.9950	9.20
15.6 μm	6 Ø	0.5900	5.45
7.8 µm	7 Ø	0.4900	4.53
3.9 µm	8 Ø	0.2300	2.13
1.95 μm	9 Ø	0.1100	1.02
0.98 μm	> 10 Ø	0.1150	1.06
	_	10.6305	98.25

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/12/2018

Sample Matrix: Soil

Date Collected: 7/18/2018

Date Received: 7/30/2018

Date Analyzed: 7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018TC9-S3 Lab Code: K1806728-012

Sand Fraction:Dry Weight (Grams)37.1836Sand Fraction:Weight Recovered (Grams)37.4286Sand Fraction:Percent Recovery100.66

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	4.7117	13.60
Gravel, Fine	-2 Ø to -1 Ø	4.4301	12.78
Sand, Very Coarse	-1 to 0 Ø	7.4746	21.57
Sand, Coarse	0 to 1 Ø	6.3480	18.32
Sand, Medium	1 to 2 Ø	5.0367	14.53
Sand, Fine	2 to 3 Ø	4.3847	12.65
Sand, Very Fine	3 to 4 Ø	4.9216	14.20
75.0 µm	4 Ø	0.6350	1.83
31.3 μm	5 Ø	0.4500	1.30
15.6 μm	6 Ø	0.4350	1.26
7.8 µm	7 Ø	0.3000	0.87
3.9 µm	8 Ø	0.1550	0.45
1.95 μm	9 Ø	0.0600	0.17
0.98 μm	> 10 Ø	0.1500	0.43
		39.4924	113.95

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/12/2018

Project:Greens Creek Mine ProjectDate Collected:7/12/2018Sample Matrix:SoilDate Received:7/18/2018Date Analyzed:7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018TC1847-S1 Lab Code: K1806728-013

Sand Fraction:Dry Weight (Grams)28.9076Sand Fraction:Weight Recovered (Grams)28.8670Sand Fraction:Percent Recovery99.86

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0115	0.04
Gravel, Fine	-2 Ø to -1 Ø	1.4187	4.60
Sand, Very Coarse	-1 to 0 Ø	7.2384	23.49
Sand, Coarse	0 to 1 Ø	8.7753	28.48
Sand, Medium	1 to 2 Ø	6.2386	20.25
Sand, Fine	2 to 3 Ø	5.0151	16.28
Sand, Very Fine	3 to 4 Ø	0.0016	0.01
75.0 µm	4 Ø	0.5900	1.91
31.3 μm	5 Ø	0.4550	1.48
15.6 μm	6 Ø	0.3750	1.22
7.8 µm	7 Ø	0.3100	1.01
3.9 µm	8 Ø	0.1700	0.55
1.95 μm	9 Ø	0.0400	0.13
0.98 μm	> 10 Ø	0.1100	0.36
		30.7492	99.80

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/12/2018

Sample Matrix: Soil

Date Collected: //12/2018

Date Received: 7/18/2018

Date Analyzed: 7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018TC1847-S2 Lab Code: K1806728-014

Sand Fraction:Dry Weight (Grams)35.0795Sand Fraction:Weight Recovered (Grams)35.0870Sand Fraction:Percent Recovery100.02

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.4148	1.12
Gravel, Fine	-2 Ø to -1 Ø	1.7735	4.78
Sand, Very Coarse	-1 to 0 Ø	11.3368	30.55
Sand, Coarse	0 to 1 Ø	11.9687	32.26
Sand, Medium	1 to 2 Ø	4.9309	13.29
Sand, Fine	2 to 3 Ø	4.0478	10.91
Sand, Very Fine	3 to 4 Ø	0.5200	1.40
75.0 µm	4 Ø	0.5100	1.37
31.3 μm	5 Ø	0.5300	1.43
15.6 μm	6 Ø	0.3350	0.90
7.8 µm	7 Ø	0.2750	0.74
3.9 µm	8 Ø	0.1450	0.39
1.95 μm	9 Ø	0.0200	0.05
0.98 μm	> 10 Ø	0.1250	0.34
		36.9325	99.54

K1806728WET \8/30/2018 Page No.:

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/12/2018

Sample Matrix: Soil

Date Collected: //12/2018

Date Received: 7/18/2018

Date Analyzed: 7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018TC1847-S3 Lab Code: K1806728-015

Sand Fraction:Dry Weight (Grams)31.8056Sand Fraction:Weight Recovered (Grams)31.7842Sand Fraction:Percent Recovery99.93

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.0000	0.00
Gravel, Fine	-2 Ø to -1 Ø	1.3231	4.00
Sand, Very Coarse	-1 to 0 Ø	9.4726	28.66
Sand, Coarse	0 to 1 Ø	12.5706	38.03
Sand, Medium	1 to 2 Ø	5.1612	15.62
Sand, Fine	2 to 3 Ø	3.1598	9.56
Sand, Very Fine	3 to 4 Ø	0.0042	0.01
75.0 µm	4 Ø	0.3900	1.18
31.3 μm	5 Ø	0.3850	1.16
15.6 μm	6 Ø	0.2900	0.88
7.8 µm	7 Ø	0.2300	0.70
3.9 µm	8 Ø	0.1050	0.32
1.95 μm	9 Ø	0.0350	0.11
0.98 μm	> 10 Ø	0.0650	0.20
		33.1915	100.42

Client:Alaska Department of Fish and GameService Request:K1806728Project:Greens Creek Mine ProjectDate Collected:7/12/2018

Sample Matrix: Soil

Date Received: 7/18/2018

Date Analyzed: 7/30/2018

Particle Size Determination ASTM D422M

Sample Name: 2018TC1847-S3 Lab Code: K1806728-015DUP

Sand Fraction:Dry Weight (Grams)33.0598Sand Fraction:Weight Recovered (Grams)33.0756Sand Fraction:Percent Recovery100.05

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.2519	0.74
Gravel, Fine	-2 Ø to -1 Ø	1.6084	4.70
Sand, Very Coarse	-1 to 0 Ø	10.0658	29.39
Sand, Coarse	0 to 1 Ø	12.8072	37.39
Sand, Medium	1 to 2 Ø	5.2966	15.46
Sand, Fine	2 to 3 Ø	2.6226	7.66
Sand, Very Fine	3 to 4 Ø	0.3322	0.97
75.0 µm	4 Ø	0.4650	1.36
31.3 μm	5 Ø	0.4250	1.24
15.6 μm	6 Ø	0.2500	0.73
7.8 µm	7 Ø	0.1700	0.50
3.9 µm	8 Ø	0.0800	0.23
1.95 μm	9 Ø	0.0100	0.03
0.98 μm	> 10 Ø	0.1350	0.39
	_	34.5197	100.78

K1806728WET \8/30/2018 Page No.:

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/10/18 - 07/12/18 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 **Sample Matrix:** Soil

Analysis Method: PSEP Sulfide Units: mg/Kg **Prep Method:** Method Basis: Dry

Sulfide, Total

Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
K1806728-001	1.2 J	2.4	0.8	1	08/29/18 18:28	8/29/18	*
K1806728-002	0.9 J	2.3	0.7	1	08/29/18 18:28	8/29/18	*
K1806728-003	1.3 J	3.0	0.9	1	08/29/18 18:28	8/29/18	*
K1806728-004	0.7 J	2.2	0.7	1	08/29/18 18:28	8/29/18	*
K1806728-005	1.2 J	2.4	0.8	1	08/29/18 18:28	8/29/18	*
K1806728-006	0.8 J	2.3	0.7	1	08/29/18 18:28	8/29/18	*
K1806728-007	ND U	2.8	0.9	1	07/19/18 18:30	7/19/18	
K1806728-008	ND U	2.6	0.8	1	07/19/18 18:30	7/19/18	
K1806728-009	ND U	2.6	0.8	1	07/19/18 18:30	7/19/18	
K1806728-010	ND U	2.6	0.8	1	07/19/18 18:30	7/19/18	
K1806728-011	2.1 J	5.5	1.7	1	07/19/18 18:30	7/19/18	
K1806728-012	1.3 J	2.2	0.7	1	07/19/18 18:30	7/19/18	
K1806728-013	ND U	2.7	0.9	1	07/19/18 18:30	7/19/18	
K1806728-014	1.0 J	2.8	0.9	1	07/19/18 18:30	7/19/18	
K1806728-015	ND U	2.8	0.9	1	07/19/18 18:30	7/19/18	
K1806728-MB1	ND U	1.0	0.3	1	07/19/18 18:30	7/19/18	
K1806728-MB2	ND U	1.0	0.3	1	08/29/18 18:28	8/29/18	
	K1806728-001 K1806728-002 K1806728-003 K1806728-004 K1806728-005 K1806728-006 K1806728-007 K1806728-009 K1806728-010 K1806728-011 K1806728-012 K1806728-013 K1806728-014 K1806728-015 K1806728-015 K1806728-MB1	K1806728-001 1.2 J K1806728-002 0.9 J K1806728-003 1.3 J K1806728-004 0.7 J K1806728-005 1.2 J K1806728-006 0.8 J K1806728-007 ND U K1806728-008 ND U K1806728-009 ND U K1806728-010 ND U K1806728-011 2.1 J K1806728-012 1.3 J K1806728-013 ND U K1806728-014 1.0 J K1806728-015 ND U K1806728-MB1 ND U	K1806728-001 1.2 J 2.4 K1806728-002 0.9 J 2.3 K1806728-003 1.3 J 3.0 K1806728-004 0.7 J 2.2 K1806728-005 1.2 J 2.4 K1806728-006 0.8 J 2.3 K1806728-007 ND U 2.8 K1806728-008 ND U 2.6 K1806728-009 ND U 2.6 K1806728-010 ND U 2.6 K1806728-011 2.1 J 5.5 K1806728-012 1.3 J 2.2 K1806728-013 ND U 2.7 K1806728-014 1.0 J 2.8 K1806728-015 ND U 2.8 K1806728-MB1 ND U 1.0	K1806728-001 1.2 J 2.4 0.8 K1806728-002 0.9 J 2.3 0.7 K1806728-003 1.3 J 3.0 0.9 K1806728-004 0.7 J 2.2 0.7 K1806728-005 1.2 J 2.4 0.8 K1806728-006 0.8 J 2.3 0.7 K1806728-007 ND U 2.8 0.9 K1806728-008 ND U 2.6 0.8 K1806728-009 ND U 2.6 0.8 K1806728-010 ND U 2.6 0.8 K1806728-011 2.1 J 5.5 1.7 K1806728-012 1.3 J 2.2 0.7 K1806728-013 ND U 2.7 0.9 K1806728-014 1.0 J 2.8 0.9 K1806728-015 ND U 2.8 0.9 K1806728-MB1 ND U 1.0 0.3	K1806728-001 1.2 J 2.4 0.8 1 K1806728-002 0.9 J 2.3 0.7 1 K1806728-003 1.3 J 3.0 0.9 1 K1806728-004 0.7 J 2.2 0.7 1 K1806728-005 1.2 J 2.4 0.8 1 K1806728-006 0.8 J 2.3 0.7 1 K1806728-007 ND U 2.8 0.9 1 K1806728-008 ND U 2.6 0.8 1 K1806728-009 ND U 2.6 0.8 1 K1806728-010 ND U 2.6 0.8 1 K1806728-011 2.1 J 5.5 1.7 1 K1806728-012 1.3 J 2.2 0.7 1 K1806728-013 ND U 2.7 0.9 1 K1806728-014 1.0 J 2.8 0.9 1 K1806728-MB1 ND U 1.0 0.3 1	Lab Code Result MRL MDL Dil. Analyzed K1806728-001 1.2 J 2.4 0.8 1 08/29/18 18:28 K1806728-002 0.9 J 2.3 0.7 1 08/29/18 18:28 K1806728-003 1.3 J 3.0 0.9 1 08/29/18 18:28 K1806728-004 0.7 J 2.2 0.7 1 08/29/18 18:28 K1806728-005 1.2 J 2.4 0.8 1 08/29/18 18:28 K1806728-006 0.8 J 2.3 0.7 1 08/29/18 18:28 K1806728-007 ND U 2.8 0.9 1 07/19/18 18:30 K1806728-008 ND U 2.6 0.8 1 07/19/18 18:30 K1806728-009 ND U 2.6 0.8 1 07/19/18 18:30 K1806728-010 ND U 2.6 0.8 1 07/19/18 18:30 K1806728-012 1.3 J 2.2 0.7 1 07/19/18 18:30 K1806728-013 ND U 2	Lab Code Result MRL MDL Dil. Analyzed Extracted K1806728-001 1.2 J 2.4 0.8 1 08/29/18 18:28 8/29/18 K1806728-002 0.9 J 2.3 0.7 1 08/29/18 18:28 8/29/18 K1806728-003 1.3 J 3.0 0.9 1 08/29/18 18:28 8/29/18 K1806728-004 0.7 J 2.2 0.7 1 08/29/18 18:28 8/29/18 K1806728-005 1.2 J 2.4 0.8 1 08/29/18 18:28 8/29/18 K1806728-006 0.8 J 2.3 0.7 1 08/29/18 18:28 8/29/18 K1806728-007 ND U 2.8 0.9 1 07/19/18 18:30 7/19/18 K1806728-008 ND U 2.6 0.8 1 07/19/18 18:30 7/19/18 K1806728-010 ND U 2.6 0.8 1 07/19/18 18:30 7/19/18 K1806728-011 2.1 J 5.5 1.7 1 07/19/18 18:30 </td

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project Greens Creek Mine Project

Sample Matrix: Soil Service Request: K1806728

Date Collected: 07/11/18

Date Received: 07/18/18 **Date Analyzed:** 08/29/18

Triplicate Sample Summary General Chemistry Parameters

Sample Name:

2018GC48-S1

Lab Code:

K1806728-001

Analysis Method:

PSEP Sulfide

Prep Method:

Units:	mg/Kg
Basis:	Dry

Method

Analyte Name	MRL	MDL	Sample Result	Duplicate K1806728- 001DUP Result	Triplicate K1806728- 001TRP Result	Average	RSD	RSD Limit
Sulfide, Total	2.2	0.7	1.2	0.9	1.3	1.13	21 *	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/30/2018 11:06:54 AM

SuperSet Reference: 18-0000474175 rev 00

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Greens Creek Mine Project

Date Collected: 07/12/18

Sample Matrix: Soil

Date Received: 07/18/18 **Date Analyzed:** 07/19/18

Service Request: K1806728

Triplicate Sample Summary General Chemistry Parameters

Sample Name:

2018CC-S1

Lab Code:

Project

K1806728-007

Analysis Method:

PSEP Sulfide

Units: mg/Kg Basis: Dry

Prep Method:

Method

Analyte Name	MRL	MDL	Sample Result	Duplicate K1806728- 007DUP Result	Triplicate K1806728- 007TRP Result	Average	RSD	RSD Limit
Sulfide, Total	2.6	0.8	ND	ND	ND	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/30/2018 11:06:54 AM

SuperSet Reference: 18-0000474175 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: Date Collected:

K1806728

Project:

Greens Creek Mine Project

07/11/18

Sample Matrix: Soil **Date Received:**

Date Analyzed:

07/18/18 08/29/18

Date Extracted:

08/29/18

Duplicate Matrix Spike Summary

Sulfide, Total

Sample Name: 2018GC48-S1 Lab Code:

Units:

mg/Kg

Analysis Method:

K1806728-001

Method

Basis:

Dry

Prep Method:

PSEP Sulfide

Matrix Spike

Duplicate Matrix Spike

K1806728-001DMS

K1806728-001MS Sample Spike

Spike

% Rec

RPD

Analyte Name

Result Amount % Rec Amount % Rec Limits **RPD** Limit Result Result Sulfide, Total 1.2 J 1030 970 106 1100 930 118 20 28-175

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/30/2018 11:06:54 AM Superset Reference: 18-0000474175 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Greens Creek Mine Project

Sample Matrix: Soil

Service Request: Date Collected:

K1806728 07/12/18

Date Received:

07/18/18

Date Analyzed:

07/19/18

Date Extracted:

Units:

Basis:

07/19/18

mg/Kg

Dry

Duplicate Matrix Spike Summary

Sulfide, Total

Sample Name: 2018CC-S1

K1806728-007

Analysis Method:

PSEP Sulfide

Prep Method:

Lab Code:

Project:

Method

Matrix Spike

Duplicate Matrix Spike

K1806728-007MS

K1806728-007DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Sulfide, Total	ND U	390 J	700	56	680	920	74	28-175	54*	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/30/2018 11:06:54 AM Superset Reference:18-0000474175 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K1806728

Project: Greens Creek Mine Project

Date Analyzed: 07/19/18

Sample Matrix:

Soil

Date Extracted:

07/19/18

Lab Control Sample Summary

Sulfide, Total

Analysis Method: PSEP Sulfide

Units:

mg/Kg

Prep Method: Method

Basis:

Dry

Analysis Lot:

599258

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1806728-LCS1	301	350	86	39-166

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K1806728

Project: Greens Creek Mine Project

Date Analyzed:

08/29/18

Sample Matrix:

Prep Method:

Soil

Date Extracted:

08/29/18

Lab Control Sample Summary

Sulfide, Total

Analysis Method: PSEP Sulfide

Method

Units:

mg/Kg

Basis:

Dry

Analysis Lot:

604655

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1806728-LCS2	473	400	120	39-166

Analytical Report

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project Date Collected: 07/10/18 - 07/12/18

Sample Matrix: Soil Date Received: 07/18/18

Analysis Method: PSEP TOC Units: Percent

Prep Method: ALS SOP Basis: Dry, per Method

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2018GC48-S1	K1806728-001	0.806	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018GC48-S2	K1806728-002	0.486	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018GC48-S3	K1806728-003	1.21	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018GC54-S1	K1806728-004	0.528	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018GC54-S2	K1806728-005	0.481	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018GC54-S3	K1806728-006	0.548	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018CC-S1	K1806728-007	1.54	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018CC-S2	K1806728-008	2.42	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018CC-S3	K1806728-009	1.11	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018TC9-S1	K1806728-010	1.35	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018TC9-S2	K1806728-011	8.57	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018TC9-S3	K1806728-012	4.53	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018TC1847-S1	K1806728-013	0.596	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018TC1847-S2	K1806728-014	1.39	0.050	0.020	1	07/23/18 11:15	7/23/18	
2018TC1847-S3	K1806728-015	1.00	0.050	0.020	1	07/23/18 11:15	7/23/18	
Method Blank	K1806728-MB1	ND U	0.050	0.020	1	07/23/18 11:15	7/23/18	

Service Request: K1806728

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project Greens Creek Mine Project

Sample Matrix: Soil

Service Request: K1806728

Date Collected: 07/11/18 **Date Received:** 07/18/18

Date Analyzed: 07/23/18

Triplicate Sample Summary General Chemistry Parameters

Sample Name: 2018GC48-S1

Lab Code: K1806728-001

Analysis Method: PSEP TOC **Prep Method:** ALS SOP

Units: PercentBasis: Dry, per Method

Analyte Name	MRL	MDL	Sample Result	Duplicate K1806728- 001DUP Result	Triplicate K1806728- 001TRP Result	Average	RSD	RSD Limit
Carbon, Total Organic (TOC)	0.050	0.020	0.806	0.808	0.807	0.807	<1	27

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/30/2018 11:06:55 AM

SuperSet Reference: 18-0000474175 rev $00\,$

QA/QC Report

Client: Alaska Department of Fish and Game **Project:**

Greens Creek Mine Project

Sample Matrix: Soil

Service Request:

K1806728

Date Collected: Date Received: 07/11/18 07/18/18

Date Analyzed:

07/23/18

Date Extracted:

Units:

Basis:

07/23/18

Percent

Dry, per Method

Duplicate Matrix Spike Summary Carbon, Total Organic (TOC)

Sample Name:

2018GC48-S1

Lab Code:

K1806728-001

Analysis Method: Prep Method:

PSEP TOC

ALS SOP

Matrix Spike

K1806728-001MS

Duplicate Matrix Spike

K1806728-001DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organic (TOC)	0.806	4.25	3.41	101	4.27	3.49	99	69-123	2	27

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/30/2018 11:06:55 AM Superset Reference: 18-0000474175 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K1806728

Project: Greens Creek Mine Project

Date Analyzed:

07/23/18

Sample Matrix:

Soil

Date Extracted:

07/23/18

Lab Control Sample Summary

Carbon, Total Organic (TOC)

Analysis Method: PSEP TOC

Units:

Percent

Prep Method: ALS SOP

Basis:

Dry, per Method

Analysis Lot:

599628

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1806728-LCS1	0.619	0.603	103	74-118

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Service Request: K1806728

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project Date Collected: 07/11/18 10:10

Sample Matrix: Soil Date Received: 07/18/18 09:50

Sample Name: 2018GC48-S1 Basis: Dry

Lab Code: K1806728-001

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	2.97	mg/Kg	0.026	0.009	5	07/31/18 11:08	07/26/18	
Copper	200.8	46.1	mg/Kg	0.13	0.05	5	07/31/18 11:08	07/26/18	
Lead	200.8	36.9	mg/Kg	0.13	0.03	5	07/31/18 11:08	07/26/18	
Mercury	7471B	0.130	mg/Kg	0.026	0.003	1	07/31/18 07:56	07/30/18	
Selenium	200.8	3.4	mg/Kg	1.3	0.09	5	07/31/18 11:08	07/26/18	
Zinc	200.8	397	mg/Kg	0.65	0.26	5	07/31/18 11:08	07/26/18	

Analytical Report

Service Request: K1806728

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project Date Collected: 07/11/18 10:10

Sample Matrix: Soil Date Received: 07/18/18 09:50

Sample Name: 2018GC48-S2 Basis: Dry

Lab Code: K1806728-002

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	1.82	mg/Kg	0.023	0.008	5	07/31/18 11:17	07/26/18	
Copper	200.8	43.1	mg/Kg	0.12	0.05	5	07/31/18 11:17	07/26/18	
Lead	200.8	21.4	mg/Kg	0.12	0.02	5	07/31/18 11:17	07/26/18	
Mercury	7471B	0.091	mg/Kg	0.022	0.002	1	07/31/18 08:04	07/30/18	
Selenium	200.8	2.5	mg/Kg	1.2	0.08	5	07/31/18 11:17	07/26/18	
Zinc	200.8	302	mg/Kg	0.58	0.23	5	07/31/18 11:17	07/26/18	

Analytical Report

Service Request: K1806728

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project Date Collected: 07/11/18 10:10

Sample Matrix: Soil Date Received: 07/18/18 09:50

Sample Name: 2018GC48-S3 Basis: Dry

Lab Code: K1806728-003

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	3.16	mg/Kg	0.025	0.009	5	07/31/18 11:19	07/26/18	
Copper	200.8	59.4	mg/Kg	0.12	0.05	5	07/31/18 11:19	07/26/18	
Lead	200.8	42.2	mg/Kg	0.12	0.02	5	07/31/18 11:19	07/26/18	
Mercury	7471B	0.148	mg/Kg	0.022	0.002	1	07/31/18 08:05	07/30/18	
Selenium	200.8	3.5	mg/Kg	1.2	0.09	5	07/31/18 11:19	07/26/18	
Zinc	200.8	482	mg/Kg	0.61	0.25	5	07/31/18 11:19	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/10/18 11:15 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018GC54-S1 Basis: Dry

Lab Code: K1806728-004

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	2.01	mg/Kg	0.025	0.009	5	07/31/18 11:22	07/26/18	
Copper	200.8	48.5	mg/Kg	0.12	0.05	5	07/31/18 11:22	07/26/18	
Lead	200.8	20.7	mg/Kg	0.12	0.02	5	07/31/18 11:22	07/26/18	
Mercury	7471B	0.098	mg/Kg	0.018	0.002	1	07/31/18 08:07	07/30/18	
Selenium	200.8	3.0	mg/Kg	1.2	0.09	5	07/31/18 11:22	07/26/18	
Zinc	200.8	294	mg/Kg	0.62	0.25	5	07/31/18 11:22	07/26/18	

Printed 8/13/2018 1:58:06 PM Superset Reference:

Page 49 of 70

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/10/18 11:15 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018GC54-S2 Basis: Dry

Lab Code: K1806728-005

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	2.09	mg/Kg	0.019	0.007	5	07/31/18 11:25	07/26/18	
Copper	200.8	50.9	mg/Kg	0.095	0.038	5	07/31/18 11:25	07/26/18	
Lead	200.8	22.5	mg/Kg	0.095	0.019	5	07/31/18 11:25	07/26/18	
Mercury	7471B	0.108	mg/Kg	0.020	0.002	1	07/31/18 08:12	07/30/18	
Selenium	200.8	2.66	mg/Kg	0.95	0.07	5	07/31/18 11:25	07/26/18	
Zinc	200.8	326	mg/Kg	0.48	0.19	5	07/31/18 11:25	07/26/18	

Printed 8/13/2018 1:58:06 PM Superset Reference:

Page 50 of 70

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/10/18 11:15 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018GC54-S3 Basis: Dry

Lab Code: K1806728-006

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	1.79	mg/Kg	0.018	0.006	5	07/31/18 11:34	07/26/18	
Copper	200.8	47.1	mg/Kg	0.091	0.037	5	07/31/18 11:34	07/26/18	
Lead	200.8	20.6	mg/Kg	0.091	0.018	5	07/31/18 11:34	07/26/18	
Mercury	7471B	0.107	mg/Kg	0.020	0.002	1	07/31/18 08:13	07/30/18	
Selenium	200.8	2.59	mg/Kg	0.91	0.06	5	07/31/18 11:34	07/26/18	
Zinc	200.8	280	mg/Kg	0.46	0.18	5	07/31/18 11:34	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/12/18 15:20 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018CC-S1 Basis: Dry

Lab Code: K1806728-007

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.758	mg/Kg	0.021	0.007	5	07/31/18 11:37	07/26/18	
Copper	200.8	16.5	mg/Kg	0.10	0.04	5	07/31/18 11:37	07/26/18	
Lead	200.8	19.7	mg/Kg	0.10	0.02	5	07/31/18 11:37	07/26/18	
Mercury	7471B	0.026	mg/Kg	0.012	0.001	1	07/31/18 08:15	07/30/18	
Selenium	200.8	0.7 J	mg/Kg	1.0	0.07	5	07/31/18 11:37	07/26/18	
Zinc	200.8	141	mg/Kg	0.52	0.21	5	07/31/18 11:37	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/12/18 15:20 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018CC-S2 Basis: Dry

Lab Code: K1806728-008

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.981	mg/Kg	0.020	0.007	5	07/31/18 11:39	07/26/18	
Copper	200.8	16.3	mg/Kg	0.10	0.04	5	07/31/18 11:39	07/26/18	
Lead	200.8	20.5	mg/Kg	0.10	0.02	5	07/31/18 11:39	07/26/18	
Mercury	7471B	0.024	mg/Kg	0.018	0.002	1	07/31/18 08:17	07/30/18	
Selenium	200.8	0.8 J	mg/Kg	1.0	0.07	5	07/31/18 11:39	07/26/18	
Zinc	200.8	140	mg/Kg	0.50	0.20	5	07/31/18 11:39	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/12/18 15:20 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018CC-S3 Basis: Dry

Lab Code: K1806728-009

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.852	mg/Kg	0.020	0.007	5	07/31/18 11:42	07/26/18	
Copper	200.8	23.3	mg/Kg	0.10	0.04	5	07/31/18 11:42	07/26/18	
Lead	200.8	22.1	mg/Kg	0.10	0.02	5	07/31/18 11:42	07/26/18	
Mercury	7471B	0.021 J	mg/Kg	0.021	0.002	1	07/31/18 08:18	07/30/18	
Selenium	200.8	1.0 J	mg/Kg	1.0	0.07	5	07/31/18 11:42	07/26/18	
Zinc	200.8	136	mg/Kg	0.51	0.20	5	07/31/18 11:42	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/12/18 14:10 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018TC9-S1 Basis: Dry

Lab Code: K1806728-010

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.437	mg/Kg	0.017	0.006	5	07/31/18 11:45	07/26/18	
Copper	200.8	51.6	mg/Kg	0.084	0.034	5	07/31/18 11:45	07/26/18	
Lead	200.8	13.2	mg/Kg	0.084	0.017	5	07/31/18 11:45	07/26/18	
Mercury	7471B	0.030	mg/Kg	0.015	0.002	1	07/31/18 08:20	07/30/18	
Selenium	200.8	0.60 J	mg/Kg	0.84	0.06	5	07/31/18 11:45	07/26/18	
Zinc	200.8	97.7	mg/Kg	0.42	0.17	5	07/31/18 11:45	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/12/18 14:10 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018TC9-S2 Basis: Dry

Lab Code: K1806728-011

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.701	mg/Kg	0.041	0.014	5	07/31/18 11:48	07/26/18	
Copper	200.8	26.0	mg/Kg	0.20	0.08	5	07/31/18 11:48	07/26/18	
Lead	200.8	31.7	mg/Kg	0.20	0.04	5	07/31/18 11:48	07/26/18	
Mercury	7471B	0.112	mg/Kg	0.044	0.004	1	07/31/18 08:21	07/30/18	
Selenium	200.8	1.1 J	mg/Kg	2.0	0.1	5	07/31/18 11:48	07/26/18	
Zinc	200.8	113	mg/Kg	1.0	0.4	5	07/31/18 11:48	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/12/18 14:10 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018TC9-S3 Basis: Dry

Lab Code: K1806728-012

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.253	mg/Kg	0.015	0.005	5	07/31/18 11:51	07/26/18	
Copper	200.8	14.7	mg/Kg	0.077	0.031	5	07/31/18 11:51	07/26/18	
Lead	200.8	8.90	mg/Kg	0.077	0.015	5	07/31/18 11:51	07/26/18	
Mercury	7471B	0.054	mg/Kg	0.018	0.002	1	07/31/18 08:23	07/30/18	
Selenium	200.8	0.23 J	mg/Kg	0.77	0.05	5	07/31/18 11:51	07/26/18	
Zinc	200.8	59.6	mg/Kg	0.38	0.15	5	07/31/18 11:51	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/12/18 11:00 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018TC1847-S1 Basis: Dry

Lab Code: K1806728-013

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.410	mg/Kg	0.017	0.006	5	07/31/18 11:53	07/26/18	
Copper	200.8	14.6	mg/Kg	0.084	0.034	5	07/31/18 11:53	07/26/18	
Lead	200.8	17.3	mg/Kg	0.084	0.017	5	07/31/18 11:53	07/26/18	
Mercury	7471B	0.024	mg/Kg	0.017	0.002	1	07/31/18 08:25	07/30/18	
Selenium	200.8	0.34 J	mg/Kg	0.84	0.06	5	07/31/18 11:53	07/26/18	
Zinc	200.8	94.8	mg/Kg	0.42	0.17	5	07/31/18 11:53	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/12/18 11:00 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018TC1847-S2 Basis: Dry

Lab Code: K1806728-014

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.343	mg/Kg	0.018	0.006	5	07/31/18 11:56	07/26/18	
Copper	200.8	17.5	mg/Kg	0.089	0.036	5	07/31/18 11:56	07/26/18	
Lead	200.8	14.7	mg/Kg	0.089	0.018	5	07/31/18 11:56	07/26/18	
Mercury	7471B	0.023	mg/Kg	0.013	0.001	1	07/31/18 08:26	07/30/18	
Selenium	200.8	0.32 J	mg/Kg	0.89	0.06	5	07/31/18 11:56	07/26/18	
Zinc	200.8	83.1	mg/Kg	0.44	0.18	5	07/31/18 11:56	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728 **Date Collected:** 07/12/18 11:00 **Project:** Greens Creek Mine Project

Date Received: 07/18/18 09:50 **Sample Matrix:** Soil

Sample Name: 2018TC1847-S3 Basis: Dry

Lab Code: K1806728-015

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	0.373	mg/Kg	0.022	0.008	5	07/31/18 12:05	07/26/18	
Copper	200.8	12.9	mg/Kg	0.11	0.04	5	07/31/18 12:05	07/26/18	
Lead	200.8	15.0	mg/Kg	0.11	0.02	5	07/31/18 12:05	07/26/18	
Mercury	7471B	0.020	mg/Kg	0.016	0.002	1	07/31/18 08:31	07/30/18	
Selenium	200.8	0.3 J	mg/Kg	1.1	0.08	5	07/31/18 12:05	07/26/18	
Zinc	200.8	79.3	mg/Kg	0.56	0.22	5	07/31/18 12:05	07/26/18	

Analytical Report

Service Request: K1806728

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project Date Collected: NA

Sample Matrix: Soil Date Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1810099-03

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	ND U	mg/Kg	0.020	0.007	5	07/31/18 11:03	07/26/18	
Copper	200.8	ND U	mg/Kg	0.10	0.04	5	07/31/18 11:03	07/26/18	
Lead	200.8	ND U	mg/Kg	0.10	0.02	5	07/31/18 11:03	07/26/18	
Selenium	200.8	ND U	mg/Kg	1.0	0.07	5	07/31/18 11:03	07/26/18	
Zinc	200.8	0.36 J	mg/Kg	0.5	0.20	5	07/31/18 11:03	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1806728

Date Collected: NA **Project:** Greens Creek Mine Project Date Received: NA **Sample Matrix:** Soil

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1810100-03

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Mercury	7471B	ND U	mg/Kg	0.02	0.002	1	07/31/18 07:51	07/30/18	

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project Greens Creek Mine Project

Sample Matrix: Soil **Service Request:** K1806728

Date Collected: 07/11/18

Date Received: 07/18/18 **Date Analyzed:** 07/31/18

Replicate Sample Summary

Total Metals

Sample Name: 2018GC48-S1 Units: mg/Kg Lab Code: K1806728-001

Basis: Dry

Duplicate

	Analysis			Sample	Sample KQ1810099-05			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Cadmium	200.8	0.023	0.008	2.97	2.74	2.86	8	30
Copper	200.8	0.11	0.05	46.1	47.2	46.7	2	30
Lead	200.8	0.11	0.02	36.9	32.5	34.7	13	30
Selenium	200.8	1.1	0.08	3.4	3.3	3.4	3	30
Zinc	200.8	0.57	0.23	397	389	393	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project Greens Creek Mine Project

Sample Matrix:

Lab Code:

Soil

Service Request: K1806728

Date Collected: 07/12/18 **Date Received:** 07/18/18

Date Analyzed: 07/31/18

Replicate Sample Summary

Total Metals

Sample Name: 2018TC1847-S3 K1806728-015

Units: mg/Kg

Basis: Dry

Duplicate

Analyte Name	Analysis Method	MRL	MDL	Sample Result	Sample KQ1810099-07 Result	Average	RPD	RPD Limit
Cadmium	200.8	0.015	0.005	0.373	0.343	0.358	8	30
Copper	200.8	0.076	0.031	12.9	12.5	12.7	3	30
Lead	200.8	0.076	0.015	15.0	14.1	14.6	7	30
Selenium	200.8	0.76	0.05	0.30 J	0.29 J	0.30	5	30
Zinc	200.8	0.38	0.15	79.3	80.1	79.7	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K1806728

Project Greens Creek Mine Project

Date Collected: 07/11/18 **Date Received:** 07/18/18

Sample Matrix: Soil

Date Analyzed: 07/31/18

Replicate Sample Summary

Total Metals

Sample Name: 2018GC48-S1

Units: mg/Kg

Basis: Dry

K1806728-001

Duplicate

Sample

. . .

7471B

Sample KQ1810100-01

Analyte Name Analysis
Method

Lab Code:

Mercury

MDL 0.002

MRL

0.024

Result 0.130

Result 0.122

Average 0.126

 RPD
 RPD Limit

 6
 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project

Sample Matrix: Soil

Service Request:

K1806728

Date Collected:

07/11/18

Date Received: Date Analyzed: 07/18/18 07/31/18

Date Extracted:

07/26/18

Matrix Spike Summary

Total Metals

Sample Name: 2018GC48-S1 Lab Code:

K1806728-001

Units: Basis:

mg/Kg Dry

Analysis Method:

200.8

Prep Method: EPA 3050B

Matrix Spike

KQ1810099-06

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	2.97	14.5	11.2	102	70-130
Copper	46.1	100	56.0	97	70-130
Lead	36.9	161	112	111	70-130
Selenium	3.4	110	112	95	70-130
Zinc	397	527	112	116	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project

Sample Matrix: Soil

Service Request:

K1806728

Date Collected:

07/12/18

Date Received: Date Analyzed: 07/18/18 07/31/18

Date Extracted:

07/26/18

Matrix Spike Summary

Total Metals

Sample Name: 2018TC1847-S3 **Units:**

Basis:

mg/Kg Dry

Lab Code:

K1806728-015

Analysis Method:

200.8

Prep Method:

EPA 3050B

Matrix Spike

KQ1810099-08

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	0.373	11.2	11.0	98	70-130
Copper	12.9	63.5	54.8	92	70-130
Lead	15.0	135	110	109	70-130
Selenium	0.3 J	107	110	97	70-130
Zinc	79.3	184	110	95	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

Greens Creek Mine Project

Sample Matrix: Soil

Service Request: Date Collected: K1806728

Date Received:

07/11/18 07/18/18

Date Received:

Date Analyzed:

07/31/18

Date Extracted:

07/30/18

Matrix Spike Summary

Total Metals

Sample Name: 2018GC48-S1

Lab Code:

Project:

K1806728-001

Analysis Method: Prep Method:

7471B Method Units: Basis: mg/Kg Dry

d: 7471B

Matrix Spike

KQ1810100-02

Analyte NameSample ResultResultSpike Amount% Rec% Rec LimitsMercury0.1300.7600.61510280-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project

Sample Matrix: Soil

Service Request: K1806728 Date Analyzed: 07/31/18

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Lab Control Sample

KQ1810099-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	200.8	216	225	96	70-117
Copper	200.8	157	174	90	71-119
Lead	200.8	115	111	104	71-129
Selenium	200.8	197	206	96	64-122
Zinc	200.8	191	207	92	67-125

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Greens Creek Mine Project

Sample Matrix: Soil

Service Request: K1806728 Date Analyzed: 07/31/18

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Lab Control Sample KQ1810100-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7471B	10.2	12.0	85	60-139

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

September 07, 2018

Analytical Report for Service Request No: K1807787

Kate Kanouse Alaska Department of Fish and Game Division of Habitat 802 3rd Street P.O. Box 110024 Douglas, AK 99811-0024

RE: 2018 Greens Creek Mine Project Request - ADF&G

Dear Kate.

Enclosed are the results of the sample(s) submitted to our laboratory August 16, 2018 For your reference, these analyses have been assigned our service request number **K1807787**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3356. You may also contact me via email at Kurt.Clarkson@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kelley Lovejoy

for Kurt Clarkson Sr. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

General Chemistry

Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client: Alaska Department of Fish and Game Service Request: K1807787

Project: 2018 Greens Creek Mine Project Request - ADF&G Date Received: 08/16/2018

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt:

Three soil samples were received for analysis at ALS Environmental on 08/16/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Metals:

Method 200.8, 08/28/2018: The Relative Percent Difference (RPD) for the replicate analysis of Lead in sample GC63B-S1 was outside the normal ALS control limits. The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

General Chemistry:

160.4 Modified :All samples for Total Volatile Solids were received past holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation. Method PSEP Sulfide, 08/29/2018:Samples GC63B-S1, GC63B-S2 and GC63B-S3 were received past holding time. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

approved by Kelley Avejoy

Date 09/07/2018

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS

CHAIN OF CUSTODY

91720

001	SR#_ <i>K180778</i> 7
	COC Setof
	COC#

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

Page 1 of 1

										www.	alsgio	obal.co	m										P	age i c	πI
Project Name Greens Creek	Project Nu	mp roject			2	14D	28D	700	2	G666]							
Project Manager Johnny Zu		3		"	Ľ.	7	2	7	<u>~</u>	8	U) }[I		-									
Company ADFEG D	UNSION O	f Habitat		OF CONTAINERS		TC					THE					İ									
Address 802 3vd S	Street	Douglas AKG	14824	NTA	s l) TO(rtsize	S	75														
Phone # 907 465-4290	email 1	hnny zutzenla Printed Name	ska.go	Λñ	1 / pe	PSE		⊬ s	M/Pe	1/₽6	٨														
Sampler Signature	l l		'	π C	lodifie	/ 20.	E I	Meta)4221	pdifie	3														
1691	Jel	nny Eutz		NUMBER	160.4 Modified / TVS	PSEP TOC / PSEP TOC	7471B / Hg	200.8 / Metals	ASTM D422M / Partsize	160.3 Modified / TS	0.5		<u>م</u>	4	10	Rema	irks								
CLIENT SAMPLE ID	LABID	Date Time	Matrix																						
1. GC63B-SI		8-8-18/8:00		9	«	\checkmark	1	✓	\checkmark	✓	V	Ш													
2. GC63B-52	i			3	V	4	V	V.	1	J	7	Ш	_												
3. GC63B-53		8-8-18/8:00	Soil	7	1	<u> </u>	4	\leq	✓	V	J														
4.																<u> </u>	v								
5.							_	_				- 1						1							
6. 7.					\dashv		\dashv	\dashv																	
			 +					_					_	\dashv											
3.						\dashv			{		\dashv	$\left - \right $		_											
9.								_	_					\dashv	_										
10.	L lnvo	ice Information	 -																						
Report Requirements I. Routine Report: Method	P.O.#	ice illionnation	ĺ												2	Circle which met	als are to b	e analyzed							
Blank, Surrogate, as	Bill To:				•	Total	Meta	ls: A	i A	s SI	b B	3a B€	В	Ca ((Ca	Do Cr Cú)	Fe (Pb)	Mg Mn	Mo Ni I	K Ag Na	Se)S	r TI Sn	V Zn H	9)	
required II. Report Dup., MS, MSD	_cwe	Nace @ hecla			Dis	solve	ed Me	etals:	ΑI	As	Sb	Ва	Ве	в Са	a Co	d Co Cr C	u Fe Pl	o Mg Mr	Mo Ni	K Ag	Na Se	Sr TI Sr	v Zn	Hg	
as required		mining.c		ecial	Instr	uctio	ns/C	omn	nent	s:				*Inc	licat	e State Hyd	rocarbo	Procedu	ıre: AK	CA WI	Northw	est Othe	r(C	Circle One)
III. CLP Like Summary (no raw data)	Turnaro 24 5	ound Requirement hr. 48 hr.	ts																						
IV. Data Validation Report		andard																							
V. EDD		Requested Report Date																							1
Relinquished By:		Received By:		Rel	inqu	iish	ed E	Зу:				R	ece	ive	Ву	/ :		Relinqu	ished l	Ву:		Red	eived E	Зу:	
Signature / 18	Signature	int	Signat	ture			•				gnat						Signatu	ге			Sign	ature			
Printed Name Johnny Zutz		しら こ	Printe	d Nai	ne							d Nar	ne				Printed	Name				ted Name			
irm ATTEG	Firm /10	18 0949	Firm							Fir	m						Firm				Firm				
Date/Time 8/13/18	Date/Time		Date/1									ime					Date/Tir					e/Time			

	AT	DF.	\$60	Cooler	Rece	ipt an			tion Form	17	770-	T.		
Client	01.	0	7 - 1	\d. \d.	. O) ^S	ervice	Request K	0.1	401			
eceived:	8/14/1	8	Opened:_	(16	8	B	y j	Comments of the State of the St	Unload	led:_ <i>\{\begin{align*}// \lambda</i>	2/18	By:/_	A STATE OF THE PARTY OF THE PAR	and the second
. Samples	were receiv	ed via?	USPS <	Fed Ex	$>$ ι	PS.	DHL	. <i>P</i>	DX Cou	rier Han	d Delivered			
. Samples	were receiv	ved in: (ci	rcle)	Cooler	Box		Envelo	ne –	Other		1	4-	NA	
	stody seals			NA (ليميد	Ν	-		many and w		me ,	MM	+	
If presen	nt, were cus	tody seals	intact?		<u>P</u>	N			nt, were they				(Y)	N
Raw Cooler Temp	Corrected. Cooler Temp	Raw Temp Blank	Corrected Temp Blank	Corr. Factor	The	rmome ID	ter '	Cooler	COC ID		Tracking N	umber		A Filed
Wi8	6.7	Fil	7,0.	-0,1	3	7/				7822	9429	73	P2_	
					-		_							
												·		
1. Packing	material:	Inserts	Baggies	Bubble V	Vrap	Gel Pa	cks) V	Vet Ice	Dry Ice	Sleeves				
5. Were cu	istody pape	rs properl	y filled out	(ink, sign	ed, etc.)?						NA	(A)	N
Were sa	amples recei	_		•					in the table b			NA	(E)	N
7. Were all	l sample lab	-	plicable, tis ete (i.e anal	-				Froze	en Partial.	ly Thawed	Thawed	NA	Ž.	N
		_						or disc	repancies in	the table on	page 2.	NA	(B)	N
	ppropriate b	-	_				-		•			NA	(\widetilde{Y})	N
10. Were th	he pH-prese	erved bott	les (see SMC	O GEN SOI	P) recei	ved at	the app	opriat	e pH? <i>Indica</i>	ate in the tab	le below	(N)A	Y	N
11. Were V	VOA vials r	eceived w	ithout head	lspace? Ir	ndicate	in the i	table be	low.				NA NA	Y	N
12. Was C	12/Res neg	ative?										(NA)	Y	N
		- D-441												
	Sample ID o	n Bottle		<u> </u>	Samp	le ID or	TCOC	. 			dentified by		·	
					·									
			Bottl	e Count	Out of	Head-				Volume	Reagent L	ot		
	Sample ID) 	Bott	le Type	Temp	space	Broke	рН	Reagent	added	Number		Initials	Time
	- /1/				1									
ļ 	·		1		 	-			<u> </u>	1				
<u></u>		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>												
Notes, Di	iscrepancie	es, & Res	solutions:_											
<u>-</u>														
·														
					 -									

Page 10 of 36

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1807787 **Date Collected:** 08/8/18 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix: Soil

160.3 Modified Units: Percent

Analysis Method: Prep Method: Basis: As Received None

Solids, Total

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
GC63B-S1	K1807787-001	70.4	-	-	1	08/21/18 16:36	
GC63B-S2	K1807787-002	71.5	-	-	1	08/21/18 16:36	
GC63B-S3	K1807787-003	77.7	-	-	1	08/21/18 16:36	

Date Received: 08/16/18

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Soil

Service Request: K1807787

Project 2018 Greens Creek Mine Project Request - ADF&G

Date Collected: 08/08/18

Sample Matrix:

2010 Ofcens Creek Wille 1 Toject Request - ADI &C

Date Received: 08/16/18 **Date Analyzed:** 08/21/18

Replicate Sample Summary Inorganic Parameters

Sample Name:

GC63B-S1

Units: Percent

Lab Code:

K1807787-001

Basis: As Received

Duplicate

Sample 1807787

K1807787-

Sample

001DUP

Analyte Name Analysis Method

od MRL

MDL Result

Result

Average

RPD Limit

Solids, Total

160.3 Modified

-

70.4

71.6

71.0

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 08/31/18 1:19:42 PM Superset Reference:18-0000477620 rev 00

Analytical Report

Client: Alaska Department of Fish and Game

Date Collected: 08/8/18 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix: Soil

Analysis Method:

160.4 Modified Units: Percent

Prep Method: None Basis: Dry, per Method

Service Request: K1807787

Date Received: 08/16/18

Solids, Total Volatile

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
GC63B-S1	K1807787-001	2.90	0.10	-	1	08/21/18 16:35	*
GC63B-S2	K1807787-002	2.90	0.10	-	1	08/21/18 16:35	*
GC63B-S3	K1807787-003	2.70	0.10	-	1	08/21/18 16:35	*
Method Blank	K1807787-MB	ND U	0.10	-	1	08/21/18 16:35	

dba ALS Environmental

QA/QC Report

General Chemistry Parameters

Client: Alaska Department of Fish and Game Service Request: K1807787

Project 2018 Greens Creek Mine Project Request - ADF&G **Date Collected:** 08/08/18

Sample Matrix: Soil **Date Received:** 08/16/18 **Date Analyzed:** 08/21/18

Replicate Sample Summary

Sample Name:

GC63B-S3

Units: Percent

Lab Code:

K1807787-003

Basis: Dry, per Method

Duplicate Sample

K1807787-**003DUP**

Sample

Analyte Name Analysis Method Solids, Total Volatile 160.4 Modified

MRL 0.10

Result 2.70

Result 2.70

Average 2.70

RPD Limit

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 08/31/18 1:19:42 PM Superset Reference:18-0000477620 rev 00

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client:Alaska Department of Fish and GameService Request:K1807787Project:2018 Greens Creek Mine Project Request - ADFDate Collected:8/8/2018

Sample Matrix: Soil

Date Received: 8/16/2018

Date Analyzed: 8/28/2018

Particle Size Determination ASTM D422M

Sample Name: GC63B-S1 Lab Code: K1807787-001

Sand Fraction:Dry Weight (Grams)56.0661Sand Fraction:Weight Recovered (Grams)55.9495Sand Fraction:Percent Recovery99.79

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.7532	1.32
Gravel, Fine	-2 Ø to -1 Ø	2.6506	4.65
Sand, Very Coarse	-1 to 0 Ø	15.3749	26.98
Sand, Coarse	0 to 1 Ø	25.0388	43.93
Sand, Medium	1 to 2 Ø	8.5055	14.92
Sand, Fine	2 to 3 Ø	3.0627	5.37
Sand, Very Fine	3 to 4 Ø	0.3124	0.55
75.0 µm	4 Ø	0.4750	0.83
31.3 μm	5 Ø	0.2500	0.44
15.6 μm	6 Ø	0.2950	0.52
7.8 µm	7 Ø	0.2100	0.37
3.9 µm	8 Ø	0.1650	0.29
1.95 μm	9 Ø	0.0900	0.16
0.98 μm	> 10 Ø	0.0050	0.01
		57.1881	100.35

Client:Alaska Department of Fish and GameService Request:K1807787Project:2018 Greens Creek Mine Project Request - ADFDate Collected:8/8/2018

Sample Matrix: Soil

Date Received: 8/16/2018

Date Analyzed: 8/28/2018

Particle Size Determination ASTM D422M

Sample Name: GC63B-S1

Lab Code: K1807787-001DUP

Sand Fraction:Dry Weight (Grams)54.9747Sand Fraction:Weight Recovered (Grams)54.8254Sand Fraction:Percent Recovery99.73

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.4601	0.81
Gravel, Fine	-2 Ø to -1 Ø	4.2678	7.54
Sand, Very Coarse	-1 to 0 Ø	14.3815	25.40
Sand, Coarse	0 to 1 Ø	23.0155	40.66
Sand, Medium	1 to 2 Ø	8.4408	14.91
Sand, Fine	2 to 3 Ø	3.6553	6.46
Sand, Very Fine	3 to 4 Ø	0.4272	0.75
75.0 µm	4 Ø	0.3800	0.67
31.3 μm	5 Ø	0.2500	0.44
15.6 μm	6 Ø	0.1850	0.33
7.8 µm	7 Ø	0.2300	0.41
3.9 µm	8 Ø	0.0950	0.17
1.95 μm	9 Ø	0.0550	0.10
0.98 μm	> 10 Ø	0.0050	0.01
		55.8482	98.66

Client:Alaska Department of Fish and GameService Request:K1807787Project:2018 Greens Creek Mine Project Request - ADFDate Collected:8/8/2018

Sample Matrix: Soil

Date Conected: 8/8/2018

Date Received: 8/16/2018

Date Analyzed: 8/28/2018

Particle Size Determination ASTM D422M

Sample Name: GC63B-S2 Lab Code: K1807787-002

Sand Fraction:Dry Weight (Grams)60.2712Sand Fraction:Weight Recovered (Grams)60.2513Sand Fraction:Percent Recovery99.97

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	0.1247	0.22
Gravel, Fine	-2 Ø to -1 Ø	2.7982	4.85
Sand, Very Coarse	-1 to 0 Ø	18.3730	31.82
Sand, Coarse	0 to 1 Ø	27.0560	46.85
Sand, Medium	1 to 2 Ø	8.5778	14.85
Sand, Fine	2 to 3 Ø	2.9238	5.06
Sand, Very Fine	3 to 4 Ø	0.2638	0.46
75.0 µm	4 Ø	0.1300	0.23
31.3 μm	5 Ø	0.3200	0.55
15.6 μm	6 Ø	0.1450	0.25
7.8 µm	7 Ø	0.1600	0.28
3.9 µm	8 Ø	0.0300	0.05
1.95 μm	9 Ø	0.1000	0.17
0.98 μm	> 10 Ø	0.0100	0.02
		61.0123	105.65

Client:Alaska Department of Fish and GameService Request:K1807787Project:2018 Greens Creek Mine Project Request - ADFDate Collected:8/8/2018

Sample Matrix: Soil

Date Received: 8/16/2018

Date Analyzed: 8/28/2018

Particle Size Determination ASTM D422M

Sample Name: GC63B-S3 Lab Code: K1807787-003

Sand Fraction:Dry Weight (Grams)55.7012Sand Fraction:Weight Recovered (Grams)55.7249Sand Fraction:Percent Recovery100.04

		Dry Weight	Percent of Total
Description	Phi Size	(Grams)	Weight Recovered
Gravel, Medium	<-2 Ø	1.6247	2.60
Gravel, Fine	-2 Ø to -1 Ø	3.4028	5.45
Sand, Very Coarse	-1 to 0 Ø	13.6483	21.85
Sand, Coarse	0 to 1 Ø	23.3675	37.41
Sand, Medium	1 to 2 Ø	9.2898	14.87
Sand, Fine	2 to 3 Ø	3.7715	6.04
Sand, Very Fine	3 to 4 Ø	0.4072	0.65
75.0 µm	4 Ø	0.3350	0.54
31.3 μm	5 Ø	0.2500	0.40
15.6 μm	6 Ø	0.1450	0.23
7.8 µm	7 Ø	0.0750	0.12
3.9 µm	8 Ø	0.0850	0.14
1.95 μm	9 Ø	0.0750	0.12
0.98 μm	> 10 Ø	0.0000	0.00
		56.4768	90.43

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1807787 **Date Collected:** 08/8/18 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix: Soil **Date Received:** 08/16/18

Analysis Method: PSEP Sulfide Prep Method: Method

Units: mg/Kg Basis: Dry

Sulfide, Total

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
GC63B-S1	K1807787-001	1.1 J	2.2	0.7	1	08/29/18 18:28	8/29/18	*
GC63B-S2	K1807787-002	ND U	2.2	0.7	1	08/29/18 18:28	8/29/18	*
GC63B-S3	K1807787-003	0.8 J	2.0	0.7	1	08/29/18 18:28	8/29/18	*
Method Blank	K1807787-MB	ND U	1.0	0.3	1	08/29/18 18:28	8/29/18	

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request:

K1807787

Project:

2018 Greens Creek Mine Project Request - ADF&G

Date Analyzed:

08/29/18

Sample Matrix:

Soil

Date Extracted:

08/29/18

Lab Control Sample Summary

Sulfide, Total

Analysis Method:

PSEP Sulfide

Units:

mg/Kg

Prep Method:

Method

Basis:

Dry

Analysis Lot:

604655

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1807787-LCS	473	400	120	39-166

Analytical Report

Alaska Department of Fish and Game **Client:**

Service Request: K1807787 **Date Collected:** 08/8/18 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix:

Soil

PSEP TOC Units: Percent

Analysis Method: Prep Method: ALS SOP Basis: Dry, per Method

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
GC63B-S1	K1807787-001	0.501	0.050	0.020	1	08/22/18 13:45	8/22/18	
GC63B-S2	K1807787-002	0.445	0.050	0.020	1	08/22/18 13:45	8/22/18	
GC63B-S3	K1807787-003	0.548	0.050	0.020	1	08/22/18 13:45	8/22/18	
Method Blank	K1807787-MB	ND U	0.050	0.020	1	08/22/18 13:45	8/22/18	

Date Received: 08/16/18

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix: Soil

Project

Date Collected: 08/08/18 **Date Received:** 08/16/18

Service Request: K1807787

Date Analyzed: 08/22/18

Triplicate Sample Summary General Chemistry Parameters

Sample Name: GC63B-S1

Lab Code: K1807787-001

Analysis Method: PSEP TOC Prep Method: ALS SOP

Units: Percent Basis: Dry, per Method

Analyte Name	MRL	MDL	Sample Result	Duplicate K1807787- 001DUP Result	Triplicate K1807787- 001TRP Result	Average	RSD	RSD Limit
Carbon, Total Organic (TOC)	0.050	0.020	0.501	0.503	0.507	0.504	<1	27

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/4/2018 1:17:57 PM

SuperSet Reference: 18-0000477620 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request:

K1807787

Project: Sample Matrix: 2018 Greens Creek Mine Project Request - ADF&G

Date Collected:

08/08/18

Soil

Date Received:

08/16/18

Date Analyzed: Date Extracted:

08/22/18 08/22/18

Duplicate Matrix Spike Summary

Carbon, Total Organic (TOC)

Units:

Percent

Sample Name: Lab Code: GC63B-S1

Basis:

Dry, per Method

Analysis Method:

K1807787-001

Prep Method:

PSEP TOC ALS SOP

Matrix Spike

Duplicate Matrix Spike

K1807787-001DMS

K1807787-001MS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organic (TOC)	0.501	3.77	3.28	100	3.62	3.15	99	69-123	1	27

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/4/2018 1:17:57 PM Superset Reference:18-0000477620 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

2018 Greens Creek Mine Project Request - ADF&G

K1807787

Sample Matrix:

Prep Method:

Project:

Soil

ALS SOP

Date Analyzed: Date Extracted:

Service Request:

08/22/18 08/22/18

Lab Control Sample Summary

Carbon, Total Organic (TOC)

Analysis Method: PSEP TOC

Units:

Percent

Basis:

Dry, per Method

Analysis Lot:

603665

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1807787-LCS	0.595	0.603	99	74-118

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1807787 **Date Collected:** 08/08/18 08:00 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 08/16/18 09:45 **Sample Matrix:** Soil

Sample Name: GC63B-S1 Basis: Dry

Lab Code: K1807787-001

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	1.79	mg/Kg	0.028	0.010	5	08/28/18 11:09	08/22/18	
Copper	200.8	40.3	mg/Kg	0.14	0.06	5	08/28/18 11:09	08/22/18	
Lead	200.8	27.8	mg/Kg	0.070	0.028	5	08/28/18 11:09	08/22/18	
Mercury	7471B	0.089	mg/Kg	0.022	0.002	1	08/30/18 12:11	08/24/18	
Selenium	200.8	1.9	mg/Kg	1.4	0.10	5	08/28/18 11:09	08/22/18	
Zinc	200.8	237	mg/Kg	0.70	0.28	5	08/28/18 11:09	08/22/18	

Printed 8/30/2018 5:48:49 PM Superset Reference:

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1807787 **Date Collected:** 08/08/18 08:00 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 08/16/18 09:45 **Sample Matrix:** Soil

Sample Name: GC63B-S2 Basis: Dry

Lab Code: K1807787-002

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	2.38	mg/Kg	0.027	0.009	5	08/28/18 11:17	08/22/18	
Copper	200.8	46.4	mg/Kg	0.13	0.05	5	08/28/18 11:17	08/22/18	
Lead	200.8	25.1	mg/Kg	0.067	0.027	5	08/28/18 11:17	08/22/18	
Mercury	7471B	0.125	mg/Kg	0.027	0.003	1	08/30/18 12:12	08/24/18	
Selenium	200.8	3.3	mg/Kg	1.3	0.09	5	08/28/18 11:17	08/22/18	
Zinc	200.8	369	mg/Kg	0.67	0.27	5	08/28/18 11:17	08/22/18	

Printed 8/30/2018 5:48:49 PM Superset Reference:

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1807787 **Date Collected:** 08/08/18 08:00 **Project:** 2018 Greens Creek Mine Project Request - ADF&G

Date Received: 08/16/18 09:45 **Sample Matrix:** Soil

Sample Name: GC63B-S3 Basis: Dry

Lab Code: K1807787-003

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	2.18	mg/Kg	0.024	0.008	5	08/28/18 11:20	08/22/18	
Copper	200.8	42.5	mg/Kg	0.12	0.05	5	08/28/18 11:20	08/22/18	
Lead	200.8	18.9	mg/Kg	0.060	0.024	5	08/28/18 11:20	08/22/18	
Mercury	7471B	0.156	mg/Kg	0.017	0.002	1	08/30/18 12:14	08/24/18	
Selenium	200.8	2.6	mg/Kg	1.2	0.08	5	08/28/18 11:20	08/22/18	
Zinc	200.8	314	mg/Kg	0.60	0.24	5	08/28/18 11:20	08/22/18	

Printed 8/30/2018 5:48:49 PM Superset Reference:

Page 30 of 36

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1807787 Date Collected: NA

Project: 2018 Greens Creek Mine Project Request - ADF&G Soil Date Received: NA **Sample Matrix:**

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1811495-03

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Cadmium	200.8	ND U	mg/Kg	0.020	0.007	5	08/28/18 11:04	08/22/18	
Copper	200.8	ND U	mg/Kg	0.10	0.04	5	08/28/18 11:04	08/22/18	
Lead	200.8	ND U	mg/Kg	0.05	0.020	5	08/28/18 11:04	08/22/18	
Selenium	200.8	ND U	mg/Kg	1.0	0.07	5	08/28/18 11:04	08/22/18	
Zinc	200.8	ND U	mg/Kg	0.5	0.20	5	08/28/18 11:04	08/22/18	

Printed 8/30/2018 5:48:49 PM Superset Reference:

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1807787

Project: 2018 Greens Creek Mine Project Request - ADF&G

Date Collected: NA

Sample Matrix: Soil

2010 Steems Steek Mille Hoject Request History

Date Received: NA

Sample Name:

Basis: Dry

Lab Code:

Method Blank KQ1811727-01

Total Metals

	Analysis							Date	
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Extracted	Q
Mercury	7471B	ND U	mg/Kg	0.02	0.002	1	08/30/18 11:58	08/24/18	

Printed 8/30/2018 5:48:49 PM Superset Reference:

Page 32 of 36

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project

Service Request: K1807787 **Date Collected:** 08/08/18

2018 Greens Creek Mine Project Request - ADF&G

Date Received: 08/16/18

Sample Matrix: Soil

Date Analyzed: 08/28/18

Replicate Sample Summary

Total Metals

Sample Name: GC63B-S1 Units: mg/Kg Lab Code: K1807787-001

Basis: Dry

Duplicate Sample **Analysis** Sample KQ1811495-01 **Analyte Name** Method **MRL MDL** Result Result Average **RPD RPD Limit** Cadmium 200.8 0.010 1.79 2.15 1.97 18 30 0.028 Copper 200.8 0.14 0.06 40.3 37.4 38.9 8 30 Lead 200.8 0.069 0.028 27.8 38.9 33.4 33 * 30 Selenium 2.0 5 30 200.8 1.4 0.10 1.9 2.0 Zinc 200.8 0.69 0.28 237 285 261 18 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/30/2018 5:48:49 PM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

2018 Greens Creek Mine Project Request - ADF&G

Sample Matrix: Soil

Project:

Service Request: Date Collected: K1807787

Date Received:

08/08/18 08/16/18

Date Analyzed:

08/28/18

Date Extracted:

08/22/18

Matrix Spike Summary

Total Metals

Sample Name: GC63B-S1

K1807787-001

Units: Basis:

mg/Kg Dry

Analysis Method:

Lab Code:

Prep Method:

200.8

EPA 3050B

Matrix Spike

KQ1811495-02

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	1.79	14.9	13.5	98	70-130
Copper	40.3	99.7	67.3	88	70-130
Lead	27.8	154	135	93	70-130
Selenium	1.9	138	135	101	70-130
Zinc	237	374	135	102	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/30/2018 5:48:49 PM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project Request - ADF&G Date Analyzed: 08/28/18

Sample Matrix: Soil

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Service Request: K1807787

Lab Control Sample

KQ1811495-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	200.8	235	225	104	70-117
Copper	200.8	177	174	102	71-119
Lead	200.8	121	111	109	71-129
Selenium	200.8	213	206	103	64-122
Zinc	200.8	200	207	97	67-125

Printed 8/30/2018 5:48:49 PM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project Request - ADF&G Date Analyzed: 08/30/18

Sample Matrix: Soil

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Service Request: K1807787

Lab Control Sample KQ1811727-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7471B	11.5	12.0	95	60-139

Printed 8/30/2018 5:48:49 PM Superset Reference:

APPENDIX C: FISH DATA AND LABORATORY REPORTS

Appendix C.1-Whole body Dolly Varden char element concentrations.

Tippendix C.1 Whole bod	•						. 1 ()	
C 1. N.	FL	Weight_	C.1			g/kg dry w		7
Sample No.	(mm)	(g)	Cd	Cu	Hg	Pb	Se	Zn
Hawk Inlet Head Creek Site 20 2018HIHCDV1	88	6.3	0.921	2.95	0.715	0.121	2.83	185
2018HIHCDV1 2018HIHCDV2	88 111	12.3	0.921	2.93	0.713	0.121	2.83 1.69	109
2018HIHCDV2 2018HIHCDV3	104	9.8	0.064	2.35	0.0481	< 0.020	1.56	109
2018HIHCDV3 2018HIHCDV4	104	10.2	0.625	3.62	0.101	0.020	2.2	158
2018HIHCDV5	137	22.7	0.023	2.90	0.309	< 0.020	1.80	114
2018HIHCDV3 2018HIHCDV6	129	17.3	0.068	2.57	0.0606	0.020	1.72	114
Unnamed Creek Site 2062	129	17.3	0.143	2.31	0.0000	0.021	1.72	114
2018UCDV2	90	7.2	0.042	2.19	0.0374	0.085	1.4	105
2018UCDV3	84	5.4	0.097	2.13	0.0618	0.033	1.5	111
2018UCDV4	134	19.7	0.043	1.96	0.0258	< 0.020	1.47	111
2018UCDV5	124	15.7	0.530	4.63	0.0236	< 0.020	1.83	125
2018UCDV6	120	15.3	0.041	2.05	0.0318	< 0.020	1.40	121
2018UCDV7	124	19.8	0.029	1.90	0.0359	< 0.020	1.51	102
Jimmy Green Creek Site 2063	121	17.0	0.02)	1.50	0.0337	10.020	1.51	102
2018JGCDV1	155	30.4	0.076	4.65	0.0388	< 0.020	1.5	96.7
2018JGCDV3	141	25.1	0.201	4.05	0.0762	< 0.020	1.73	128
2018JGCDV4	113	11.1	1.03	5.22	0.189	0.350	4.40	204
2018JGCDV5	92	8.8	1.24	4.76	0.197	0.201	4.40	209
2018JGCDV6	131	22.2	0.791	5.05	0.237	0.172	3.48	220
2018JGCDV7	113	14.3	0.592	2.53	0.133	0.046	2.92	169
Piledriver Creek Site 2065								
2018PCDV1	126	19.3	< 0.020	2.20	0.0671	< 0.020	1.68	109
2018PCDV2	148	29.0	< 0.020	3.61	0.0477	< 0.020	1.33	94.3
2018PCDV3	124	17.5	0.029	2.49	0.1460	0.032	1.77	111
2018PCDV4	121	15.0	0.047	2.62	0.1620	0.040	1.8	122
2018PCDV5	111	13.4	0.022	2.57	0.0711	< 0.020	1.44	108
2018PCDV6	121	14.7	< 0.020	3.77	0.0630	< 0.020	1.52	113
Zinc Creek Site 371								
2018ZCDV1	119	12.9	1.05	5.92	0.371	0.804	3.2	287
2018ZCDV2	117	13.0	0.982	9.79	0.285	2.21	2.7	289
2018ZCDV4	86	6.7	0.484	3.02	0.186	0.092	3.10	161
2018ZCDV5	88	6.8	0.690	3.15	0.274	0.166	3.2	174
2018ZCDV6	87	6.4	0.454	3.25	0.178	0.068	3.33	160
2018ZCDV7	124	13.4	1.04	7.80	0.325	2.040	2.35	276
Empire Creek Site 2064 ^a								
Empire Creek sample #1	ND	ND	0.097	0.82	0.059	< 0.05	1.9	48
Empire Creek sample #2	ND	ND	0.13	0.71	0.079	< 0.05	1.8	66
Empire Creek sample #3	ND	ND	0.11	0.65	0.065	< 0.05	1.7	54
Empire Creek sample #4	ND	ND	0.16	0.69	0.11	< 0.05	1.8	63
Empire Creek sample #5	ND	ND	0.12	0.72	0.058	< 0.05	2.0	45
Empire Creek sample #6	118	18.0	0.11	0.63	0.068	< 0.05	1.9	51
Empire Creek sample #7	148	38.0	0.08	0.62	0.087	< 0.05	2.1	41
Empire Creek sample #8	139	29.0	0.14	0.73	0.083	< 0.05	1.9	60
Empire Creek sample #9	123	21.0	0.13	0.69	0.072	< 0.05	1.9	54
Empire Creek sample #10	108	14.0	0.17	1.1	0.066	< 0.05	2.3	57

-continued-

Appendix C.1–Page 2 of 2.

	FL	Weight		Concent	tration (m	g/kg dry w	reight)	
Sample No.	(mm)	(g)	Cd	Cu	Hg	Pb	Se	Zn
Empire Creek Site 2064								
2018ECDV2	134	16.7	1.00	5.13	0.5140	0.064	6.3	237
2018ECDV3	121	17.7	0.814	4.90	0.3050	0.087	4.96	167
2018ECDV4	113	16.7	1.02	6.56	0.3590	0.285	6.11	203
2018ECDV5	135	19.8	0.094	3.21	0.0421	< 0.020	1.7	120
2018ECDV6	137	21.4	0.099	4.10	0.0801	0.020	2.1	152
2018ECDV7	150	28.4	0.123	5.75	0.0472	0.024	1.7	113
Tributary Creek Site 9								
2018TCDV1	105	12.4	0.705	2.31	0.490	0.385	6.3	154
2018TCDV2	81	6.7	1.09	2.80	0.577	0.963	7.2	160
2018TCDV3	92	9.4	0.313	2.90	0.406	0.196	5.03	109
2018TCDV4	106	11.9	0.509	2.32	0.457	0.353	5.40	137
2018TCDV5	85	7.5	1.30	2.80	0.353	1.02	6.00	171
2018TCDV6	92	8.3	0.969	2.84	0.863	0.381	6.70	94.8
2018TCDV7	85	6.4	1.36	2.73	0.364	0.871	6.31	144
2018TCDV8	108	11.6	0.793	2.53	0.435	0.162	6.2	143
2018TCDV9	86	5.8	1.88	2.63	0.771	0.636	6.4	128
2018TCDV10	109	12.5	0.708	2.37	0.664	0.945	6.4	154
Greens Creek Site 54								
2018GC54DV1	125	18.7	1.11	5.65	0.171	0.325	6.3	230
2018GC54DV2	90	6.3	2.17	6.05	0.154	1.15	7.86	260
2018GC54DV3	90	7.5	1.75	5.47	0.139	1.08	8.0	225
2018GC54DV4	95	8.1	0.729	3.37	0.183	1.70	6.46	278
2018GC54DV5	110	14.1	0.639	3.82	0.156	0.568	6.4	208
2018GC54DV6	95	9.7	1.28	7.36	0.119	0.769	7.32	258
2018GC54DV7	95	7.1	1.31	4.78	0.130	0.452	7.2	234
2018GC54DV8	85	6.9	0.726	4.22	0.118	0.675	6.84	206
2018GC54DV9	100	10.1	1.35	5.40	0.186	0.421	7.99	241
2018GC54DV10	105	12.9	1.45	6.08	0.136	0.538	8.9	217
Greens Creek Site 63A ^b								
2018GC48DV1	92	7.0	1.55	6.52	0.175	0.635	7.50	283
2018GC48DV2	95	8.0	1.13	5.15	0.169	0.906	6.56	236
2018GC48DV3	105	11.5	1.63	7.10	0.181	1.29	7.5	250
2018GC48DV4	87	6.5	1.65	4.65	0.127	0.263	7.4	244
2018GC48DV5	97	8.2	1.44	5.42	0.157	1.54	7.38	244
2018GC48DV6	90	6.8	1.18	4.60	0.149	0.324	7.00	195
2018GC48DV7	105	10.6	1.10	5.33	0.178	0.172	6.2	247
2018GC48DV8	95	8.1	1.43	4.89	0.134	0.187	8.0	189
2018GC48DV9	110	13.0	0.964	9.61	0.146	0.34	6.6	190
2018GC48DV10	104	10.1	1.21	5.57	0.228	1.30	6.40	250

Reported in: Gordon Willson-Naranjo and Benjamin Brewster, Habitat Biolgoists, to Jackie Timothy, Southeast Regional Supervisor. Memorandum: Empire Mine investigation Stream No. 112-65-10110; 7/24/2015. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd Street, Douglas, AK.

The Greens Creek Site 63A sample codes were mislabeled as Greens Creek Site 48.

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222 **F**:+1 360 636 1068

www.alsglobal.com

September 20, 2018

Analytical Report for Service Request No: K1807739

Kate Kanouse Alaska Department of Fish and Game Division of Habitat 802 3rd Street P.O. Box 110024 Douglas, AK 99811-0024

RE: 2018 Greens Creek Mine Biomonitoring

Dear Kate.

Enclosed are the results of the sample(s) submitted to our laboratory August 15, 2018 For your reference, these analyses have been assigned our service request number **K1807739**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3356. You may also contact me via email at Kurt.Clarkson@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kurt Clarkson

Sr. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Raw Data

Total Solids

Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- \boldsymbol{Q} $\;\;$ See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client: Alaska Department of Fish and Game Service Request: K1807739

Project: 2018 Greens Creek Mine Biomonitoring Date Received: 08/15/2018

Sample Matrix: Animal Tissue

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt:

Thirty animal tissue samples were received for analysis at ALS Environmental on 08/15/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored frozen at -20°C upon receipt at the laboratory.

Metals:

No significant anomalies were noted with this analysis.

Approved by _

Date ____09/20/2018

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

CHAIN OF CUSTODY

SR# <u>\$180</u> 7739

1317 South 13th Ave., Kelso, WA 98626 | +1 360 577 222 | +1 800 695 7222 | +1 360 636 1068 (fax)

	18 Greens	Creek Mine	Biomonito	ring												_	T		T :						
PROJECT NUMBER PROJECT MANAGER	PLE I.D. DATE MME LAB I.D. ent 1 of 1 ents below INVOICE INFORMAT PO # Bill To: I. Routine Report: Method Blank, Surrogate, as required III. CEP Like Summary (no raw data) IV. Data Validation Report V. EDD REQUESTED REQUESTED REQUESTED REQUESTED TIME LAB I.D. INVOICE INFORMAT PO # Bill To: URNAROUND REQUIRE 24 hr. 48 hr. 5 day X Standard (15 wo days) REQUESTED				N.		Z F									NO		506	ĘO,		Ethene				
COMPANY NAME					1 5		/MS	Ę								PO, F	TOC.		¥	ĺ	ä.	İ			
ADDRESS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Į₹		70.		pelow)			8151	5	- E	Ę	4 5		٥			! <u></u>				
CITY/STATE/ZIP		·····			Z		cs by		je :		:	S	121	SO VA	Hex-Chrom	S	TKI Phos	AOX 1650]		CO ₂				
E-MAIL ADDRESS					l E		gani 827	\$021	۔ ﷺ	# \$	é	Si41	δ ž	ă	ě	d C	8 7	Ş	ŝ	ي		ļ		į	ţ
		y.zutz@alas	ska.gov	***************************************	2		ō	yank o	le a	F 35	Congeners	护	olic	<u>ام</u>	,	Q 55	2 0			Furan 8290	Gases		1	_	
(907) 46		44	A STATE OF THE STA				sz70	2 Orga 8260	Pie Sign	reas	Ĭ,	des/	Telra	F 3		표명	NH.	020	≥	8. 82	pa .	ofac		rsdf ₈	ĺ
//	2 1244	/ //	14010	AAA TRIV	NUMBER OF CONTAINERS		Semivolatile Organics by GC/MS	Volatile Organics	Hydrocarbons (*see b	Oil & Grease/TRPH 1664 HEW 1664 SCT	PCBs vrectors	Pesticides/Herbicides	ŏ	Metals, Total or Dissolved See list below)	Cyanide	(circle) pH, Cond., Cl, SQ, NO ₃ , 8OD, TSS, TDS, Turb.	(circle) NH3-N, COD, TKN, DOC, NO2+NO3, T-Phos	TOX 9020	Aikalinity	Dioxins / Furans	Dissolved Gases SK 175 Methane	asdfasdfadf	adfadf	dfasdfsdfa	REMARKS
SAMPLE I.D. / attachment 1 of 1	DATE (AIME	LAB I.D.	MATRIX	30		3, 5,	Vol	ĮĪ.Š.	ōğ	P. P.	9 80	<u>ნ</u> ₽	X	0	υž	ÜΔ	F	₹	ے ت	ō š	ě	, g	N N	
		1	<u> </u>	<u> </u>	30						-			├	 										
see comments below				ļ	-										 	<u> </u>	ļ						<u> </u>		adfasdf
			 		ļ			L						 	 	-	 			├			ļ		auiasui
															ļ	<u> </u>				 -		 			
					ļ									 		 	 				<u> </u>				
																				ļ					
														<u> </u>	 										
					L											ļ									
																<u> </u>									
	ort:	PO #	CE INFORM	ATION	Total	which Metals: /ed Meta	Al A	As Sb	Ва	Be B	Ca B Ca	(ca	Co Cr	Cr Cu	Fe (>́b) м РЬ М	g Min g Min	Mo Mo	Ni K Ni K	Ag) Ag	Na (Si Na S	e Sr	TI SI	n V (2	Žn Hg Zn Hg
	Surrogate,				* IND	ICATE	STATI	HYD	ROCA	RBON	PROC	EDUR	E: AK	CA	WI	NOR	THWE	ST OT	HER:			(CIR	CLE O	NE)	W. W. W. W. W. W. W. W. W. W. W. W. W. W
χ II. Report Dup.	., MS, MSD	TURNARO	OUND REQU	REMENTS		AL INS											***************************************								
as required			24 hr.					,,							, , ,										
	mmary (no		48 hr.		٨	ote: se	e atta	chem	ent 1	of 1 o	whol	e met	al juve	enile fi	ish ind	lividu	al samı	oles							
raw data)			5 day																						
1	ition	X	Standard (15	working																					
·			days)	_	·																				
V. EDD					,	ample	Chinn	t		a LICO	٠	datad.	cail ca	malac	(choo	le bass	:6	ا ما ما ما							
			sted Repor	Date	. 1					2 030	- 1 c y u	iateu							, 						
REUNO	QUISHEB	BY:			RE	LINO CETUCO	UISH 2 37 2			18 O	£5.			RELII	NQUI	ISHE	D BY:					REL	INQU	ISHE) BY:
Signature ///		Date/	Time		gnątui			_	Da	te/Tim	ie]		Sig	gnatur	e		Da	te/Tin	ne		Signa	ture			Date/Time
Johnny Z	ut z	<u>8/13</u>	<u> </u>	DAVIE	Pen	العيزالم			ALS.	14															
Printed Name ¹	Prin	ted Name			Fir	m		Printed Name F			Firm		Printed Name					Firm							

Copyright 2012 by ALS Group

K1807739

Attachment 1 of 1

Project Name:

2018 Greens Creek Mine Biomonitoring

Johnny Zutz

Sample Type:

Whole body juvenile Dolly Varden char

Project Manager: Company Name:

Alaska Department of Fish and Game

Analysis:

Total metals, dry weight basis, report percent solids

Contact Information:

johnny.zutz@alaska.gov; (907) 465-6474

Caculations to account for measuring fish while in storage bag with label weight below

						Weight: fish	Weight:
	Sample				Fork Length	& bag	fish
Matrix	Date	Sample Name	Sample ID	Total Metals	(mm)	(g)	(g)
Whole Body	7/12/2018	Tributary Creek Site 9 DV Metals Fish #1	2018TC9DV1	Ag, Cd, Cu, Hg, Pb, Se, Zn	105	19.0	12.4
Whole Body	7/12/2018	Tributary Creek Site 9 DV Metals Fish #2	2018TC9DV2	Ag, Cd, Cu, Hg, Pb, Se, Zn	81	13.3	6.7
Whole Body	7/12/2018	Tributary Creek Site 9 DV Metals Fish #3	2018TC9DV3	Ag, Cd, Cu, Hg, Pb, Se, Zn	92	16.0	9.4
Whole Body	7/12/2018	Tributary Creek Site 9 DV Metals Fish #4	2018TC9DV4	Ag, Cd, Cu, Hg, Pb, Se, Zn	106	18.5	11.9
Whole Body	7/12/2018	Tributary Creek Site 9 DV Metals Fish #5	2018TC9DV5	Ag, Cd, Cu, Hg, Pb, Se, Zn	85	14.1	7.5
Whole Body	7/12/2018	Tributary Creek Site 9 DV Metals Fish #6	2018TC9DV6	Ag, Cd, Cu, Hg, Pb, Se, Zn	92	14.9	8.3
Whole Body	7/12/2018	Tributary Creek Site 9 DV Metals Fish #7	2018TC9DV7	Ag, Cd, Cu, Hg, Pb, Se, Zn	85	13.0	6.4
Whole Body	7/12/2018	Tributary Creek Site 9 DV Metals Fish #8	2018TC9DV8	Ag, Cd, Cu, Hg, Pb, Se, Zn	108	18.2	11.6
Whole Body	7/12/2018	Tributary Creek Site 9 DV Metals Fish #9	2018TC9DV9	Ag, Cd, Cu, Hg, Pb, Se, Zn	86	12.4	5.8
Whole Body	7/12/2018	Tributary Creek Site 9 DV Metals Fish #10	2018TC9DV10	Ag, Cd, Cu, Hg, Pb, Se, Zn	109	19.1	12.5
Whole Body	7/12/2018	Greens Creek Site 54 DV Metals Fish #1	2018GC54DV1	Ag, Cd, Cu, Hg, Pb, Se, Zn	125	25.3	18.7
Whole Body	7/12/2018	Greens Creek Site 54 DV Metals Fish #2	2018GC54DV2	Ag, Cd, Cu, Hg, Pb, Se, Zn	90	12.9	6.3
Whole Body	7/12/2018	Greens Creek Site 54 DV Metals Fish #3	2018GC54DV3	Ag, Cd, Cu, Hg, Pb, Se, Zn	90	14.1	7.5
Whole Body	7/12/2018	Greens Creek Site 54 DV Metals Fish #4	2018GC54DV4	Ag, Cd, Cu, Hg, Pb, Se, Zn	95	14.7	8.1
Whole Body	7/12/2018	Greens Creek Site 54 DV Metals Fish #5	2018GC54DV5	Ag, Cd, Cu, Hg, Pb, Se, Zn	110	20.7	14.1
Whole Body	7/12/2018	Greens Creek Site 54 DV Metals Fish #6	2018GC54DV6	Ag, Cd, Cu, Hg, Pb, Se, Zn	95	16.3	√9.7
Whole Body	7/12/2018	Greens Creek Site 54 DV Metals Fish #7	2018GC54DV7	Ag, Cd, Cu, Hg, Pb, Se, Zn	95	13.7	7.1
Whole Body	7/12/2018	Greens Creek Site 54 DV Metals Fish #8	2018GC54DV8	Ag, Cd, Cu, Hg, Pb, Se, Zn	85	13.5	6.9
Whole Body	7/12/2018	Greens Creek Site 54 DV Metals Fish #9	2018GC54DV9	Ag, Cd, Cu, Hg, Pb, Se, Zn	100	16.7	10.1
Whole Body	7/12/2018	Greens Creek Site 54 DV Metals Fish #10	2018GC54DV10	Ag, Cd, Cu, Hg, Pb, Se, Zn	105	19.5	12.9
Whole Body	7/13/2018	Greens Creek Site 48 DV Metals Fish #1	2018GC48DV1	Ag, Cd, Cu, Hg, Pb, Se, Zn	92	13.6	7.0
Whole Body	7/13/2018	Greens Creek Site 48 DV Metals Fish #2	2018GC48DV2	Ag, Cd, Cu, Hg, Pb, Se, Zn	95	14.6	8.0
Whole Body	7/13/2018	Greens Creek Site 48 DV Metals Fish #3	2018GC48DV3	Ag, Cd, Cu, Hg, Pb, Se, Zn	105	18.1	11.5
Whole Body	7/13/2018	Greens Creek Site 48 DV Metals Fish #4	2018GC48DV4	Ag, Cd, Cu, Hg, Pb, Se, Zn	87	13.1	6.5
Whole Body	7/13/2018	Greens Creek Site 48 DV Metals Fish #5	2018GC48DV5	Ag, Cd, Cu, Hg, Pb, Se, Zn	97	14.8	8.2
Whole Body	7/13/2018	Greens Creek Site 48 DV Metals Fish #6	2018GC48DV6	Ag, Cd, Cu, Hg, Pb, Se, Zn	90	13.4	6.8
Whole Body	7/13/2018	Greens Creek Site 48 DV Metals Fish #7	2018GC48DV7	Ag, Cd, Cu, Hg, Pb, Se, Zn	105	17.2	10.6
Whole Body	7/13/2018	Greens Creek Site 48 DV Metals Fish #8	2018GC48DV8	Ag, Cd, Cu, Hg, Pb, Se, Zn	95	14.7	8.1
Whole Body	7/13/2018	Greens Creek Site 48 DV Metals Fish #9	2018GC48DV9	Ag, Cd, Cu, Hg, Pb, Se, Zn	110	19.6	13.0
Whole Body	7/13/2018	Greens Creek Site 48 DV Metals Fish #10	2018GC48DV10	Ag, Cd, Cu, Hg, Pb, Se, Zn	104	16.7	10.1

PCKent

•	1	10:	2 K	Cooler 1	Receip	pt and	d Pres	ervat	tion F	'orm			,	er-
ient	<u> </u>	1)+40	2 ; Div	isim of	<u>-</u>	BITMT	A	4	Reque	est K18		739		·
eceived:_	8-15	-18	Opened:	8-15	-18	_ By:	:_ <u>/}\$</u>	P	Uı	ıloaded	1: <u>8-15</u>	-18 By:	851	
Sample	s were rece	ived via?	USPS	Fed Ex) UI	PS	DHL	PI	DΧ	Courie	er Hand	Delivered		
•		eived in: (ci	-	ooler	Box		Envelop		Othe		<i>f</i>	Name of the last o	NA	
		s on coolers		NA (Y	_		-		=	and whe		TOP FR	wt	
-	ent, were cu	stody seals	intact?	Corr.		momete			coc id		gned and d	ated? racking Numb	<u> </u>	N T
Raw Cooler Temp	Corrected. Cooler Temp	h	Corrected Temp Blank	Factor		ID	er			NA		-	NA	Filed
30	2.8	FREZEN	Freed	<i>~∂.</i> }	1	22					7822	7427	4371	
			 		ļ					_				-
. Packin	a material:	Incarte	Baggies <	Pribble W	/====	2 of Da	- L	Vot Inc			Y			<u> </u>
			y filled out				CKS > V	vei ice	• игу	ice s	lleeves _	N.	A (V)	N
			od condition	· •			n)? <i>In</i>	dicate	in the	table bei	low.	N	7	N
Wong	ll commic I		oplicable, tis	•				Froze	n P	artially	Thawed	Thawed	. 6	N
	-	•	lete (i.e anal s agree with	• • •		-		or disc	renanc	ies in th	ie table on	N page 2. N	00	N N
	=	•	ntainers and		-		-		•			· ·	A (Ŷ)	N
0. Were	the pH-pro	eserved bot	tles (see SMC	O GEN SOF) recei	ved at t	he app	ropriat	e pH?	Indicate	e in the tab	le below (N	A Y	N
11. Were	VOA vial	s received v	without head	space? In	dicate .	in the t	able be	low.				(N	Y Y	N
12. Was	C12/Res no	egative?										<u> </u>	Y	N
·	Sample ID	on Bottle			Samp	le ID or	1 COC					dentified by:		
 				 			·				· · · · · · · · · · · · · · · · · · ·			
				 		···········					<u></u>			
					T		 1							
	Sample) ID		e Count le Type	Out of Temp		Broke	рН	Re	agent	Volume added	Reagent Lot Number	Initials	Time
	······································	-			 	<u> </u>	 							
	····	<u> </u>	- -		 			 I					 	
							ļ		ļ					
	.,,					<u> </u>	<u> </u>	<u></u>	<u></u>					
Notes, I	Discrepan	icies, & Re	esolutions:		· · · · · · · · · · · · · · · · · · ·	<u> </u>								
			<u> </u>			· · · · · · · · · · · · · · · · · · ·	···········					<u> </u>		
7/25	716											Pag	eof_	

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring **Date Collected:** 07/12/18 - 07/13/18

Sample Matrix: Animal Tissue Date Received: 08/15/18

Analysis Method:Freeze DryUnits: PercentPrep Method:NoneBasis: Wet

Total Solids

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
2018TC9DV1	K1807739-001	20.8	-	1	08/31/18 13:20	
2018TC9DV2	K1807739-002	18.4	-	1	08/31/18 13:20	
2018TC9DV3	K1807739-003	20.4	-	1	08/31/18 13:20	
2018TC9DV4	K1807739-004	21.6	-	1	08/31/18 13:20	
2018TC9DV5	K1807739-005	21.0	-	1	08/31/18 13:20	
2018TC9DV6	K1807739-006	22.5	-	1	08/31/18 13:20	
2018TC9DV7	K1807739-007	19.8	-	1	08/31/18 13:20	
2018TC9DV8	K1807739-008	21.6	-	1	08/31/18 13:20	
2018TC9DV9	K1807739-009	23.0	-	1	08/31/18 13:20	
2018TC9DV10	K1807739-010	22.2	-	1	08/31/18 13:20	
2018GC54DV1	K1807739-011	20.0	-	1	08/31/18 13:20	
2018GC54DV2	K1807739-012	20.7	-	1	08/31/18 13:20	
2018GC54DV3	K1807739-013	20.4	-	1	08/31/18 13:20	
2018GC54DV4	K1807739-014	19.4	-	1	08/31/18 13:20	
2018GC54DV5	K1807739-015	22.1	-	1	08/31/18 13:20	
2018GC54DV6	K1807739-016	23.5	-	1	08/31/18 13:20	
2018GC54DV7	K1807739-017	21.8	-	1	08/31/18 13:20	
2018GC54DV8	K1807739-018	20.9	-	1	08/31/18 13:20	
2018GC54DV9	K1807739-019	19.5	-	1	08/31/18 13:20	
2018GC54DV10	K1807739-020	19.9	-	1	08/31/18 13:20	
2018GC48DV1	K1807739-021	37.1	-	1	08/31/18 13:20	
2018GC48DV2	K1807739-022	21.2	-	1	08/31/18 13:20	
2018GC48DV3	K1807739-023	20.8	-	1	08/31/18 13:20	
2018GC48DV4	K1807739-024	39.2	-	1	08/31/18 13:20	
2018GC48DV5	K1807739-025	21.2	-	1	08/31/18 13:20	
2018GC48DV6	K1807739-026	21.5	-	1	08/31/18 13:20	
2018GC48DV7	K1807739-027	21.0	-	1	08/31/18 13:20	
2018GC48DV8	K1807739-028	23.0	-	1	08/31/18 13:20	
2018GC48DV9	K1807739-029	21.5	-	1	08/31/18 13:20	
2018GC48DV10	K1807739-030	21.3	-	1	08/31/18 13:20	

Service Request: K1807739

QA/QC Report

Service Request:K1807739

Client: Alaska Department of Fish and Game

Project 2018 Greens Creek Mine Biomonitoring **Date Collected:**07/12/18 - 07/13/18

Sample Matrix: Animal Tissue Date Received: 08/15/18

Analysis Method:Freeze DryUnits:PercentPrep Method:NoneBasis:Wet

Replicate Sample Summary Inorganic Parameters

-			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
2018GC54DV1	K1807739-011DUP	-	20.0	19.8	19.9	1	20	08/31/18
2018GC48DV9	K1807739-029DUP	_	21.5	21.7	21.6	<1	20	08/31/18

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/4/2018 4:10:27 PM Superset Reference:18-0000478921 rev 00

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal tissue

Service Request: K1807739 **Date Collected:** 07/12/18 **Date Received:** 08/15/18

Units: ng/g

Basis: Dry

Mercury, Total

Prep Method: METHOD Analysis Method: 1631E

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
2018TC9DV1	K1807739-001	10	10	09/12/18	09/14/18	490	
2018TC9DV2	K1807739-002	9.9	10	09/12/18	09/14/18	577	
2018TC9DV3	K1807739-003	10	10	09/12/18	09/14/18	406	
2018TC9DV4	K1807739-004	9.9	10	09/12/18	09/14/18	457	
2018TC9DV5	K1807739-005	9.9	10	09/12/18	09/14/18	353	
2018TC9DV6	K1807739-006	9.7	10	09/12/18	09/14/18	863	
2018TC9DV7	K1807739-007	9.6	10	09/12/18	09/14/18	364	
2018TC9DV8	K1807739-008	10	10	09/12/18	09/14/18	435	
2018TC9DV9	K1807739-009	9.9	10	09/12/18	09/14/18	771	
2018TC9DV10	K1807739-010	9.8	10	09/12/18	09/14/18	664	
2018GC54DV1	K1807739-011	10	10	09/12/18	09/14/18	171	
2018GC54DV2	K1807739-012	9.9	10	09/12/18	09/14/18	154	
2018GC54DV3	K1807739-013	10	10	09/12/18	09/14/18	139	
2018GC54DV4	K1807739-014	9.6	10	09/12/18	09/14/18	183	
2018GC54DV5	K1807739-015	9.8	10	09/12/18	09/14/18	156	
2018GC54DV6	K1807739-016	9.9	10	09/12/18	09/14/18	119	
2018GC54DV7	K1807739-017	9.8	10	09/12/18	09/14/18	130	
2018GC54DV8	K1807739-018	9.9	10	09/12/18	09/14/18	118	
2018GC54DV9	K1807739-019	9.6	10	09/12/18	09/14/18	186	
2018GC54DV10	K1807739-020	9.8	10	09/12/18	09/14/18	136	
Method Blank	K1807739-MB1	1.0	1	09/12/18	09/14/18	ND	
Method Blank	K1807739-MB2	1.0	1	09/12/18	09/14/18	ND	
Method Blank	K1807739-MB3	1.0	1	09/12/18	09/14/18	ND	

Analytical Report

Client: Alaska Department of Fish and Game **Project:** 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal tissue **Service Request:** K1807739 **Date Collected:** 07/13/18 **Date Received:** 08/15/18

Mercury, Total

Prep Method: **METHOD** Analysis Method: 1631E

Units: ng/g Basis: Dry

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
2018GC48DV1	K1807739-021	13	1	09/12/18	09/14/18	175	
2018GC48DV2	K1807739-022	9.8	1	09/12/18	09/14/18	169	
2018GC48DV3	K1807739-023	9.8	1	09/12/18	09/14/18	181	
2018GC48DV4	K1807739-024	9.9	1	09/12/18	09/14/18	127	
2018GC48DV5	K1807739-025	9.9	1	09/12/18	09/14/18	157	
2018GC48DV6	K1807739-026	9.8	1	09/12/18	09/14/18	149	
2018GC48DV7	K1807739-027	9.9	1	09/12/18	09/14/18	178	
2018GC48DV8	K1807739-028	9.8	1	09/12/18	09/14/18	134	
2018GC48DV9	K1807739-029	9.9	1	09/12/18	09/14/18	146	
2018GC48DV10	K1807739-030	9.9	1	09/12/18	09/14/18	228	
Method Blank	K1807739-MB1	1.0	1	09/12/18	09/14/18	ND	
Method Blank	K1807739-MB2	1.0	1	09/12/18	09/14/18	ND	
Method Blank	K1807739-MB3	1.0	1	09/12/18	09/14/18	ND	

QA/QC Report

Client: Alaska Department of Fish and Game
Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal tissue

Service Request: K1807739
Date Collected: 07/12/18
Date Received: 08/15/18
Date Extracted: 09/12/18
Date Analyzed: 09/14/18

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code: 2018TC9DV4

K1807739-004MS,

K1807739-004DMS

Units: ng/g

Basis: Dry

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	-		Sample Result	Spike MS	Result DMS	MS	DMS	ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	10	248	249	457	744	690	116	94	70-130	8	

K1807739icp.jc1 - DMS 09/19/18 Page No.:

QA/QC Report

Client: Alaska Department of Fish and Game
Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal tissue

 Service Request:
 K1807739

 Date Collected:
 07/12/18

 Date Received:
 08/15/18

 Date Extracted:
 09/12/18

 Date Analyzed:
 09/14/18

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: 2018GC54DV5

Lab Code: K1807739-015MS,

K1807739-015DMS

Units: ng/g

Basis: Dry

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	•		Sample Result	Spike MS	Result DMS	MS	DMS	ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	9.9	246	248	156	390	426	95	109	70-130	9	

K1807739icp.jc1 - DMS (2) 09/19/18 Page No.:

Client: Alaska Department of Fish and Game Service Request: K1807739

Project:2018 Greens Creek Mine BiomonitoringDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 09/14/18

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

						ALS	
						Percent	
						Recovery	
	Prep	Analysis	True		Percent	Acceptance	Result
Analyte	Method	Method	Value	Result	Recovery	Limits	Notes
Mercury	METHOD	1631E	5.00	5.45	109	70-130	

Client: Alaska Department of Fish and Game Service Request: K1807739

Project:2018 Greens Creek Mine BiomonitoringDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 09/14/18

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.95	99	70-130	

Client: Alaska Department of Fish and Game Service Request: K1807739

Date Collected: NA **Project:** 2018 Greens Creek Mine Biomonitoring LCS Matrix: Animal tissue Date Received: NA

Date Extracted: 09/12/18 **Date Analyzed:** 09/14/18

Quality Control Sample (QCS) Summary

Total Metals

Units: ng/g Sample Name: **Quality Control Sample** Lab Code:

Basis: Dry

Test Notes: Tort-3 Solids = 99.1%

Source: TORT-3 **ALS**

Percent Recovery Analysis True Percent Acceptance Result Prep Analyte Method Limits Method Value Result Recovery **Notes** 271 **METHOD** 1631E 292 93 70-130 Mercury

QA/QC Report

Client: Alaska Department of Fish and Game
Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal tissue

Date Collected: 07/13/18
Date Received: 08/15/18
Date Extracted: 09/12/18
Date Analyzed: 09/14/18

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: 2018GC48DV3

Lab Code: K1807739-023MS,

K1807739-023DMS

Units: ng/g Basis: Dry

Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike		1 61 (cnt	ALS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	9.9	249	246	181	461	429	112	101	70-130	7	

K1807739ICP.jc2 - DMS 09/19/18 Page No.:

Client: Alaska Department of Fish and Game Service Request: K1807739

Project:2018 Greens Creek Mine BiomonitoringDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 09/14/18

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.04	101	70-130	

Client: Alaska Department of Fish and Game Service Request: K1807739

Project:2018 Greens Creek Mine BiomonitoringDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 09/14/18

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.35	107	70-130	

Client: Alaska Department of Fish and Game Service Request: K1807739

Project:2018 Greens Creek Mine BiomonitoringDate Collected:NALCS Matrix:Animal tissueDate Received:NA

Date Extracted: 09/12/18
Date Analyzed: 09/14/18

Quality Control Sample (QCS) Summary

Total Metals

Sample Name: Quality Control Sample Units: ng/g

Lab Code:

Test Notes: Tort-3 Solids = 99.1%

Basis: Dry

Source: TORT-3 ALS
Percent

Recovery Analysis True Percent Acceptance Result Prep Analyte Method Limits Method Value Result Recovery **Notes** 291 **METHOD** 1631E 292 100 70-130 Mercury

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Date Collected: 07/12/18 **Date Received:** 08/15/18 09:45

Service Request: K1807739

Sample Name: 2018TC9DV1 Basis: Dry

Lab Code: K1807739-001

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.701	mg/Kg	0.020	5	09/13/18 15:24	09/04/18	
Copper	200.8	2.34	mg/Kg	0.10	5	09/13/18 15:24	09/04/18	
Lead	200.8	0.365	mg/Kg	0.020	5	09/13/18 15:24	09/04/18	
Selenium	200.8	6.27	mg/Kg	1.0	5	09/13/18 15:24	09/04/18	
Silver	200.8	0.096	mg/Kg	0.020	5	09/13/18 15:24	09/04/18	
Zinc	200.8	149	mg/Kg	0.50	5	09/13/18 15:24	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Service Request: K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Sample Name: 2018TC9DV2 Basis: Dry

Lab Code: K1807739-002

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.09	mg/Kg	0.020	5	09/13/18 15:31	09/04/18	
Copper	200.8	2.80	mg/Kg	0.10	5	09/13/18 15:31	09/04/18	
Lead	200.8	0.963	mg/Kg	0.020	5	09/13/18 15:31	09/04/18	
Selenium	200.8	7.2	mg/Kg	1.0	5	09/13/18 15:31	09/04/18	
Silver	200.8	0.115	mg/Kg	0.020	5	09/13/18 15:31	09/04/18	
Zinc	200.8	160	mg/Kg	0.50	5	09/13/18 15:31	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Date Collected: 07/12/18

Service Request: K1807739

Date Received: 08/15/18 09:45

Sample Name: 2018TC9DV3 Basis: Dry

Lab Code: K1807739-003

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.313	mg/Kg	0.020	5	09/13/18 15:34	09/04/18	
Copper	200.8	2.90	mg/Kg	0.099	5	09/13/18 15:34	09/04/18	
Lead	200.8	0.196	mg/Kg	0.020	5	09/13/18 15:34	09/04/18	
Selenium	200.8	5.03	mg/Kg	0.99	5	09/13/18 15:34	09/04/18	
Silver	200.8	0.070	mg/Kg	0.020	5	09/13/18 15:34	09/04/18	
Zinc	200.8	109	mg/Kg	0.50	5	09/13/18 15:34	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Animal Tissue **Date Received:** 08/15/18 09:45

Service Request: K1807739 **Date Collected:** 07/12/18

Sample Name: 2018TC9DV4 Basis: Dry

Lab Code: K1807739-004

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.509	mg/Kg	0.020	5	09/13/18 15:36	09/04/18	
Copper	200.8	2.32	mg/Kg	0.10	5	09/13/18 15:36	09/04/18	
Lead	200.8	0.353	mg/Kg	0.020	5	09/13/18 15:36	09/04/18	
Selenium	200.8	5.40	mg/Kg	1.0	5	09/13/18 15:36	09/04/18	
Silver	200.8	0.044	mg/Kg	0.020	5	09/13/18 15:36	09/04/18	
Zinc	200.8	137	mg/Kg	0.50	5	09/13/18 15:36	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue **Date Collected:** 07/12/18

Service Request: K1807739

Date Received: 08/15/18 09:45

Sample Name: 2018TC9DV5 Basis: Dry

Lab Code: K1807739-005

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.30	mg/Kg	0.020	5	09/13/18 15:39	09/04/18	
Copper	200.8	2.80	mg/Kg	0.10	5	09/13/18 15:39	09/04/18	
Lead	200.8	1.02	mg/Kg	0.020	5	09/13/18 15:39	09/04/18	
Selenium	200.8	6.00	mg/Kg	1.0	5	09/13/18 15:39	09/04/18	
Silver	200.8	0.085	mg/Kg	0.020	5	09/13/18 15:39	09/04/18	
Zinc	200.8	171	mg/Kg	0.50	5	09/13/18 15:39	09/04/18	

Analytical Report

Service Request: K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Sample Name: 2018TC9DV6 Basis: Dry

Lab Code: K1807739-006

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.969	mg/Kg	0.020	5	09/13/18 15:46	09/04/18	
Copper	200.8	2.84	mg/Kg	0.099	5	09/13/18 15:46	09/04/18	
Lead	200.8	0.381	mg/Kg	0.020	5	09/13/18 15:46	09/04/18	
Selenium	200.8	6.70	mg/Kg	0.99	5	09/13/18 15:46	09/04/18	
Silver	200.8	0.108	mg/Kg	0.020	5	09/13/18 15:46	09/04/18	
Zinc	200.8	94.8	mg/Kg	0.50	5	09/13/18 15:46	09/04/18	

Analytical Report

Service Request: K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Sample Name: 2018TC9DV7 Basis: Dry

Lab Code: K1807739-007

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.36	mg/Kg	0.020	5	09/13/18 15:48	09/04/18	
Copper	200.8	2.73	mg/Kg	0.10	5	09/13/18 15:48	09/04/18	
Lead	200.8	0.871	mg/Kg	0.020	5	09/13/18 15:48	09/04/18	
Selenium	200.8	6.31	mg/Kg	1.0	5	09/13/18 15:48	09/04/18	
Silver	200.8	0.093	mg/Kg	0.020	5	09/13/18 15:48	09/04/18	
Zinc	200.8	144	mg/Kg	0.50	5	09/13/18 15:48	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Service Request: K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Sample Name: 2018TC9DV8 Basis: Dry

Lab Code: K1807739-008

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.793	mg/Kg	0.020	5	09/13/18 15:51	09/04/18	
Copper	200.8	2.53	mg/Kg	0.10	5	09/13/18 15:51	09/04/18	
Lead	200.8	0.162	mg/Kg	0.020	5	09/13/18 15:51	09/04/18	
Selenium	200.8	6.2	mg/Kg	1.0	5	09/13/18 15:51	09/04/18	
Silver	200.8	0.084	mg/Kg	0.020	5	09/13/18 15:51	09/04/18	
Zinc	200.8	143	mg/Kg	0.50	5	09/13/18 15:51	09/04/18	

Analytical Report

Service Request: K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Sample Name: 2018TC9DV9 Basis: Dry

Lab Code: K1807739-009

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.88	mg/Kg	0.020	5	09/13/18 15:53	09/04/18	
Copper	200.8	2.63	mg/Kg	0.10	5	09/13/18 15:53	09/04/18	
Lead	200.8	0.636	mg/Kg	0.020	5	09/13/18 15:53	09/04/18	
Selenium	200.8	6.4	mg/Kg	1.0	5	09/13/18 15:53	09/04/18	
Silver	200.8	0.096	mg/Kg	0.020	5	09/13/18 15:53	09/04/18	
Zinc	200.8	128	mg/Kg	0.50	5	09/13/18 15:53	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue **Service Request:** K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

2018TC9DV10 Basis: Dry

Lab Code: K1807739-010

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.708	mg/Kg	0.020	5	09/13/18 15:56	09/04/18	
Copper	200.8	2.37	mg/Kg	0.10	5	09/13/18 15:56	09/04/18	
Lead	200.8	0.945	mg/Kg	0.020	5	09/13/18 15:56	09/04/18	
Selenium	200.8	6.4	mg/Kg	1.0	5	09/13/18 15:56	09/04/18	
Silver	200.8	0.139	mg/Kg	0.020	5	09/13/18 15:56	09/04/18	
Zinc	200.8	154	mg/Kg	0.50	5	09/13/18 15:56	09/04/18	

Analytical Report

Service Request: K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Sample Name: 2018GC54DV1 Basis: Dry

Lab Code: K1807739-011

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.14	mg/Kg	0.020	5	09/13/18 15:58	09/04/18	
Copper	200.8	5.69	mg/Kg	0.10	5	09/13/18 15:58	09/04/18	
Lead	200.8	0.314	mg/Kg	0.020	5	09/13/18 15:58	09/04/18	
Selenium	200.8	6.32	mg/Kg	1.0	5	09/13/18 15:58	09/04/18	
Silver	200.8	0.024	mg/Kg	0.020	5	09/13/18 15:58	09/04/18	
Zinc	200.8	236	mg/Kg	0.50	5	09/13/18 15:58	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue **Service Request:** K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Sample Name: 2018GC54DV2 Basis: Dry

Lab Code: K1807739-012

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	2.17	mg/Kg	0.020	5	09/13/18 16:06	09/04/18	
Copper	200.8	6.05	mg/Kg	0.10	5	09/13/18 16:06	09/04/18	
Lead	200.8	1.15	mg/Kg	0.020	5	09/13/18 16:06	09/04/18	
Selenium	200.8	7.86	mg/Kg	1.0	5	09/13/18 16:06	09/04/18	
Silver	200.8	ND U	mg/Kg	0.020	5	09/13/18 16:06	09/04/18	
Zinc	200.8	260	mg/Kg	0.50	5	09/13/18 16:06	09/04/18	

Analytical Report

Service Request: K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Sample Name: 2018GC54DV3 Basis: Dry

Lab Code: K1807739-013

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.75	mg/Kg	0.020	5	09/13/18 16:08	09/04/18	
Copper	200.8	5.47	mg/Kg	0.10	5	09/13/18 16:08	09/04/18	
Lead	200.8	1.08	mg/Kg	0.020	5	09/13/18 16:08	09/04/18	
Selenium	200.8	8.0	mg/Kg	1.0	5	09/13/18 16:08	09/04/18	
Silver	200.8	0.032	mg/Kg	0.020	5	09/13/18 16:08	09/04/18	
Zinc	200.8	225	mg/Kg	0.50	5	09/13/18 16:08	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Service Request: K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Sample Name: 2018GC54DV4 Basis: Dry

Lab Code: K1807739-014

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.729	mg/Kg	0.020	5	09/13/18 16:15	09/04/18	
Copper	200.8	3.37	mg/Kg	0.099	5	09/13/18 16:15	09/04/18	
Lead	200.8	1.70	mg/Kg	0.020	5	09/13/18 16:15	09/04/18	
Selenium	200.8	6.46	mg/Kg	0.99	5	09/13/18 16:15	09/04/18	
Silver	200.8	0.037	mg/Kg	0.020	5	09/13/18 16:15	09/04/18	
Zinc	200.8	278	mg/Kg	0.50	5	09/13/18 16:15	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Date Collected: 07/12/18

Service Request: K1807739

Date Received: 08/15/18 09:45

Sample Name: 2018GC54DV5 Basis: Dry

Lab Code: K1807739-015

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.639	mg/Kg	0.020	5	09/13/18 16:18	09/04/18	
Copper	200.8	3.82	mg/Kg	0.10	5	09/13/18 16:18	09/04/18	
Lead	200.8	0.568	mg/Kg	0.020	5	09/13/18 16:18	09/04/18	
Selenium	200.8	6.4	mg/Kg	1.0	5	09/13/18 16:18	09/04/18	
Silver	200.8	0.040	mg/Kg	0.020	5	09/13/18 16:18	09/04/18	
Zinc	200.8	208	mg/Kg	0.50	5	09/13/18 16:18	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Date Collected: 07/12/18 **Date Received:** 08/15/18 09:45

Service Request: K1807739

2018GC54DV6 Basis: Dry

Lab Code: K1807739-016

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.28	mg/Kg	0.020	5	09/13/18 16:20	09/04/18	
Copper	200.8	7.36	mg/Kg	0.099	5	09/13/18 16:20	09/04/18	
Lead	200.8	0.769	mg/Kg	0.020	5	09/13/18 16:20	09/04/18	
Selenium	200.8	7.32	mg/Kg	0.99	5	09/13/18 16:20	09/04/18	
Silver	200.8	0.026	mg/Kg	0.020	5	09/13/18 16:20	09/04/18	
Zinc	200.8	258	mg/Kg	0.50	5	09/13/18 16:20	09/04/18	

Analytical Report

Service Request: K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Sample Name: 2018GC54DV7 Basis: Dry

Lab Code: K1807739-017

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.31	mg/Kg	0.020	5	09/13/18 16:23	09/04/18	
Copper	200.8	4.78	mg/Kg	0.10	5	09/13/18 16:23	09/04/18	
Lead	200.8	0.452	mg/Kg	0.020	5	09/13/18 16:23	09/04/18	
Selenium	200.8	7.2	mg/Kg	1.0	5	09/13/18 16:23	09/04/18	
Silver	200.8	0.023	mg/Kg	0.020	5	09/13/18 16:23	09/04/18	
Zinc	200.8	234	mg/Kg	0.50	5	09/13/18 16:23	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Service Request: K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Sample Name: 2018GC54DV8 Basis: Dry

Lab Code: K1807739-018

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.726	mg/Kg	0.020	5	09/13/18 16:25	09/04/18	
Copper	200.8	4.22	mg/Kg	0.099	5	09/13/18 16:25	09/04/18	
Lead	200.8	0.675	mg/Kg	0.020	5	09/13/18 16:25	09/04/18	
Selenium	200.8	6.84	mg/Kg	0.99	5	09/13/18 16:25	09/04/18	
Silver	200.8	0.029	mg/Kg	0.020	5	09/13/18 16:25	09/04/18	
Zinc	200.8	206	mg/Kg	0.50	5	09/13/18 16:25	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

2018GC54DV9

Sample Matrix: Animal Tissue **Service Request:** K1807739 **Date Collected:** 07/12/18

Basis: Dry

Date Received: 08/15/18 09:45

Lab Code: K1807739-019

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.35	mg/Kg	0.020	5	09/13/18 16:28	09/04/18	
Copper	200.8	5.40	mg/Kg	0.10	5	09/13/18 16:28	09/04/18	
Lead	200.8	0.421	mg/Kg	0.020	5	09/13/18 16:28	09/04/18	
Selenium	200.8	7.99	mg/Kg	1.0	5	09/13/18 16:28	09/04/18	
Silver	200.8	0.056	mg/Kg	0.020	5	09/13/18 16:28	09/04/18	
Zinc	200.8	241	mg/Kg	0.50	5	09/13/18 16:28	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Project:

Service Request: K1807739 **Date Collected:** 07/12/18

Date Received: 08/15/18 09:45

Sample Name: 2018GC54DV10 Basis: Dry

Lab Code: K1807739-020

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.45	mg/Kg	0.020	5	09/13/18 16:30	09/04/18	
Copper	200.8	6.08	mg/Kg	0.10	5	09/13/18 16:30	09/04/18	
Lead	200.8	0.538	mg/Kg	0.020	5	09/13/18 16:30	09/04/18	
Selenium	200.8	8.9	mg/Kg	1.0	5	09/13/18 16:30	09/04/18	
Silver	200.8	0.036	mg/Kg	0.020	5	09/13/18 16:30	09/04/18	
Zinc	200.8	217	mg/Kg	0.50	5	09/13/18 16:30	09/04/18	

Analytical Report

Service Request: K1807739 **Date Collected:** 07/13/18

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue Date Received: 08/15/18 09:45

Sample Name: 2018GC48DV1 Basis: Dry

Lab Code: K1807739-021

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.57	mg/Kg	0.020	5	09/13/18 16:45	09/04/18	
Copper	200.8	6.70	mg/Kg	0.10	5	09/13/18 16:45	09/04/18	
Lead	200.8	0.614	mg/Kg	0.020	5	09/13/18 16:45	09/04/18	
Selenium	200.8	7.51	mg/Kg	1.0	5	09/13/18 16:45	09/04/18	
Silver	200.8	0.039	mg/Kg	0.020	5	09/13/18 16:45	09/04/18	
Zinc	200.8	276	mg/Kg	0.50	5	09/13/18 16:45	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Service Request: K1807739 **Date Collected:** 07/13/18

Date Received: 08/15/18 09:45

Sample Name: 2018GC48DV2 Basis: Dry

Lab Code: K1807739-022

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.13	mg/Kg	0.020	5	09/13/18 16:52	09/04/18	
Copper	200.8	5.15	mg/Kg	0.099	5	09/13/18 16:52	09/04/18	
Lead	200.8	0.906	mg/Kg	0.020	5	09/13/18 16:52	09/04/18	
Selenium	200.8	6.56	mg/Kg	0.99	5	09/13/18 16:52	09/04/18	
Silver	200.8	0.056	mg/Kg	0.020	5	09/13/18 16:52	09/04/18	
Zinc	200.8	236	mg/Kg	0.50	5	09/13/18 16:52	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Date Collected: 07/13/18

Service Request: K1807739

Date Received: 08/15/18 09:45

Sample Name: 2018GC48DV3 Basis: Dry

Lab Code: K1807739-023

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.63	mg/Kg	0.020	5	09/13/18 16:54	09/04/18	
Copper	200.8	7.10	mg/Kg	0.10	5	09/13/18 16:54	09/04/18	
Lead	200.8	1.29	mg/Kg	0.020	5	09/13/18 16:54	09/04/18	
Selenium	200.8	7.5	mg/Kg	1.0	5	09/13/18 16:54	09/04/18	
Silver	200.8	0.045	mg/Kg	0.020	5	09/13/18 16:54	09/04/18	
Zinc	200.8	250	mg/Kg	0.50	5	09/13/18 16:54	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Date Collected: 07/13/18 **Date Received:** 08/15/18 09:45

Service Request: K1807739

Sample Name: 2018GC48DV4 Basis: Dry

Lab Code: K1807739-024

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.65	mg/Kg	0.020	5	09/13/18 16:57	09/04/18	
Copper	200.8	4.65	mg/Kg	0.10	5	09/13/18 16:57	09/04/18	
Lead	200.8	0.263	mg/Kg	0.020	5	09/13/18 16:57	09/04/18	
Selenium	200.8	7.4	mg/Kg	1.0	5	09/13/18 16:57	09/04/18	
Silver	200.8	0.021	mg/Kg	0.020	5	09/13/18 16:57	09/04/18	
Zinc	200.8	244	mg/Kg	0.50	5	09/13/18 16:57	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Service Request: K1807739 **Date Collected:** 07/13/18

Date Received: 08/15/18 09:45

Sample Name: 2018GC48DV5 Basis: Dry

Lab Code: K1807739-025

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.44	mg/Kg	0.020	5	09/13/18 16:59	09/04/18	
Copper	200.8	5.42	mg/Kg	0.10	5	09/13/18 16:59	09/04/18	
Lead	200.8	1.54	mg/Kg	0.020	5	09/13/18 16:59	09/04/18	
Selenium	200.8	7.38	mg/Kg	1.0	5	09/13/18 16:59	09/04/18	
Silver	200.8	0.044	mg/Kg	0.020	5	09/13/18 16:59	09/04/18	
Zinc	200.8	244	mg/Kg	0.50	5	09/13/18 16:59	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Service Request: K1807739 **Date Collected:** 07/13/18

Date Received: 08/15/18 09:45

Sample Name: 2018GC48DV6 Basis: Dry

Lab Code: K1807739-026

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.18	mg/Kg	0.020	5	09/13/18 17:07	09/04/18	
Copper	200.8	4.60	mg/Kg	0.10	5	09/13/18 17:07	09/04/18	
Lead	200.8	0.324	mg/Kg	0.020	5	09/13/18 17:07	09/04/18	
Selenium	200.8	7.00	mg/Kg	1.0	5	09/13/18 17:07	09/04/18	
Silver	200.8	0.026	mg/Kg	0.020	5	09/13/18 17:07	09/04/18	
Zinc	200.8	195	mg/Kg	0.50	5	09/13/18 17:07	09/04/18	

Analytical Report

Service Request: K1807739 **Date Collected:** 07/13/18

Date Received: 08/15/18 09:45

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Sample Name: 2018GC48DV7 Basis: Dry

Lab Code: K1807739-027

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.10	mg/Kg	0.020	5	09/13/18 17:09	09/04/18	
Copper	200.8	5.33	mg/Kg	0.10	5	09/13/18 17:09	09/04/18	
Lead	200.8	0.172	mg/Kg	0.020	5	09/13/18 17:09	09/04/18	
Selenium	200.8	6.2	mg/Kg	1.0	5	09/13/18 17:09	09/04/18	
Silver	200.8	0.025	mg/Kg	0.020	5	09/13/18 17:09	09/04/18	
Zinc	200.8	247	mg/Kg	0.50	5	09/13/18 17:09	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Service Request: K1807739 **Date Collected:** 07/13/18

Date Received: 08/15/18 09:45

Sample Name: 2018GC48DV8 Basis: Dry

Lab Code: K1807739-028

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.43	mg/Kg	0.020	5	09/13/18 17:12	09/04/18	
Copper	200.8	4.89	mg/Kg	0.10	5	09/13/18 17:12	09/04/18	
Lead	200.8	0.187	mg/Kg	0.020	5	09/13/18 17:12	09/04/18	
Selenium	200.8	8.0	mg/Kg	1.0	5	09/13/18 17:12	09/04/18	
Silver	200.8	ND U	mg/Kg	0.020	5	09/13/18 17:12	09/04/18	
Zinc	200.8	189	mg/Kg	0.50	5	09/13/18 17:12	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Service Request: K1807739 **Date Collected:** 07/13/18

Date Received: 08/15/18 09:45

Sample Name: 2018GC48DV9 Basis: Dry

Lab Code: K1807739-029

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.964	mg/Kg	0.020	5	09/13/18 17:14	09/04/18	
Copper	200.8	9.61	mg/Kg	0.10	5	09/13/18 17:14	09/04/18	
Lead	200.8	0.340	mg/Kg	0.020	5	09/13/18 17:14	09/04/18	
Selenium	200.8	6.6	mg/Kg	1.0	5	09/13/18 17:14	09/04/18	
Silver	200.8	0.037	mg/Kg	0.020	5	09/13/18 17:14	09/04/18	
Zinc	200.8	190	mg/Kg	0.50	5	09/13/18 17:14	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Date Collected: 07/13/18

Service Request: K1807739

Date Received: 08/15/18 09:45

Sample Name: 2018GC48DV10 Basis: Dry

Lab Code: K1807739-030

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.21	mg/Kg	0.020	5	09/13/18 17:17	09/04/18	
Copper	200.8	5.57	mg/Kg	0.10	5	09/13/18 17:17	09/04/18	
Lead	200.8	1.30	mg/Kg	0.020	5	09/13/18 17:17	09/04/18	
Selenium	200.8	6.40	mg/Kg	1.0	5	09/13/18 17:17	09/04/18	
Silver	200.8	0.043	mg/Kg	0.020	5	09/13/18 17:17	09/04/18	
Zinc	200.8	250	mg/Kg	0.50	5	09/13/18 17:17	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game Service Request: K1807739

Project:2018 Greens Creek Mine BiomonitoringDate Collected:NASample Matrix:Animal TissueDate Received:NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1812205-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	ND U	mg/Kg	0.020	5	09/13/18 15:17	09/04/18	
Copper	200.8	ND U	mg/Kg	0.10	5	09/13/18 15:17	09/04/18	
Lead	200.8	ND U	mg/Kg	0.020	5	09/13/18 15:17	09/04/18	
Selenium	200.8	ND U	mg/Kg	1.0	5	09/13/18 15:17	09/04/18	
Silver	200.8	ND U	mg/Kg	0.020	5	09/13/18 15:17	09/04/18	
Zinc	200.8	ND U	mg/Kg	0.5	5	09/13/18 15:17	09/04/18	

Analytical Report

Client: Alaska Department of Fish and Game Service Request: K1807739

Project:2018 Greens Creek Mine BiomonitoringDate Collected:NASample Matrix:Animal TissueDate Received:NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1812206-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	ND U	mg/Kg	0.020	5	09/13/18 16:37	09/04/18	
Copper	200.8	ND U	mg/Kg	0.10	5	09/13/18 16:37	09/04/18	
Lead	200.8	ND U	mg/Kg	0.020	5	09/13/18 16:37	09/04/18	
Selenium	200.8	ND U	mg/Kg	1.0	5	09/13/18 16:37	09/04/18	
Silver	200.8	ND U	mg/Kg	0.020	5	09/13/18 16:37	09/04/18	
Zinc	200.8	ND U	mg/Kg	0.5	5	09/13/18 16:37	09/04/18	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project 2018 Greens Creek Mine Biomonitoring
Sample Matrix: Animal Tissue

Date Collected: 07/12/18 **Date Received:** 08/15/18

Service Request: K1807739

Date Analyzed: 09/13/18

Replicate Sample Summary Total Metals

 Sample Name:
 2018TC9DV1
 Units: mg/Kg

 Lab Code:
 K1807739-001
 Basis: Dry

Duplicate Sample Analysis Sample KQ1812205-05 Method Result Result **RPD Limit MRL RPD Analyte Name** Average 200.8 0.701 0.708 Cadmium 0.020 0.705 <1 20 3 20 Copper 200.8 0.10 2.34 2.28 2.31 0.404 10 0.365 0.385 20 Lead 200.8 0.020 Selenium 200.8 1.0 6.3 6.3 6.3 <1 20 0.020 0.096 0.095 0.096 Silver 200.8 1 20 Zinc 20 149 6 200.8 0.5 158 154

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game **Project**

Animal Tissue

Sample Matrix:

2018 Greens Creek Mine Biomonitoring

Date Collected: 07/12/18 **Date Received:** 08/15/18

Date Analyzed: 09/13/18

Service Request: K1807739

Replicate Sample Summary Total Metals

Sample Name: 2018GC54DV1 Units: mg/Kg Lab Code: K1807739-011 Basis: Dry

Duplicate Sample Analysis Sample KQ1812205-07 Method Result Result **RPD Limit MRL RPD Analyte Name** Average 200.8 1.14 1.08 Cadmium 0.020 1.11 5 20 2 20 Copper 200.8 0.10 5.69 5.60 5.65 0.335 6 20 Lead 200.8 0.020 0.314 0.325 Selenium 200.8 1.0 6.3 6.3 6.3 <1 20 0.024 0.024 Silver 200.8 0.020 0.024 <1 20 Zinc 20 224 200.8 0.5 236 230

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project 2018 Greens Creek Mine Biomonitoring

2018 Greens Creek Mine Biomonitoring **Date Collected:** 07/13/18

Sample Matrix: Animal Tissue Date Received: 08/15/18

Date Analyzed: 09/13/18

Service Request: K1807739

Replicate Sample Summary Total Metals

 Sample Name:
 2018GC48DV1
 Units: mg/Kg

 Lab Code:
 K1807739-021
 Basis: Dry

	Analysis		Sample	Duplicate Sample KQ1812206-05			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Cadmium	200.8	0.020	1.57	1.52	1.55	3	20
Copper	200.8	0.10	6.70	6.33	6.52	6	20
Lead	200.8	0.020	0.614	0.656	0.635	7	20
Selenium	200.8	1.0	7.51	7.48	7.50	<1	20
Silver	200.8	0.020	0.039	0.037	0.038	5	20
Zinc	200.8	0.5	276	289	283	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game **Project:** 2018 Greens Creek Mine Biomonitoring

Animal Tissue

Date Collected:

K1807739 07/12/18

Date Received:

Service Request:

08/15/18

Date Analyzed: Date Extracted: 09/13/18 09/4/18

Matrix Spike Summary Total Metals

Sample Name: 2018TC9DV1 Lab Code: K1807739-001 **Units: Basis:**

mg/Kg Dry

Analysis Method:

200.8

Prep Method:

Sample Matrix:

PSEP Metals

Matrix Spike KQ1812205-06

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	0.701	5.54	5.00	97	70-130
Copper	2.34	25.0	25.0	91	70-130
Lead	0.365	46.3	50.0	92	70-130
Selenium	6.3	23.5	16.7	103	70-130
Silver	0.096	5.24	5.00	103	70-130
Zinc	149	194	50.0	90	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game **Project:** 2018 Greens Creek Mine Biomonitoring **Sample Matrix:**

Service Request: Date Collected:

K1807739

Animal Tissue

Date Received:

07/12/18 08/15/18

Date Analyzed:

09/13/18

Date Extracted:

09/4/18

Matrix Spike Summary Total Metals

Sample Name: 2018GC54DV1 Lab Code:

Units: Basis:

mg/Kg Dry

Analysis Method:

K1807739-011

200.8

Prep Method:

PSEP Metals

Matrix Spike KQ1812205-08

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	1.14	5.96	5.00	96	70-130
Copper	5.69	29.2	25.0	94	70-130
Lead	0.314	46.2	50.0	92	70-130
Selenium	6.3	24.0	16.7	106	70-130
Silver	0.024	5.22	5.00	104	70-130
Zinc	236	293	50.0	113 #	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Date Collected:07/13/18Date Received:08/15/18Date Analyzed:09/13/18Date Extracted:09/4/18

K1807739

Service Request:

Matrix Spike Summary Total Metals

 Sample Name:
 2018GC48DV1
 Units: mg/Kg

 Lab Code:
 K1807739-021
 Basis: Dry

Analysis Method: 200.8

Prep Method: PSEP Metals

Matrix Spike KQ1812206-06

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	1.57	6.60	4.98	101	70-130
Copper	6.70	29.7	24.9	92	70-130
Lead	0.614	48.0	49.8	95	70-130
Selenium	7.51	25.6	16.6	109	70-130
Silver	0.039	5.54	4.98	110	70-130
Zinc	276	351	49.8	151 #	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game
Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Service Request: K1807739

Date Analyzed: 09/13/18

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Lab Control Sample

KQ1812205-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	200.8	4.84	5.00	97	85-115
Copper	200.8	23.1	25.0	92	85-115
Lead	200.8	47.6	50.0	95	85-115
Selenium	200.8	15.8	16.7	95	85-115
Silver	200.8	5.35	5.00	107	85-115
Zinc	200.8	46.4	50.0	93	85-115

QA/QC Report

Client: Alaska Department of Fish and Game
Project: 2018 Greens Creek Mine Biomonitoring

Sample Matrix: Animal Tissue

Service Request: K1807739

Date Analyzed: 09/13/18

Lab Control Sample Summary Total Metals

Units:mg/Kg Basis:Dry

Lab Control Sample

KQ1812206-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	200.8	4.82	5.00	96	85-115
Copper	200.8	23.8	25.0	95	85-115
Lead	200.8	46.7	50.0	93	85-115
Selenium	200.8	16.3	16.7	98	85-115
Silver	200.8	5.36	5.00	107	85-115
Zinc	200.8	46.8	50.0	94	85-115

ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client:Alaska Department of Fish and GameService Request:K1807739Project:2018 Greens Creek Mine BiomonitoringDate Collected:NALCS Matrix:TissueDate Received:NA

Date Extracted: 09/04/18
Date Analyzed: 09/13/18

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: KQ1812205-04 Basis: Dry

Test Notes: Tort-3 Solids = 99.1%

Source: N.R.C.C. Tort-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Cadmium	PSEP Tissue	200.8	42.3	40.6	96	32.4-52.9	
Copper	PSEP Tissue	200.8	497	476	96	380-623	
Lead	PSEP Tissue	200.8	0.225	0.203	90	0.166-0.292	
Selenium	PSEP Tissue	200.8	10.9	11.1	102	7.9-14.3	
Zinc	PSEP Tissue	200.8	136	130	96	104-170	

ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client:Alaska Department of Fish and GameService Request:K1807739Project:2018 Greens Creek Mine BiomonitoringDate Collected:NALCS Matrix:TissueDate Received:NA

Date Extracted: 09/04/18
Date Analyzed: 09/13/18

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: KQ1812206-04 Basis: Dry

Test Notes: Tort-3 Solids = 99.1%

Source: N.R.C.C. Tort-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Cadmium	PSEP Tissue	200.8	42.3	40.7	96	32.4-52.9	
Copper	PSEP Tissue	200.8	497	474	95	380-623	
Lead	PSEP Tissue	200.8	0.225	0.193	86	0.166-0.292	
Selenium	PSEP Tissue	200.8	10.9	10.8	99	7.9-14.3	
Zinc	PSEP Tissue	200.8	136	126	93	104-170	

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

July 31, 2018

Analytical Report for Service Request No: K1805613

Kate Kanouse Alaska Department of Fish and Game Division of Habitat 802 3rd Street P.O. Box 110024 Douglas, AK 99811-0024

RE: 2018 Greens Creek Mine Project

Dear Kate.

Enclosed are the results of the sample(s) submitted to our laboratory June 13, 2018 For your reference, these analyses have been assigned our service request number **K1805613**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3356. You may also contact me via email at Kurt.Clarkson@alsqlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kurt Clarkson

Sr. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client:Alaska Department of Fish and GameService Request: K1805613Project:2018 Greens Creek Mine ProjectDate Received: 06/13/2018

Sample Matrix: Animal Tissue

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt:

Thirty six animal tissue samples were received for analysis at ALS Environmental on 06/13/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored frozen at -20°C upon receipt at the laboratory.

Metals:

Method 200.8, 07/27/2018: The Relative Percent Difference (RPD) for the replicate analysis of Cadmium in sample 2018ZCDV1 and Lead in sample 2018JGCDV4 was outside the normal ALS control limits. The samples were homogenized, freeze dried, then ground prior to digestion, however this was not sufficient to achieve a completely uniform distribution of these analytes in the tissue.

Kust Claveron	
---------------	--

	D .	07/04/0040
pproved by	Date	07/31/2018

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com Project Name:

2018 Greens Creek Mine Project

Company Name:

Alaska Department of Fish and Game

Project Manager:

Kate Kanouse

Contact Information:

email: kate.kanouse@alaska.gov, phone: (907) 465-4290

Sample Type:

Whole body Dolly Varden char

Analyses:

EPA 6020A total metals and EPA 1631E Hg, dry weight basis, report percent solids

1805613

Attachment 1, page 1 of 2

					Fork Length	Weight
Matrix	Sample Date	Sample Name	Sample ID	Analytes	(mm)	(g)
Whole Body	5/16/2018	Zinc Creek DV Metals Fish #1	2018ZCDV1	Ag, Cd, Cu, Hg, Pb, Se, Zn	119	12.9
Whole Body	5/16/2018	Zinc Creek DV Metals Fish #2	2018ZCDV2	Ag, Cd, Cu, Hg, Pb, Se, Zn	117	13.0
Whole Body	5/16/2018	Zinc Creek DV Metals Fish #4	2018ZCDV4	Ag, Cd, Cu, Hg, Pb, Se, Zn	86	6.7
Whole Body	5/16/2018	Zinc Creek DV Metals Fish #5	2018ZCDV5	Ag, Cd, Cu, Hg, Pb, Se, Zn	88	6.8
Whole Body	5/16/2018	Zinc Creek DV Metals Fish #6	2018ZCDV6	Ag, Cd, Cu, Hg, Pb, Se, Zn	87	6.4
Whole Body	5/16/2018	Zinc Creek DV Metals Fish #7	2018ZCDV7	Ag, Cd, Cu, Hg, Pb, Se, Zn	124	13.4
Whole Body	5/16/2018	Piledriver Creek DV Metals Fish #1	2018PCDV1	Ag, Cd, Cu, Hg, Pb, Se, Zn	126	19.3
Whole Body	5/16/2018	Piledriver Creek DV Metals Fish #2	2018PCDV2	Ag, Cd, Cu, Hg, Pb, Se, Zn	148	29.0
Whole Body	5/16/2018	Piledriver Creek DV Metals Fish #3	2018PCDV3	Ag, Cd, Cu, Hg, Pb, Se, Zn	124	17.5
Whole Body	5/16/2018	Piledriver Creek DV Metals Fish #4	2018PCDV4	Ag, Cd, Cu, Hg, Pb, Se, Zn	121	15.0
Whole Body	5/16/2018	Piledriver Creek DV Metals Fish #5	2018PCDV5	Ag, Cd, Cu, Hg, Pb, Se, Zn	111	13.4
Whole Body	5/16/2018	Piledriver Creek DV Metals Fish #6	2018PCDV6	Ag, Cd, Cu, Hg, Pb, Se, Zn	121	14.7
Whole Body	5/16/2018	Empire Creek DV Metals Fish #2	2018ECDV2	Ag, Cd, Cu, Hg, Pb, Se, Zn	134	16.7
Whole Body	5/16/2018	Empire Creek DV Metals Fish #3	2018ECDV3	Ag, Cd, Cu, Hg, Pb, Se, Zn	121	17.7
Whole Body	5/16/2018	Empire Creek DV Metals Fish #4	2018ECDV4	Ag, Cd, Cu, Hg, Pb, Se, Zn	113	16.7
Whole Body	5/16/2018	Empire Creek DV Metals Fish #5	2018ECDV5	Ag, Cd, Cu, Hg, Pb, Se, Zn	135	19.8
Whole Body	5/16/2018	Empire Creek DV Metals Fish #6	2018ECDV6	Ag, Cd, Cu, Hg, Pb, Se, Zn	137	21.4
Whole Body	5/16/2018	Empire Creek DV Metals Fish #7	2018ECDV7	Ag, Cd, Cu, Hg, Pb, Se, Zn	150	28.4
Whole Body	5/15/2018	Jimmy Green Creek DV Metals Fish #1	2018JGCDV1	Ag, Cd, Cu, Hg, Pb, Se, Zn	155	30.4
Whole Body	5/15/2018	Jimmy Green Creek DV Metals Fish #3	2018JGCDV3	Ag, Cd, Cu, Hg, Pb, Se, Zn	141	25.1
Whole Body	5/15/2018	Jimmy Green Creek DV Metals Fish #4	2018JGCDV4	Ag, Cd, Cu, Hg, Pb, Se, Zn	113	11.1
Whole Body	5/15/2018	Jimmy Green Creek DV Metals Fish #5	2018JGCDV5	Ag, Cd, Cu, Hg, Pb, Se, Zn	92	8.8
Whole Body	5/15/2018	Jimmy Green Creek DV Metals Fish #6	2018JGCDV6	Ag, Cd, Cu, Hg, Pb, Se, Zn	131	22.2
Whole Body	5/15/2018	Jimmy Green Creek DV Metals Fish #7	2018JGCDV7	Ag, Cd, Cu, Hg, Pb, Se, Zn	113	14.3

Project Name:

2018 Greens Creek Mine Project

Project Manager:

Kate Kanouse

Contact Information:

email: kate.kanouse@alaska.gov, phone: (907) 465-4290

Attachment 1, page 2 of 2

K1805613

					Fork Length	Weight
Matrix	Sample Date	Sample Name	Sample ID	Analytes	(mm)	(g)
Whole Body	5/15/2018	Hawk Inlet Head Creek DV Metals Fish #1	2018HIHCDV1	Ag, Cd, Cu, Hg, Pb, Se, Zn	2 88	6.3
Whole Body	5/15/2018	Hawk Inlet Head Creek DV Metals Fish #2	2018HIHCDV2	Ag, Cd, Cu, Hg, Pb, Se, Zn	111	12.3
Whole Body	5/15/2018	Hawk Inlet Head Creek DV Metals Fish #3	2018HIHCDV3	Ag, Cd, Cu, Hg, Pb, Se, Zn	104	9.8
Whole Body	5/15/2018	Hawk Inlet Head Creek DV Metals Fish #4	2018HIHCDV4	Ag, Cd, Cu, Hg, Pb, Se, Zn	109	10.2
Whole Body	5/15/2018	Hawk Inlet Head Creek DV Metals Fish #5	2018HIHCDV5	Ag, Cd, Cu, Hg, Pb, Se, Zn	137	22.7
Whole Body	5/15/2018	Hawk Inlet Head Creek DV Metals Fish #6	2018HIHCDV6	Ag, Cd, Cu, Hg, Pb, Se, Zn	129	17.3
Whole Body	5/15/2018	Unnamed Creek DV Metals Fish #2	2018UCDV2	Ag, Cd, Cu, Hg, Pb, Se, Zn	90	7.2
Whole Body	5/15/2018	Unnamed Creek DV Metals Fish #3	2018UCDV3	Ag, Cd, Cu, Hg, Pb, Se, Zn	84	5.4
Whole Body	5/15/2018	Unnamed Creek DV Metals Fish #4	2018UCDV4	Ag, Cd, Cu, Hg, Pb, Se, Zn	134	19.7
Whole Body	5/15/2018	Unnamed Creek DV Metals Fish #5	2018UCDV5	Ag, Cd, Cu, Hg, Pb, Se, Zn	124	15.2
Whole Body	5/15/2018	Unnamed Creek DV Metals Fish #6	2018UCDV6	Ag, Cd, Cu, Hg, Pb, Se, Zn	120	15.3
Whole Body	5/15/2018	Unnamed Creek DV Metals Fish #7	2018UCDV7	Ag, Cd, Cu, Hg, Pb, Se, Zn	124	19.8

A		
	Environmental	

CHAIN OF CUSTODY

1317 South 13th Ave., Kelso, WA 98626 | +1 360 577 7222 | +1 800 695 7222 | +1 360 636 1068 (fax) PAGE 2048 Greens Creek Mine Project Kanouse [†] OF CONTAINERS Dept of Fish and Game anouse @ alaska.gov REMARKS TIME WAB I.D. MATRIX 36 samples INVOICE INFORMATION Circle which metals are to be analyzed: REPORT REQUIREMENTS P.O. # Chris Wallace Total Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Ag BILL TO: HEUA Routine Report: Method Blank, Surrogate, as cwallace @ hecla-Dissolved Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg required mining.com *INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: (CIRCLE ONE) II. Report Dup., MS, MSD as TURNAROUND REQUIREMENTS SPECIAL INSTRUCTIONS/COMMENTS: plase email report to Kate. Kanouse @alaska.gov required 24 hr. _____ 48 hr. III. CLP Like Summary (no raw data) Standard (15 working days) IV. Data Validation Report Provide FAX Results V. EDD Sample Shipment contains USDA regulated soil samples (check box if applicable) Requested Report Date RECEIVED BY: **RELINQUISHED BY:** RECEIVED BY: Signature Date/Time Signature Date/Time

Firm

Printed Name

Printed Name

Firm

ALS) PC
Cooler Receipt and Preservation Form
Client HK Deft of Fish + Gand Service Request K18
Received: 4/13/18 Opened: 6/13/18 By: 4M Unloaded: 6/13/18 By: 4m
1. Samples were received via? USPS Fed Ex UPS DHL PDX Courier Hand Delivered
2. Samples were received in: (circle) (Cooler) Box Envelope Other NA
3. Were custody seals on coolers? NA Y N If yes, how many and where? / FYONT
If present, were custody seals intact? Y N If present, were they signed and dated? N
Raw Corrected Raw Corrected Corr. Thermometer Cooler/COC ID Tracking Number
Cooler Temp Cooler Temp Henk Temp Blank Factor ID NA NA Fil
 4. Packing material: Inserts Raggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves 5. Were custody papers properly filled out (ink, signed, etc.)?
 Were custody papers properly filled out (ink, signed, etc.)? Were samples received in good condition (temperature, unbroken)? Indicate in the table below.
If applicable, tissue samples were received: Frozen Partially Thawed Thawed
7. Were all sample labels complete (i.e analysis, preservation, etc.)?
8. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Y N
9. Were appropriate bottles/containers and volumes received for the tests indicated?
10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA Y N
11. Were VOA vials received without headspace? Indicate in the table below.
12. Was C12/Res negative?
Sample ID on Bottle Sample ID on COC Identified by:
Cample is on some Cample is on 500 Identified by.
Bottle Count Out of Head- Volume Reagent Lot
Sample ID Bottle Type Temp space Broke pH Reagent added Number Initials Time

Paga

<u>4.</u> \$

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Service Request: K1805613

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project **Date Collected:** 05/15/18 - 05/16/18

Sample Matrix: Animal Tissue Date Received: 06/13/18

Analysis Method:Freeze DryUnits: PercentPrep Method:NoneBasis: Wet

Total Solids

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
2018ZCDV1	K1805613-001	19.0	-	1	06/20/18 16:59	
2018ZCDV2	K1805613-002	21.8	-	1	06/20/18 16:59	
2018ZCDV4	K1805613-003	21.1	-	1	06/20/18 16:59	
2018ZCDV5	K1805613-004	21.2	-	1	06/20/18 16:59	
2018ZCDV6	K1805613-005	21.9	-	1	06/20/18 16:59	
2018ZCDV7	K1805613-006	20.3	-	1	06/20/18 16:59	
2018PCDV1	K1805613-007	22.9	-	1	06/20/18 16:59	
2018PCDV2	K1805613-008	26.2	-	1	06/20/18 16:59	
2018PCDV3	K1805613-009	21.9	-	1	06/20/18 16:59	
2018PCDV4	K1805613-010	21.2	-	1	06/20/18 16:59	
2018PCDV5	K1805613-011	23.7	-	1	06/20/18 16:59	
2018PCDV6	K1805613-012	24.4	-	1	06/20/18 16:59	
2018ECDV2	K1805613-013	18.6	-	1	06/20/18 16:59	
2018ECDV3	K1805613-014	20.9	-	1	06/20/18 16:59	
2018ECDV4	K1805613-015	20.4	-	1	06/20/18 16:59	
2018ECDV5	K1805613-016	23.6	-	1	06/20/18 16:59	
2018ECDV6	K1805613-017	20.2	-	1	06/20/18 16:59	
2018ECDV7	K1805613-018	25.7	-	1	06/20/18 16:59	
2018JGCDV1	K1805613-019	26.9	-	1	06/20/18 16:59	
2018JGCDV3	K1805613-020	23.0	-	1	06/20/18 16:59	
2018JGCDV4	K1805613-021	20.9	-	1	06/20/18 16:59	
2018JGCDV5	K1805613-022	20.4	-	1	06/20/18 16:59	
2018JGCDV6	K1805613-023	19.3	-	1	06/20/18 16:59	
2018JGCDV7	K1805613-024	20.3	-	1	06/20/18 16:59	
2018HIHCDV1	K1805613-025	20.4	-	1	06/20/18 16:59	
2018HIHCDV2	K1805613-026	23.1	-	1	06/20/18 16:59	
2018HIHCDV3	K1805613-027	24.9	-	1	06/20/18 16:59	
2018HIHCDV4	K1805613-028	20.6	-	1	06/20/18 16:59	
2018HIHCDV5	K1805613-029	23.1	-	1	06/20/18 16:59	
2018HIHCDV6	K1805613-030	24.8	-	1	06/20/18 16:59	
2018UCDV2	K1805613-031	24.0	-	1	06/20/18 16:59	
2018UCDV3	K1805613-032	24.0	-	1	06/20/18 16:59	
2018UCDV4	K1805613-033	25.6	-	1	06/20/18 16:59	
2018UCDV5	K1805613-034	23.4	-	1	06/20/18 16:59	
2018UCDV6	K1805613-035	24.4		1	06/20/18 16:59	
2018UCDV7	K1805613-036	25.1	-	1	06/20/18 16:59	

Printed 6/25/2018 10:59:24 AM Superset Reference:18-0000470327 rev 00

QA/QC Report

Service Request:K1805613

Client: Alaska Department of Fish and Game

Project 2018 Greens Creek Mine Project Date Collected: 05/15/18 - 05/16/18

Sample Matrix: Animal Tissue Date Received:06/13/18

Analysis Method:Freeze DryUnits:PercentPrep Method:NoneBasis:Wet

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
2018PCDV2	K1805613-008DUP	-	26.2	26.5	26.4	1	20	06/20/18
2018JGCDV1	K1805613-019DUP	_	26.9	26.2	26.6	3	20	06/20/18

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 6/25/2018 10:59:24 AM Superset Reference:18-0000470327 rev 00

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Alaska Department of Fish and Game
Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal tissue

Service Request: K1805613

Date Collected: 05/15-16/18

Date Received: 06/13/18

Units: ng/g

Basis: Dry

Mercury, Total

Prep Method: METHOD Analysis Method: 1631E

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
2018ZCDV1	K1805613-001	5.0	5	07/19/18	07/23/18	371	
2018ZCDV2	K1805613-002	4.9	5	07/19/18	07/23/18	285	
2018ZCDV4	K1805613-003	4.8	5	07/19/18	07/23/18	186	
2018ZCDV5	K1805613-004	4.9	5	07/19/18	07/23/18	274	
2018ZCDV6	K1805613-005	4.9	5	07/19/18	07/23/18	178	
2018ZCDV7	K1805613-006	4.8	5	07/19/18	07/23/18	325	
2018PCDV1	K1805613-007	5.0	5	07/19/18	07/23/18	67.1	
2018PCDV2	K1805613-008	4.9	5	07/19/18	07/23/18	47.7	
2018PCDV3	K1805613-009	5.0	5	07/19/18	07/23/18	146	
2018PCDV4	K1805613-010	5.0	5	07/19/18	07/23/18	162	
2018PCDV5	K1805613-011	5.0	5	07/19/18	07/23/18	71.1	
2018PCDV6	K1805613-012	5.0	5	07/19/18	07/23/18	63.0	
2018ECDV2	K1805613-013	4.9	5	07/19/18	07/23/18	514	
2018ECDV3	K1805613-014	4.9	5	07/19/18	07/23/18	305	
2018ECDV4	K1805613-015	5.0	5	07/19/18	07/23/18	359	
2018ECDV5	K1805613-016	4.9	5	07/19/18	07/23/18	42.1	
2018ECDV6	K1805613-017	5.0	5	07/19/18	07/23/18	80.1	
2018ECDV7	K1805613-018	5.0	5	07/19/18	07/23/18	47.2	
2018JGCDV1	K1805613-019	4.9	5	07/19/18	07/23/18	38.8	
2018JGCDV3	K1805613-020	4.8	5	07/19/18	07/23/18	76.2	
Method Blank 1	K1805613-MB1	1.0	1	07/19/18	07/23/18	ND	
Method Blank 2	K1805613-MB2	1.0	1	07/19/18	07/23/18	ND	
Method Blank 3	K1805613-MB3	1.0	1	07/19/18	07/23/18	ND	

QA/QC Report

Client: Alaska Department of Fish and Game **Project:** 2018 Greens Creek Mine Project

Sample Matrix: Animal tissue Service Request: K1805613 **Date Collected:** 05/16/18 **Date Received:** 06/13/18 **Date Extracted:** 07/19/18 **Date Analyzed:** 07/23/18

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code:

2018ZCDV7 K1805613-006MS,

K1805613-006DMS

Units: ng/g Basis: Dry

Test Notes:

Percent Recovery

	Prep	Analysis		Spike Level Sample							ALS Relat	Relative	
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	4.9	240	246	325	539	554	89	93	70-130	3	

Page No.: K1805613icp.sp2 - DMS 07/30/18

QA/QC Report

Client: Alaska Department of Fish and Game **Project:** 2018 Greens Creek Mine Project

Sample Matrix: Animal tissue

Date Collected: 05/16/18 **Date Received:** 06/13/18 **Date Extracted:** 07/19/18 **Date Analyzed:** 07/23/18

Service Request: K1805613

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: 2018PCDV5

Lab Code:

K1805613-011MS,

K1805613-011DMS

Units: ng/g

Basis: Dry

Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike	Result			ALS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	4.9	244	244	71.1	317	303	101	95	70-130	5	

Page No.: K1805613icp.sp2 - DMS (2) 07/30/18

Client: Alaska Department of Fish and Game Service Request: K1805613

Project:2018 Greens Creek Mine ProjectDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 07/23/18

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.47	109	70-130	

Client: Alaska Department of Fish and Game Service Request: K1805613

Project:2018 Greens Creek Mine ProjectDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 07/23/18

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

						ALS	
						Percent	
						Recovery	
	Prep	Analysis	True		Percent	Acceptance	Result
Analyte	Method	Method	Value	Result	Recovery	Limits	Notes
Mercury	METHOD	1631E	5.00	5.14	103	70-130	

Client: Alaska Department of Fish and Game Service Request: K1805613

Project:2018 Greens Creek Mine ProjectDate Collected:NALCS Matrix:Animal tissueDate Received:NA

Date Extracted: 07/19/18 **Date Analyzed:** 07/23/18

Quality Control Sample (QCS) Summary

Total Metals

Sample Name: Quality Control Sample Units: ng/g

Lab Code: Basis: Dry

Test Notes:

Source: TORT-3 ALS

Percent Recovery Prep Analysis True Percent Acceptance Result Analyte Method Limits Method Value Result Recovery **Notes METHOD** 271 93 1631E 292 70-130 Mercury

K1805613icp.sp2 - QCS (icv) 07/30/18 Page No.:

Analytical Report

Client: Alaska Department of Fish and Game **Project:** 2018 Greens Creek Mine Project

Sample Matrix: Animal tissue **Service Request:** K1805613 **Date Collected:** 05/15/18 **Date Received:** 06/13/18

Mercury, Total

Prep Method: METHOD Analysis Method: 1631E Test Notes:

Units: ng/g Basis: Dry

a		

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
***************************************	TT4007447 004	- 0	_	0=4040	0=/22/40	100	
2018JGCDV4	K1805613-021	5.0	5	07/19/18	07/23/18	189	
2018JGCDV5	K1805613-022	4.8	5	07/19/18	07/23/18	197	
2018JGCDV6	K1805613-023	4.9	5	07/19/18	07/23/18	237	
2018JGCDV7	K1805613-024	4.9	5	07/19/18	07/23/18	133	
2018HIHCDV1	K1805613-025	5.0	5	07/19/18	07/23/18	715	
2018HIHCDV2	K1805613-026	5.0	5	07/19/18	07/23/18	48.1	
2018HIHCDV3	K1805613-027	4.9	5	07/19/18	07/23/18	101	
2018HIHCDV4	K1805613-028	4.9	5	07/19/18	07/23/18	309	
2018HIHCDV5	K1805613-029	5.0	5	07/19/18	07/23/18	80.9	
2018HIHCDV6	K1805613-030	4.9	5	07/19/18	07/23/18	60.6	
2018UCDV2	K1805613-031	5.0	5	07/19/18	07/23/18	37.4	
2018UCDV3	K1805613-032	5.0	5	07/19/18	07/23/18	61.8	
2018UCDV4	K1805613-033	4.9	5	07/19/18	07/23/18	25.8	
2018UCDV5	K1805613-034	4.9	5	07/19/18	07/23/18	51.5	
2018UCDV6	K1805613-035	5.0	5	07/19/18	07/23/18	30.8	
2018UCDV7	K1805613-036	5.0	5	07/19/18	07/23/18	35.9	
Method Blank 1	K1805613-MB1	1.0	1	07/19/18	07/23/18	ND	
Method Blank 2	K1805613-MB2	1.0	1	07/19/18	07/23/18	ND	
Method Blank 3	K1805613-MB3	1.0	1	07/19/18	07/23/18	ND	

QA/QC Report

Client: Alaska Department of Fish and Game
Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal tissue

Pate Collected: 05/15/18
Date Received: 06/13/18
Date Extracted: 07/19/18
Date Analyzed: 07/23/18

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code: 2018JGCDV6

K1805613-023MS,

K1805613-023DMS

Units: ng/g

Basis: Dry

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	•		Sample Result	Spike MS	Result DMS	MS	DMS	ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	4.9	247	245	237	470	472	94	96	70-130	<1	

K1805613icp.sp3 - DMS 07/30/18 Page No.:

QA/QC Report

Client: Alaska Department of Fish and Game
Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal tissue

 Service Request:
 K1805613

 Date Collected:
 05/15/18

 Date Received:
 06/13/18

 Date Extracted:
 07/19/18

 Date Analyzed:
 07/23/18

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code: 2018UCDV4

K1805613-033MS, K1805613-033MS

Units: ng/g Basis: Dry

Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike		1 61 (cent	ALS Acceptance	Relative	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	4.9	249	247	25.8	278	267	101	98	70-130	4	

K1805613icp.sp3 - DMS (2) 07/30/18 Page No.:

Client: Alaska Department of Fish and Game Service Request: K1805613

Project:2018 Greens Creek Mine ProjectDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 07/23/18

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

						ALS	
						Percent	
						Recovery	
	Prep	Analysis	True		Percent	Acceptance	Result
Analyte	Method	Method	Value	Result	Recovery	Limits	Notes
Mercury	METHOD	1631E	5.00	5.14	103	70-130	

Client: Alaska Department of Fish and Game Service Request: K1805613

Project:2018 Greens Creek Mine ProjectDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 07/23/18

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

					ALS Percent				
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes		
Mercury	METHOD	1631E	5.00	5.30	106	70-130			

Client: Alaska Department of Fish and Game Service Request: K1805613

Project:2018 Greens Creek Mine ProjectDate Collected:NALCS Matrix:Animal tissueDate Received:NA

Date Extracted: 07/19/18
Date Analyzed: 07/23/18

Quality Control Sample (QCS) Summary

Total Metals

Sample Name: Quality Control Sample Units: ng/g

Lab Code: Basis: Dry

Test Notes:

Source: TORT-3 ALS

Percent Recovery Analysis True Percent Acceptance Result Prep Analyte Method Limits Method Value Result Recovery **Notes METHOD** 274 1631E 292 94 70-130 Mercury

K1805613icp.sp3 - QCS (icv) 07/30/18 Page No.:

Analytical Report

Client: Alaska Department of Fish and Game **Project:**

2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue **Date Collected:** 05/16/18 **Date Received:** 06/13/18 10:15

Service Request: K1805613

Sample Name: 2018ZCDV1 Basis: Dry

Lab Code: K1805613-001

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.922	mg/Kg	0.020	5	07/27/18 15:36	07/26/18	
Copper	200.8	6.10	mg/Kg	0.10	5	07/27/18 15:36	07/26/18	
Lead	200.8	0.824	mg/Kg	0.020	5	07/27/18 15:36	07/26/18	
Selenium	200.8	3.1	mg/Kg	1.0	5	07/27/18 15:36	07/26/18	
Silver	200.8	0.080	mg/Kg	0.020	5	07/27/18 15:36	07/26/18	
Zinc	200.8	277	mg/Kg	0.50	5	07/27/18 15:36	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

Sample Name: 2018ZCDV2

Lab Code: K1805613-002

Service Request: K1805613

Date Collected: 05/16/18

Date Received: 06/13/18 10:15

Basis: Dry

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.982	mg/Kg	0.020	5	07/27/18 15:43	07/26/18	
Copper	200.8	9.79	mg/Kg	0.10	5	07/27/18 15:43	07/26/18	
Lead	200.8	2.21	mg/Kg	0.020	5	07/27/18 15:43	07/26/18	
Selenium	200.8	2.7	mg/Kg	1.0	5	07/27/18 15:43	07/26/18	
Silver	200.8	0.049	mg/Kg	0.020	5	07/27/18 15:43	07/26/18	
Zinc	200.8	289	mg/Kg	0.50	5	07/27/18 15:43	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018ZCDV4 Basis: Dry

Lab Code: K1805613-003

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.484	mg/Kg	0.020	5	07/27/18 15:51	07/26/18	
Copper	200.8	3.02	mg/Kg	0.099	5	07/27/18 15:51	07/26/18	
Lead	200.8	0.092	mg/Kg	0.020	5	07/27/18 15:51	07/26/18	
Selenium	200.8	3.10	mg/Kg	0.99	5	07/27/18 15:51	07/26/18	
Silver	200.8	0.027	mg/Kg	0.020	5	07/27/18 15:51	07/26/18	
Zinc	200.8	161	mg/Kg	0.50	5	07/27/18 15:51	07/26/18	

Printed 7/30/2018 1:48:55 PM Superset Reference:

Page 31 of 80

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018ZCDV5 Basis: Dry

Lab Code: K1805613-004

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.690	mg/Kg	0.020	5	07/27/18 15:53	07/26/18	
Copper	200.8	3.15	mg/Kg	0.10	5	07/27/18 15:53	07/26/18	
Lead	200.8	0.166	mg/Kg	0.020	5	07/27/18 15:53	07/26/18	
Selenium	200.8	3.2	mg/Kg	1.0	5	07/27/18 15:53	07/26/18	
Silver	200.8	0.039	mg/Kg	0.020	5	07/27/18 15:53	07/26/18	
Zinc	200.8	174	mg/Kg	0.50	5	07/27/18 15:53	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018ZCDV6 Basis: Dry

Sample Name: 2018ZCDV6 **Lab Code:** K1805613-005

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.454	mg/Kg	0.020	5	07/27/18 15:56	07/26/18	
Copper	200.8	3.25	mg/Kg	0.099	5	07/27/18 15:56	07/26/18	
Lead	200.8	0.068	mg/Kg	0.020	5	07/27/18 15:56	07/26/18	
Selenium	200.8	3.33	mg/Kg	0.99	5	07/27/18 15:56	07/26/18	
Silver	200.8	0.040	mg/Kg	0.020	5	07/27/18 15:56	07/26/18	
Zinc	200.8	160	mg/Kg	0.50	5	07/27/18 15:56	07/26/18	

Printed 7/30/2018 1:48:55 PM Superset Reference:

Page 33 of 80

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Basis: Dry

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018ZCDV7

Lab Code: K1805613-006

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.04	mg/Kg	0.020	5	07/27/18 15:58	07/26/18	
Copper	200.8	7.80	mg/Kg	0.099	5	07/27/18 15:58	07/26/18	
Lead	200.8	2.04	mg/Kg	0.020	5	07/27/18 15:58	07/26/18	
Selenium	200.8	2.35	mg/Kg	0.99	5	07/27/18 15:58	07/26/18	
Silver	200.8	0.054	mg/Kg	0.020	5	07/27/18 15:58	07/26/18	
Zinc	200.8	276	mg/Kg	0.50	5	07/27/18 15:58	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018PCDV1 Basis: Dry

Lab Code: K1805613-007

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:01	07/26/18	
Copper	200.8	2.20	mg/Kg	0.099	5	07/27/18 16:01	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:01	07/26/18	
Selenium	200.8	1.68	mg/Kg	0.99	5	07/27/18 16:01	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:01	07/26/18	
Zinc	200.8	109	mg/Kg	0.50	5	07/27/18 16:01	07/26/18	

Printed 7/30/2018 1:48:55 PM Superset Reference:

Page 35 of 80

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue **Date Collected:** 05/16/18

Service Request: K1805613

Date Received: 06/13/18 10:15

Sample Name: 2018PCDV2 Basis: Dry

Lab Code: K1805613-008

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:03	07/26/18	
Copper	200.8	3.61	mg/Kg	0.10	5	07/27/18 16:03	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:03	07/26/18	
Selenium	200.8	1.33	mg/Kg	1.0	5	07/27/18 16:03	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:03	07/26/18	
Zinc	200.8	94.3	mg/Kg	0.50	5	07/27/18 16:03	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

Date Collected: 05/16/18 **Date Received:** 06/13/18 10:15

Service Request: K1805613

2018PCDV3 Basis: Dry

Lab Code: K1805613-009

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.029	mg/Kg	0.020	5	07/27/18 16:06	07/26/18	
Copper	200.8	2.49	mg/Kg	0.10	5	07/27/18 16:06	07/26/18	
Lead	200.8	0.032	mg/Kg	0.020	5	07/27/18 16:06	07/26/18	
Selenium	200.8	1.77	mg/Kg	1.0	5	07/27/18 16:06	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:06	07/26/18	
Zinc	200.8	111	mg/Kg	0.50	5	07/27/18 16:06	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018PCDV4 Basis: Dry

Lab Code: K1805613-010

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.047	mg/Kg	0.020	5	07/27/18 16:08	07/26/18	
Copper	200.8	2.62	mg/Kg	0.10	5	07/27/18 16:08	07/26/18	
Lead	200.8	0.040	mg/Kg	0.020	5	07/27/18 16:08	07/26/18	
Selenium	200.8	1.8	mg/Kg	1.0	5	07/27/18 16:08	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:08	07/26/18	
Zinc	200.8	122	mg/Kg	0.50	5	07/27/18 16:08	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

2018PCDV5

Sample Matrix: Animal Tissue

imal Tissue **Date Received:** 06/13/18 10:15

Service Request: K1805613 **Date Collected:** 05/16/18

Basis: Dry

Lab Code: K1805613-011

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.020	mg/Kg	0.020	5	07/27/18 16:11	07/26/18	
Copper	200.8	2.62	mg/Kg	0.10	5	07/27/18 16:11	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:11	07/26/18	
Selenium	200.8	1.5	mg/Kg	1.0	5	07/27/18 16:11	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:11	07/26/18	
Zinc	200.8	112	mg/Kg	0.50	5	07/27/18 16:11	07/26/18	

Printed 7/30/2018 1:48:56 PM Superset Reference:

Page 39 of 80

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018PCDV6 Basis: Dry

Lab Code: K1805613-012

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:23	07/26/18	
Copper	200.8	3.77	mg/Kg	0.099	5	07/27/18 16:23	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:23	07/26/18	
Selenium	200.8	1.52	mg/Kg	0.99	5	07/27/18 16:23	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:23	07/26/18	
Zinc	200.8	113	mg/Kg	0.50	5	07/27/18 16:23	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018ECDV2 Basis: Dry

Lab Code: K1805613-013

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.00	mg/Kg	0.020	5	07/27/18 16:26	07/26/18	
Copper	200.8	5.13	mg/Kg	0.10	5	07/27/18 16:26	07/26/18	
Lead	200.8	0.064	mg/Kg	0.020	5	07/27/18 16:26	07/26/18	
Selenium	200.8	6.3	mg/Kg	1.0	5	07/27/18 16:26	07/26/18	
Silver	200.8	0.106	mg/Kg	0.020	5	07/27/18 16:26	07/26/18	
Zinc	200.8	237	mg/Kg	0.50	5	07/27/18 16:26	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018ECDV3 Basis: Dry

Lab Code: K1805613-014

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.814	mg/Kg	0.020	5	07/27/18 16:29	07/26/18	
Copper	200.8	4.90	mg/Kg	0.099	5	07/27/18 16:29	07/26/18	
Lead	200.8	0.087	mg/Kg	0.020	5	07/27/18 16:29	07/26/18	
Selenium	200.8	4.96	mg/Kg	0.99	5	07/27/18 16:29	07/26/18	
Silver	200.8	0.101	mg/Kg	0.020	5	07/27/18 16:29	07/26/18	
Zinc	200.8	167	mg/Kg	0.50	5	07/27/18 16:29	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue **Date Collected:** 05/16/18 **Date Received:** 06/13/18 10:15

Service Request: K1805613

Sample Name: 2018ECDV4 Basis: Dry

Lab Code: K1805613-015

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.02	mg/Kg	0.020	5	07/27/18 16:31	07/26/18	
Copper	200.8	6.56	mg/Kg	0.10	5	07/27/18 16:31	07/26/18	
Lead	200.8	0.285	mg/Kg	0.020	5	07/27/18 16:31	07/26/18	
Selenium	200.8	6.11	mg/Kg	1.0	5	07/27/18 16:31	07/26/18	
Silver	200.8	0.103	mg/Kg	0.020	5	07/27/18 16:31	07/26/18	
Zinc	200.8	203	mg/Kg	0.50	5	07/27/18 16:31	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018ECDV5 Basis: Dry

Lab Code: K1805613-016

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.094	mg/Kg	0.020	5	07/27/18 16:34	07/26/18	
Copper	200.8	3.21	mg/Kg	0.10	5	07/27/18 16:34	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:34	07/26/18	
Selenium	200.8	1.7	mg/Kg	1.0	5	07/27/18 16:34	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:34	07/26/18	
Zinc	200.8	120	mg/Kg	0.50	5	07/27/18 16:34	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018ECDV6 Basis: Dry

Lab Code: K1805613-017

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.099	mg/Kg	0.020	5	07/27/18 16:36	07/26/18	
Copper	200.8	4.10	mg/Kg	0.10	5	07/27/18 16:36	07/26/18	
Lead	200.8	0.020	mg/Kg	0.020	5	07/27/18 16:36	07/26/18	
Selenium	200.8	2.1	mg/Kg	1.0	5	07/27/18 16:36	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:36	07/26/18	
Zinc	200.8	152	mg/Kg	0.50	5	07/27/18 16:36	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/16/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018ECDV7 Basis: Dry

Lab Code: K1805613-018

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.123	mg/Kg	0.020	5	07/27/18 16:39	07/26/18	
Copper	200.8	5.75	mg/Kg	0.10	5	07/27/18 16:39	07/26/18	
Lead	200.8	0.024	mg/Kg	0.020	5	07/27/18 16:39	07/26/18	
Selenium	200.8	1.7	mg/Kg	1.0	5	07/27/18 16:39	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:39	07/26/18	
Zinc	200.8	113	mg/Kg	0.50	5	07/27/18 16:39	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Basis: Dry

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

Date Received: 06/13/18 10:15 2018JGCDV1

Lab Code: K1805613-019

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.076	mg/Kg	0.020	5	07/27/18 16:41	07/26/18	
Copper	200.8	4.65	mg/Kg	0.10	5	07/27/18 16:41	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:41	07/26/18	
Selenium	200.8	1.5	mg/Kg	1.0	5	07/27/18 16:41	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:41	07/26/18	
Zinc	200.8	96.7	mg/Kg	0.50	5	07/27/18 16:41	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018JGCDV3 Basis: Dry

Lab Code: K1805613-020

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.201	mg/Kg	0.020	5	07/27/18 16:44	07/26/18	
Copper	200.8	4.05	mg/Kg	0.10	5	07/27/18 16:44	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:44	07/26/18	
Selenium	200.8	1.73	mg/Kg	1.0	5	07/27/18 16:44	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:44	07/26/18	
Zinc	200.8	128	mg/Kg	0.50	5	07/27/18 16:44	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

2018JGCDV4

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

Date Collected: 05/15/18 **Date Received:** 06/13/18 10:15

Service Request: K1805613

Basis: Dry

Lab Code: K1805613-021

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.944	mg/Kg	0.020	5	07/27/18 17:01	07/26/18	
Copper	200.8	5.62	mg/Kg	0.10	5	07/27/18 17:01	07/26/18	
Lead	200.8	0.395	mg/Kg	0.020	5	07/27/18 17:01	07/26/18	
Selenium	200.8	4.41	mg/Kg	1.0	5	07/27/18 17:01	07/26/18	
Silver	200.8	0.043	mg/Kg	0.020	5	07/27/18 17:01	07/26/18	
Zinc	200.8	221	mg/Kg	0.50	5	07/27/18 17:01	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

Date Collected: 05/15/18 **Date Received:** 06/13/18 10:15

Service Request: K1805613

2018JGCDV5 Basis: Dry

Lab Code: K1805613-022

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	1.24	mg/Kg	0.020	5	07/27/18 17:09	07/26/18	
Copper	200.8	4.76	mg/Kg	0.10	5	07/27/18 17:09	07/26/18	
Lead	200.8	0.201	mg/Kg	0.020	5	07/27/18 17:09	07/26/18	
Selenium	200.8	4.40	mg/Kg	1.0	5	07/27/18 17:09	07/26/18	
Silver	200.8	0.135	mg/Kg	0.020	5	07/27/18 17:09	07/26/18	
Zinc	200.8	209	mg/Kg	0.50	5	07/27/18 17:09	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018JGCDV6 Basis: Dry

Lab Code: K1805613-023

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.791	mg/Kg	0.020	5	07/27/18 17:11	07/26/18	
Copper	200.8	5.05	mg/Kg	0.10	5	07/27/18 17:11	07/26/18	
Lead	200.8	0.172	mg/Kg	0.020	5	07/27/18 17:11	07/26/18	
Selenium	200.8	3.48	mg/Kg	1.0	5	07/27/18 17:11	07/26/18	
Silver	200.8	0.059	mg/Kg	0.020	5	07/27/18 17:11	07/26/18	
Zinc	200.8	220	mg/Kg	0.50	5	07/27/18 17:11	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

Animal Tissue

Date Received: 06/13/18 10:15

2018JGCDV7

Basis: Dry

Lab Code: K1805613-024

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.592	mg/Kg	0.020	5	07/27/18 17:14	07/26/18	
Copper	200.8	2.53	mg/Kg	0.10	5	07/27/18 17:14	07/26/18	
Lead	200.8	0.046	mg/Kg	0.020	5	07/27/18 17:14	07/26/18	
Selenium	200.8	2.92	mg/Kg	1.0	5	07/27/18 17:14	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:14	07/26/18	
Zinc	200.8	169	mg/Kg	0.50	5	07/27/18 17:14	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Basis: Dry

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018HIHCDV1

Lab Code: K1805613-025

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.921	mg/Kg	0.020	5	07/27/18 17:22	07/26/18	
Copper	200.8	2.95	mg/Kg	0.099	5	07/27/18 17:22	07/26/18	
Lead	200.8	0.121	mg/Kg	0.020	5	07/27/18 17:22	07/26/18	
Selenium	200.8	2.83	mg/Kg	0.99	5	07/27/18 17:22	07/26/18	
Silver	200.8	0.089	mg/Kg	0.020	5	07/27/18 17:22	07/26/18	
Zinc	200.8	185	mg/Kg	0.50	5	07/27/18 17:22	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018HIHCDV2 Basis: Dry

Lab Code: K1805613-026

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.064	mg/Kg	0.020	5	07/27/18 17:24	07/26/18	
Copper	200.8	2.67	mg/Kg	0.099	5	07/27/18 17:24	07/26/18	
Lead	200.8	0.026	mg/Kg	0.020	5	07/27/18 17:24	07/26/18	
Selenium	200.8	1.69	mg/Kg	0.99	5	07/27/18 17:24	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:24	07/26/18	
Zinc	200.8	109	mg/Kg	0.50	5	07/27/18 17:24	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018HIHCDV3 Basis: Dry

Lab Code: K1805613-027

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.053	mg/Kg	0.020	5	07/27/18 17:27	07/26/18	
Copper	200.8	2.35	mg/Kg	0.10	5	07/27/18 17:27	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:27	07/26/18	
Selenium	200.8	1.56	mg/Kg	1.0	5	07/27/18 17:27	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:27	07/26/18	
Zinc	200.8	102	mg/Kg	0.50	5	07/27/18 17:27	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018HIHCDV4 Basis: Dry

Lab Code: K1805613-028

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.625	mg/Kg	0.020	5	07/27/18 17:29	07/26/18	
Copper	200.8	3.62	mg/Kg	0.10	5	07/27/18 17:29	07/26/18	
Lead	200.8	0.066	mg/Kg	0.020	5	07/27/18 17:29	07/26/18	
Selenium	200.8	2.2	mg/Kg	1.0	5	07/27/18 17:29	07/26/18	
Silver	200.8	0.066	mg/Kg	0.020	5	07/27/18 17:29	07/26/18	
Zinc	200.8	158	mg/Kg	0.50	5	07/27/18 17:29	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Sample Name: 2018HIHCDV5 Basis: Dry

Lab Code: K1805613-029

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.068	mg/Kg	0.020	5	07/27/18 17:32	07/26/18	
Copper	200.8	2.90	mg/Kg	0.10	5	07/27/18 17:32	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:32	07/26/18	
Selenium	200.8	1.80	mg/Kg	1.0	5	07/27/18 17:32	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:32	07/26/18	
Zinc	200.8	114	mg/Kg	0.50	5	07/27/18 17:32	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018HIHCDV6 Basis: Dry

Lab Code: K1805613-030

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.143	mg/Kg	0.020	5	07/27/18 17:34	07/26/18	
Copper	200.8	2.57	mg/Kg	0.10	5	07/27/18 17:34	07/26/18	
Lead	200.8	0.021	mg/Kg	0.020	5	07/27/18 17:34	07/26/18	
Selenium	200.8	1.72	mg/Kg	1.0	5	07/27/18 17:34	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:34	07/26/18	
Zinc	200.8	114	mg/Kg	0.50	5	07/27/18 17:34	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue **Date Collected:** 05/15/18

Service Request: K1805613

Date Received: 06/13/18 10:15

Sample Name: 2018UCDV2 Basis: Dry

Lab Code: K1805613-031

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.041	mg/Kg	0.020	5	07/27/18 17:37	07/26/18	
Copper	200.8	2.17	mg/Kg	0.10	5	07/27/18 17:37	07/26/18	
Lead	200.8	0.144	mg/Kg	0.020	5	07/27/18 17:37	07/26/18	
Selenium	200.8	1.3	mg/Kg	1.0	5	07/27/18 17:37	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:37	07/26/18	
Zinc	200.8	101	mg/Kg	0.50	5	07/27/18 17:37	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018UCDV3 Basis: Dry

Lab Code: K1805613-032

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.097	mg/Kg	0.020	5	07/27/18 17:44	07/26/18	
Copper	200.8	2.13	mg/Kg	0.10	5	07/27/18 17:44	07/26/18	
Lead	200.8	0.028	mg/Kg	0.020	5	07/27/18 17:44	07/26/18	
Selenium	200.8	1.5	mg/Kg	1.0	5	07/27/18 17:44	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:44	07/26/18	
Zinc	200.8	111	mg/Kg	0.50	5	07/27/18 17:44	07/26/18	

Printed 7/30/2018 1:48:58 PM Superset Reference:

Page 60 of 80

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018UCDV4 Basis: Dry

Lab Code: K1805613-033

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.043	mg/Kg	0.020	5	07/27/18 17:52	07/26/18	
Copper	200.8	1.96	mg/Kg	0.099	5	07/27/18 17:52	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:52	07/26/18	
Selenium	200.8	1.47	mg/Kg	0.99	5	07/27/18 17:52	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:52	07/26/18	
Zinc	200.8	111	mg/Kg	0.50	5	07/27/18 17:52	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

Date Received: 06/13/18 10:15

Service Request: K1805613 **Date Collected:** 05/15/18

2018UCDV5 Basis: Dry

Lab Code: K1805613-034

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.530	mg/Kg	0.020	5	07/27/18 17:54	07/26/18	
Copper	200.8	4.63	mg/Kg	0.10	5	07/27/18 17:54	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:54	07/26/18	
Selenium	200.8	1.83	mg/Kg	1.0	5	07/27/18 17:54	07/26/18	
Silver	200.8	0.056	mg/Kg	0.020	5	07/27/18 17:54	07/26/18	
Zinc	200.8	125	mg/Kg	0.50	5	07/27/18 17:54	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018UCDV6 Basis: Dry

Lab Code: K1805613-035

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.041	mg/Kg	0.020	5	07/27/18 17:57	07/26/18	
Copper	200.8	2.05	mg/Kg	0.099	5	07/27/18 17:57	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:57	07/26/18	
Selenium	200.8	1.40	mg/Kg	0.99	5	07/27/18 17:57	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:57	07/26/18	
Zinc	200.8	121	mg/Kg	0.50	5	07/27/18 17:57	07/26/18	

Analytical Report

Service Request: K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18 10:15

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

2018UCDV7 Basis: Dry

Lab Code: K1805613-036

Sample Name:

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	0.029	mg/Kg	0.020	5	07/27/18 17:59	07/26/18	
Copper	200.8	1.90	mg/Kg	0.10	5	07/27/18 17:59	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:59	07/26/18	
Selenium	200.8	1.51	mg/Kg	1.0	5	07/27/18 17:59	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 17:59	07/26/18	
Zinc	200.8	102	mg/Kg	0.50	5	07/27/18 17:59	07/26/18	

Analytical Report

Service Request: K1805613

Client: Alaska Department of Fish and Game

> Date Collected: NA 2018 Greens Creek Mine Project

Project: Date Received: NA **Sample Matrix:** Animal Tissue

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1810092-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	ND U	mg/Kg	0.020	5	07/27/18 15:26	07/26/18	
Copper	200.8	ND U	mg/Kg	0.10	5	07/27/18 15:26	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 15:26	07/26/18	
Selenium	200.8	ND U	mg/Kg	1.0	5	07/27/18 15:26	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 15:26	07/26/18	
Zinc	200.8	ND U	mg/Kg	0.5	5	07/27/18 15:26	07/26/18	

Analytical Report

Client: Alaska Department of Fish and Game Service Request: K1805613

Project: 2018 Greens Creek Mine Project Date Collected: NA

Sample Matrix: Animal Tissue Date Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1810093-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Cadmium	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:51	07/26/18	
Copper	200.8	ND U	mg/Kg	0.10	5	07/27/18 16:51	07/26/18	
Lead	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:51	07/26/18	
Selenium	200.8	ND U	mg/Kg	1.0	5	07/27/18 16:51	07/26/18	
Silver	200.8	ND U	mg/Kg	0.020	5	07/27/18 16:51	07/26/18	
Zinc	200.8	ND U	mg/Kg	0.5	5	07/27/18 16:51	07/26/18	

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project

Sample Matrix:

2018 Greens Creek Mine Project

Animal Tissue **Date Received:** 06/13/18

Date Analyzed: 07/27/18

Service Request: K1805613

Date Collected: 05/16/18

Replicate Sample Summary

Total Metals

Sample Name: 2018PCDV5 Units: mg/Kg Lab Code: K1805613-011

Basis: Dry

Duplicate Sample Analysis Sample KQ1810092-05 Method Result Result **RPD Limit MRL RPD Analyte Name** Average 200.8 0.023 Cadmium 0.020 0.020 0.022 14 20 20 Copper 200.8 0.10 2.62 2.51 2.57 4 ND 20 Lead 200.8 0.020 ND U ND U 8 Selenium 200.8 1.0 1.50 1.38 1.44 20 0.020 ND U ND 20 Silver 200.8 ND U Zinc 8 20 108 200.8 0.5 112 103

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project 2018 Greens Creek Mine Project

Sample Matrix:

Animal Tissue Date Received: 06/13/18

Date Analyzed: 07/27/18

Service Request: K1805613

Date Collected: 05/16/18

Replicate Sample Summary

Total Metals

Sample Name: 2018ZCDV1 Units: mg/Kg Lab Code: K1805613-001 Basis: Dry

				Duplicate Sample			
	Analysis		Sample	KQ1810092-07			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Cadmium	200.8	0.020	0.922	1.18	1.05	25 *	20
Copper	200.8	0.10	6.10	5.73	5.92	6	20
Lead	200.8	0.020	0.824	0.783	0.804	5	20
Selenium	200.8	1.0	3.1	3.2	3.2	3	20
Silver	200.8	0.020	0.080	0.072	0.076	11	20
Zinc	200.8	0.5	277	297	287	7	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project 2018 Greens Creek Mine Project

Sample Matrix: **Animal Tissue** **Service Request:** K1805613

Date Collected: 05/15/18

Date Received: 06/13/18 **Date Analyzed:** 07/27/18

Replicate Sample Summary

Total Metals

Sample Name: 2018JGCDV4 Units: mg/Kg Lab Code: K1805613-021 Basis: Dry

	Analysis		Sample	KQ1810093-05			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Cadmium	200.8	0.020	0.944	1.12	1.03	17	20
Copper	200.8	0.10	5.62	4.81	5.22	16	20
Lead	200.8	0.020	0.395	0.304	0.350	26 *	20
Selenium	200.8	1.0	4.41	4.38	4.40	<1	20
Silver	200.8	0.020	0.043	0.037	0.040	15	20
Zinc	200.8	0.5	221	186	204	17	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

2018 Greens Creek Mine Project

Project Sample Matrix: **Animal Tissue** **Service Request:** K1805613 **Date Collected:** 05/15/18

Date Received: 06/13/18

Date Analyzed: 07/27/18

Replicate Sample Summary

Total Metals

Sample Name: 2018UCDV2 Units: mg/Kg Lab Code: K1805613-031 Basis: Dry

Dunlicata Sampla

	Analysis		Sample	KQ1810093-07			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Cadmium	200.8	0.020	0.041	0.042	0.042	2	20
Copper	200.8	0.10	2.17	2.21	2.19	2	20
Lead	200.8	0.020	0.144	0.025	0.085	141 #	20
Selenium	200.8	1.0	1.3	1.4	1.4	7	20
Silver	200.8	0.020	ND U	ND U	ND	=	20
Zinc	200.8	0.5	101	108	105	7	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game **Project:** 2018 Greens Creek Mine Project

Service Request: Date Collected:

K1805613 05/16/18

Animal Tissue

Date Received:

06/13/18

Date Analyzed: Date Extracted: 07/27/18 07/26/18

Matrix Spike Summary

Total Metals

Sample Name: 2018PCDV5 Lab Code:

Units: Basis:

mg/Kg Dry

Analysis Method:

K1805613-011 200.8

Prep Method:

Sample Matrix:

PSEP Metals

Matrix Spike KQ1810092-06

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	0.020	4.82	4.97	97	70-130
Copper	2.62	26.4	24.8	96	70-130
Lead	ND U	46.8	49.7	94	70-130
Selenium	1.53	18.9	16.6	105	70-130
Silver	ND U	5.34	4.97	108	70-130
Zinc	112	161	49.7	97	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game **Project:**

2018 Greens Creek Mine Project

Animal Tissue

Service Request:

K1805613

Date Collected: Date Received: 05/16/18 06/13/18

Date Analyzed:

07/27/18

Date Extracted:

07/26/18

Matrix Spike Summary

Total Metals

Sample Name: 2018ZCDV1 Lab Code: K1805613-001 **Units: Basis:**

mg/Kg Dry

Analysis Method:

Prep Method:

Sample Matrix:

200.8

PSEP Metals

Matrix Spike

KQ1810092-08

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	0.922	5.82	4.98	98	70-130
Copper	6.10	29.6	24.9	94	70-130
Lead	0.824	47.4	49.8	94	70-130
Selenium	3.11	20.2	16.6	103	70-130
Silver	0.080	5.31	4.98	105	70-130
Zinc	277	364	49.8	175 #	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

Project: 2018 Greens Creek Mine Project

2018 Greens Creek Mine Project Animal Tissue Service Request:

K1805613

Date Collected:

05/15/18 06/13/18

Date Received: Date Analyzed:

07/27/18

Date Extracted:

07/26/18

Matrix Spike Summary Total Metals

2018JGCDV4

Units: Basis:

mg/Kg Dry

Lab Code: Analysis Method:

Sample Name:

Sample Matrix:

K1805613-021 200.8

Prep Method:

PSEP Metals

Matrix Spike KQ1810093-06

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	0.944	5.51	4.98	92	70-130
Copper	5.62	27.6	24.9	88	70-130
Lead	0.395	44.4	49.8	88	70-130
Selenium	4.41	20.7	16.6	98	70-130
Silver	0.043	5.15	4.98	103	70-130
Zinc	221	270	49.8	99 #	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game **Project:** 2018 Greens Creek Mine Project

Service Request: Date Collected:

K1805613

Animal Tissue

Date Received:

05/15/18 06/13/18

Date Analyzed:

07/27/18

Date Extracted:

07/26/18

Matrix Spike Summary Total Metals

2018UCDV2

Units: Basis:

mg/Kg Dry

Lab Code:

Prep Method:

Sample Name:

K1805613-031

Analysis Method:

Sample Matrix:

200.8

PSEP Metals

Matrix Spike KQ1810093-08

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	0.041	4.82	4.98	96	70-130
Copper	2.17	25.2	24.9	93	70-130
Lead	0.144	45.5	49.8	91	70-130
Selenium	1.33	18.5	16.6	104	70-130
Silver	ND U	5.29	4.98	106	70-130
Zinc	101	150	49.8	100	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game
Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

Service Request: K1805613 Date Analyzed: 07/27/18

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Lab Control Sample

KQ1810092-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	200.8	4.87	5.00	97	85-115
Copper	200.8	24.4	25.0	98	85-115
Lead	200.8	48.7	50.0	97	85-115
Selenium	200.8	16.3	16.7	98	85-115
Silver	200.8	5.52	5.00	110	85-115
Zinc	200.8	48.1	50.0	96	85-115

QA/QC Report

Client: Alaska Department of Fish and Game
Project: 2018 Greens Creek Mine Project

Sample Matrix: Animal Tissue

Service Request: K1805613 Date Analyzed: 07/27/18

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Lab Control Sample

KQ1810093-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Cadmium	200.8	4.91	5.00	98	85-115
Copper	200.8	24.3	25.0	97	85-115
Lead	200.8	47.8	50.0	96	85-115
Selenium	200.8	16.2	16.7	97	85-115
Silver	200.8	5.61	5.00	112	85-115
Zinc	200.8	47.9	50.0	96	85-115

Client:Alaska Department of Fish and GameService Request:K1805613Project:2018 Greens Creek Mine ProjectDate Collected:NALCS Matrix:TissueDate Received:NA

Date Extracted: 07/26/18 **Date Analyzed:** 07/27/18

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: KQ1810092-03 Basis: Dry

Test Notes: Dorm-4 Solids = 94.5%

Source: N.R.C.C. Dorm-4

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Cadmium	PSEP Tissue	200.8	0.306	0.314	103	0.233 - 0.385	
Copper	PSEP Tissue	200.8	15.9	15.8	99	12.0 - 20.2	
Lead	PSEP Tissue	200.8	0.416	0.404	97	0.290 - 0.563	
Selenium	PSEP Tissue	200.8	3.56	4.08	115	2.58 - 4.68	
Zinc	PSEP Tissue	200.8	52.20	55.7	107	39.2 - 66.5	

Client: Alaska Department of Fish and Game **Service Request:** K1805613 **Project: Date Collected:** NA 2018 Greens Creek Mine Project LCS Matrix: **Date Received:** NA Tissue

Date Extracted: 07/26/18 **Date Analyzed:** 07/27/18

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm) Lab Code:

KQ1810092-04 Basis: Dry

Test Notes: Tort-3 Solids = 99.1%

Source: N.R.C.C. Tort-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Cadmium	PSEP Tissue	200.8	42.3	40.3	95	32.4-52.9	
Copper	PSEP Tissue	200.8	497	506	102	380-623	
Lead	PSEP Tissue	200.8	0.225	0.197	88	0.166-0.292	
Selenium	PSEP Tissue	200.8	10.9	10.9	100	7.9-14.3	
Zinc	PSEP Tissue	200.8	136	131	96	104-170	

Client:Alaska Department of Fish and GameService Request:K1805613Project:2018 Greens Creek Mine ProjectDate Collected:NALCS Matrix:TissueDate Received:NAPate Extracted:07/26/18

Date Extracted: 07/26/18 **Date Analyzed:** 07/27/18

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: KQ1810093-03 Basis: Dry

Test Notes: Dorm-4 Solids = 94.5%

Source: N.R.C.C. Dorm-4

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Cadmium	PSEP Tissue	200.8	0.306	0.301	98	0.233 - 0.385	
Copper	PSEP Tissue	200.8	15.9	15.7	99	12.0 - 20.2	
Lead	PSEP Tissue	200.8	0.416	0.403	97	0.290 - 0.563	
Selenium	PSEP Tissue	200.8	3.56	3.97	112	2.58 - 4.68	
Zinc	PSEP Tissue	200.8	52.20	52.9	101	39.2 - 66.5	

Client: Alaska Department of Fish and Game **Service Request:** K1805613 **Project: Date Collected:** NA 2018 Greens Creek Mine Project LCS Matrix: **Date Received:** NA Tissue

Date Extracted: 07/26/18 **Date Analyzed:** 07/27/18

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm) Lab Code: KQ1810093-04

Basis: Dry

Test Notes: Tort-3 Solids = 99.1%

Source: N.R.C.C. Tort-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Cadmium	PSEP Tissue	200.8	42.3	39.4	93	32.4-52.9	
Copper	PSEP Tissue	200.8	497	477	96	380-623	
Lead	PSEP Tissue	200.8	0.225	0.194	86	0.166-0.292	
Selenium	PSEP Tissue	200.8	10.9	11.1	102	7.9-14.3	
Zinc	PSEP Tissue	200.8	136	127	93	104-170	