# **Glacier Creek Aquatic Studies, 2017**

by

Nicole M. Legere

and

# Katrina M. Kanouse



December 2017

**Alaska Department of Fish and Game** 

Division of Habitat



## **Symbols and Abbreviations**

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in reports by the Divisions of Habitat, Sport Fish, and Commercial Fisheries. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figures or figure captions.

| Weights and measures (metric)  |                    | General                  |                   | Measures (fisheries)           |                         |
|--------------------------------|--------------------|--------------------------|-------------------|--------------------------------|-------------------------|
| centimeter                     | cm                 | Alaska Administrative    |                   | fork length                    | FL                      |
| deciliter                      | dL                 | Code                     | AAC               | mideye-to-fork                 | MEF                     |
| gram                           | g                  | all commonly accepted    |                   | mideye-to-tail fork            | METF                    |
| hectare                        | ha                 | abbreviations            | e.g., Mr., Mrs.,  | standard length                | SL                      |
| kilogram                       | kg                 |                          | AM, PM, etc.      | total length                   | TL                      |
| kilometer                      | km                 | all commonly accepted    |                   |                                |                         |
| liter                          | L                  | professional titles      | e.g., Dr., Ph.D., | Mathematics, statistics        |                         |
| meter                          | m                  |                          | R.N., etc.        | all standard mathematical      |                         |
| milliliter                     | mL                 | at                       | @                 | signs, symbols and             |                         |
| millimeter                     | mm                 | compass directions:      |                   | abbreviations                  |                         |
|                                |                    | east                     | E                 | alternate hypothesis           | $H_A$                   |
| Weights and measures (English) |                    | north                    | N                 | base of natural logarithm      | e                       |
| cubic feet per second          | ft <sup>3</sup> /s | south                    | S                 | catch per unit effort          | CPUE                    |
| foot                           | ft                 | west                     | W                 | coefficient of variation       | CV                      |
| gallon                         | gal                | copyright                | ©                 | common test statistics         | $(F, t, \chi^2, etc.)$  |
| inch                           | in                 | corporate suffixes:      |                   | confidence interval            | CI                      |
| mile                           | mi                 | Company                  | Co.               | correlation coefficient        |                         |
| nautical mile                  | nmi                | Corporation              | Corp.             | (multiple)                     | R                       |
| ounce                          | oz                 | Incorporated             | Inc.              | correlation coefficient        |                         |
| pound                          | lb                 | Limited                  | Ltd.              | (simple)                       | r                       |
| quart                          | qt                 | District of Columbia     | D.C.              | covariance                     | cov                     |
| yard                           | yd                 | et alii (and others)     | et al.            | degree (angular )              | 0                       |
| <b>3</b>                       | J                  | et cetera (and so forth) | etc.              | degrees of freedom             | df                      |
| Time and temperature           |                    | exempli gratia           |                   | expected value                 | E                       |
| day                            | d                  | (for example)            | e.g.              | greater than                   | >                       |
| degrees Celsius                | °C                 | Federal Information      |                   | greater than or equal to       | ≥                       |
| degrees Fahrenheit             | °F                 | Code                     | FIC               | harvest per unit effort        | HPUE                    |
| degrees kelvin                 | K                  | id est (that is)         | i.e.              | less than                      | <                       |
| hour                           | h                  | latitude or longitude    | lat. or long.     | less than or equal to          | ≤                       |
| minute                         | min                | monetary symbols         | Ü                 | logarithm (natural)            | _<br>ln                 |
| second                         | S                  | (U.S.)                   | \$,¢              | logarithm (base 10)            | log                     |
|                                |                    | months (tables and       |                   | logarithm (specify base)       | log <sub>2</sub> , etc. |
| Physics and chemistry          |                    | figures): first three    |                   | minute (angular)               | 1                       |
| all atomic symbols             |                    | letters                  | Jan,,Dec          | not detected                   | N                       |
| alternating current            | AC                 | registered trademark     | ®                 | no data                        | ND                      |
| ampere                         | A                  | trademark                | ТМ                | not significant                | NS                      |
| calorie                        | cal                | United States            |                   | null hypothesis                | Ho                      |
| direct current                 | DC                 | (adjective)              | U.S.              | percent                        | %                       |
| hertz                          | Hz                 | United States of         |                   | probability                    | P                       |
| horsepower                     | hp                 | America (noun)           | USA               | probability of a type I error  | _                       |
| hydrogen ion activity          | pН                 | U.S.C.                   | United States     | (rejection of the null         |                         |
| (negative log of)              | P                  |                          | Code              | hypothesis when true)          | α                       |
| parts per million              | ppm                | U.S. state               | use two-letter    | probability of a type II error | w                       |
| parts per thousand             | ,                  |                          | abbreviations     | (acceptance of the null        |                         |
| parts per triousand            | ррt,<br>‰          |                          | (e.g., AK, WA)    | hypothesis when false)         | β                       |
| volts                          | V                  |                          |                   | second (angular)               | р<br>"                  |
| watts                          | W                  |                          |                   | standard deviation             | SD                      |
| manu .                         | **                 |                          |                   | standard deviation             | SE                      |
|                                |                    |                          |                   | variance                       | )L                      |
|                                |                    |                          |                   | population                     | Var                     |
|                                |                    |                          |                   | sample                         | var                     |
|                                |                    |                          |                   | sample                         | vai                     |

# TECHNICAL REPORT NO. 17-11

# **GLACIER CREEK AQUATIC STUDIES, 2017**

By

Nicole M. Legere

and

Katrina M. Kanouse

Alaska Department of Fish and Game Division of Habitat, Southeast Region 802 3<sup>rd</sup> Street, Douglas, Alaska, 99824

December 2017

This investigation was fully financed by Constantine North, Inc.

Cover: Dolly Varden char captured in Christmas Creek.

Technical Reports are available through the Alaska State Library, Alaska Resources Library and Information Services (ARLIS) and on the Internet: <a href="http://www.adfg.alaska.gov/index.cfm?adfg=habitat\_publications.main">http://www.adfg.alaska.gov/index.cfm?adfg=habitat\_publications.main</a>. This publication has undergone editorial and peer review.

*Note:* Product names or specific company names used in this publication are included for completeness but do not constitute product endorsement. The Alaska Department of Fish and Game, in accordance with State of Alaska ethics laws, does not favor one group over another through endorsement or recommendation.

Alaska Department of Fish and Game, Division of Habitat 802 3<sup>rd</sup> Street, Douglas, Alaska, 99824, USA

This document should be cited as:

Legere, N. M. and K. M. Kanouse. 2017. Glacier Creek aquatic studies, 2017. Alaska Department of Fish and Game, Technical Report No. 17-11, Douglas, AK.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G Division of Habitat, 802 3<sup>rd</sup> Street, Douglas, Alaska 99824 (907) 465-4105

# TABLE OF CONTENTS

|            |                                                                                                                                     | Page          |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------|
| LIST (     | OF TABLES                                                                                                                           | i             |
| LIST (     | OF FIGURES                                                                                                                          | ii            |
| LIST (     | OF APPENDICES                                                                                                                       | ii            |
| ACKN       | IOWLEDGEMENTS                                                                                                                       | iii           |
|            | UTIVE SUMMARY                                                                                                                       |               |
|            |                                                                                                                                     |               |
|            | ODUCTION                                                                                                                            |               |
| -          | se                                                                                                                                  |               |
| •          | c Studies                                                                                                                           |               |
| •          | Area                                                                                                                                |               |
|            | wer Glacier Creekddle Glacier Creek                                                                                                 |               |
| METH       | IODS                                                                                                                                | 7             |
| Water      | Quality                                                                                                                             | 7             |
|            | yton: Chlorophyll Density and Composition                                                                                           |               |
| -          | c Macroinvertebrate Density and Community Composition                                                                               |               |
|            | ondition                                                                                                                            |               |
|            | ent Fish Element Concentrations                                                                                                     |               |
| Sedime     | ent Element Concentrations                                                                                                          | 10            |
|            | LTS                                                                                                                                 |               |
|            | Glacier Creek                                                                                                                       |               |
|            | e Glacier Creek                                                                                                                     |               |
|            | arison Among Sites                                                                                                                  |               |
| -          | RENCES CITED                                                                                                                        |               |
| Table      | LIST OF TABLES                                                                                                                      | <b>D</b> o co |
| Table      | e 2017 Lower Glacier Creek sample site location data                                                                                | Page          |
| 2.         | 2017 Lower Gracier Creek sample site location data.                                                                                 | 6             |
| 3.         | 2017 sediment tests, analytes, and methods                                                                                          |               |
| 4.         | 2017 Lower Glacier Creek water quality data.                                                                                        |               |
| 5.         | Lower Glacier Creek mean chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> densities                                                  |               |
| 6.<br>7.   | Lower Glacier Creek benthic macroinvertebrate data summaries.  Lower Glacier Creek Dolly Varden char median element concentrations. |               |
| 8.         | Lower Glacier Creek sediment element concentrations.                                                                                |               |
| 9.         | 2017 Middle Glacier Creek water quality data                                                                                        |               |
| 10.        | Middle Glacier Creek mean chlorophylls a, b, and c densities                                                                        | 16            |
| 11.        | Middle Glacier Creek benthic macroinvertebrate data summaries.                                                                      |               |
| 12.        | Middle Glacier Creek Dolly Varden char median element concentrations                                                                |               |
| 13.<br>14. | Middle Glacier Creek sediment element concentrations.  2017 Glacier Creek sediment sample compositions.                             |               |
| 17.        | 201, Sweler creek sediment sample compositions.                                                                                     | 23            |

# LIST OF FIGURES

| Figuı | re                                                                                       | Page |
|-------|------------------------------------------------------------------------------------------|------|
| 1.    | Palmer Exploration Project area map.                                                     | 2    |
| 2.    | Glacier Creek sample sites.                                                              | 4    |
| 3.    | Lower Glacier Creek, looking upstream.                                                   | 5    |
| 4.    | Middle Glacier Creek and Christmas Creek confluence, looking downstream                  |      |
| 5.    | Lower Glacier Creek mean chlorophyll a densities                                         | 13   |
| 6.    | Lower Glacier Creek mean proportions of chlorophylls a, b, and c                         |      |
| 7.    | Lower Glacier Creek mean benthic macroinvertebrate densities                             | 14   |
| 8.    | Lower Glacier Creek mean benthic macroinvertebrate community compositions                | 14   |
| 9.    | Lower Glacier Creek whole body Dolly Varden char element concentrations                  |      |
| 10.   | Middle Glacier Creek mean chlorophyll a densities                                        | 17   |
| 11.   | Middle Glacier Creek mean proportions of chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> | 17   |
| 12.   | Middle Glacier Creek mean benthic macroinvertebrate densities                            | 18   |
| 13.   | Middle Glacier Creek mean benthic macroinvertebrate community compositions               | 18   |
| 14.   | Middle Glacier Creek whole body Dolly Varden char element concentrations                 | 19   |
| 15.   | 2017 Glacier Creek mean chlorophyll <i>a</i> densities.                                  | 20   |
| 16.   | 2017 Glacier Creek mean proportions of chlorophylls <i>a</i> , <i>b</i> , and <i>c</i>   |      |
| 17.   | 2017 Glacier Creek mean benthic macroinvertebrate densities                              | 21   |
| 18.   | 2017 Glacier Creek mean benthic macroinvertebrate community compositions                 | 21   |
| 19.   | Glacier Creek whole body Dolly Varden char element concentrations, 2016–2017             | 22   |
| 20.   | Glacier Creek sediment element concentrations, 2016–2017.                                | 24   |

# LIST OF APPENDICES

#### APPENDIX A: CHLOROPHYLL DATA

- A.1. Lower Glacier Creek chlorophylls a, b, and c densities.
- A.2. Middle Glacier Creek chlorophylls *a, b,* and *c* densities.

#### APPENDIX B: BENTHIC MACROINVERTEBRATE DATA

- B.1. 2017 Lower Glacier Creek benthic macroinvertebrate sample data.
- B.2. Lower Glacier Creek benthic macroinvertebrate data summaries.
- B.3. 2017 Middle Glacier Creek benthic macroinvertebrate sample data.
- B.4. Middle Glacier Creek benthic macroinvertebrate data summaries.

#### APPENDIX C: RESIDENT FISH ELEMENT CONCENTRATIONS AND LABORATORY REPORT

- C.1. Lower Glacier Creek whole body Dolly Varden char element concentrations data.
- C.2. Middle Glacier Creek whole body Dolly Varden char element concentrations data.
- C.3. 2017 Glacier Creek whole body Dolly Varden char laboratory report.

#### APPENDIX D: SEDIMENT LABORATORY REPORT

D.1. 2017 Glacier Creek sediment laboratory report.

## **ACKNOWLEDGEMENTS**

Constantine North, Inc. provided financial support for this project. Environmental Manager Allegra Cairns and Camp Manager Darsie Culbeck provided logistical support. Ms. Cairns assisted with sampling sediment and provided Glacier Creek water quality and discharge data. Vice President of Exploration Darwin Green and Acting Environmental Manager Maria Egerton reviewed the draft report. Chilkoot Indian Association staff Ted Hart and Luke Williams joined us while sampling Lower Glacier Creek.

Many Division of Habitat staff contributed to this project. Southeast Regional Supervisor Jackie Timothy collaborated on study design, Habitat Biologist Dylan Krull and Fish and Wildlife Technician Ben Landes assisted with sampling fish, Habitat Biologists Greg Albrecht and Johnny Zutz processed the periphyton samples, Mr. Albrecht, Mr. Krull, and Habitat Biologist Evan Fritz identified the benthic macroinvertebrates, and Mr. Zutz prepared the report for publication. Division of Habitat Operations Manager Dr. Al Ott and Ms. Timothy reviewed and edited the report.

Thank you all for your contribution.

## **EXECUTIVE SUMMARY**

Constantine North, Inc. (CNI) began exploratory drilling at the Palmer Prospect in 2006 and has identified barite, copper, gold, silver, and zinc deposits within the volcanogenic massive sulfide deposit that may support a hard rock mine. CNI contracted with the Alaska Department of Fish and Game (ADF&G) Division of Habitat to study aquatic resources in Glacier Creek, a glacial water body draining the area. With CNI, Division of Habitat biologists developed a plan to study periphyton, benthic macroinvertebrates, fish, and sediment at two sites in Glacier Creek in spring 2016 and 2017 to document baseline aquatic productivity and sediment conditions.

We sampled the lower and middle reaches of Glacier Creek on June 8 and 9, 2017. Mean periphyton density was greater among the Lower Glacier Creek samples. Mean benthic macroinvertebrate density was greater among the Middle Glacier Creek samples, and both benthic macroinvertebrate communities were dominated by Diptera: Chironomidae, aquatic insects that are generally fast colonizers, easily adapt to changing habitats, and can exercise more than one feeding strategy (Entrekin et al. 2007).

We captured 12 Dolly Varden char *Salvelinus malma* in Lower Glacier Creek and 6 in Middle Glacier Creek; despite extensively fishing, we were unable to capture 4 more Dolly Varden char to achieve 10 samples from Middle Glacier Creek. All fish were in good condition, and we did not capture other fish species. Most median whole body Dolly Varden char concentrations of analyzed elements were greater among the Lower Glacier Creek samples, while arsenic and silver concentrations were often not detected at both sites. All concentrations were reasonable when compared with samples collected from reference and exploration sites elsewhere in Alaska (Legere and Timothy 2016).

We sampled fine sediment at each site for aluminum, arsenic, cadmium, copper, iron, lead, mercury, silver, selenium, and zinc and found the range of element concentrations similar among sites. The baseline cadmium, copper, and zinc concentrations were above the freshwater sediment guidelines suggested by Buchman (2008). While we find the sediment guidelines useful for evaluating the data, we also recognize organisms can respond differently in nature.

## INTRODUCTION

The Palmer Exploration Project is located in the Porcupine Mining District about 55 km north of Haines by air in the southeastern extent of the Saint Elias Mountains near the U.S./Canada border (Figure 1). At the site, placer gold mining in Glacier Creek and its tributaries occurred during the 20th century, and in 1969 local prospector Merrill Palmer discovered base-metal sulfides and barite that initiated exploration drill programs by several different companies in the following years, including CNI beginning in 2006 (CNI 2015). The project is located on the same volcanogenic massive sulfide belt as the Greens Creek Mine<sup>a</sup>, and CNI has identified barite, copper (Cu), gold, silver (Ag), and zinc (Zn) as potential mineable resources (CNI 2015).

1

<sup>&</sup>lt;sup>a</sup> Owned and operated by Hecla Greens Creek Mining Company on Admiralty Island in Southeast Alaska.

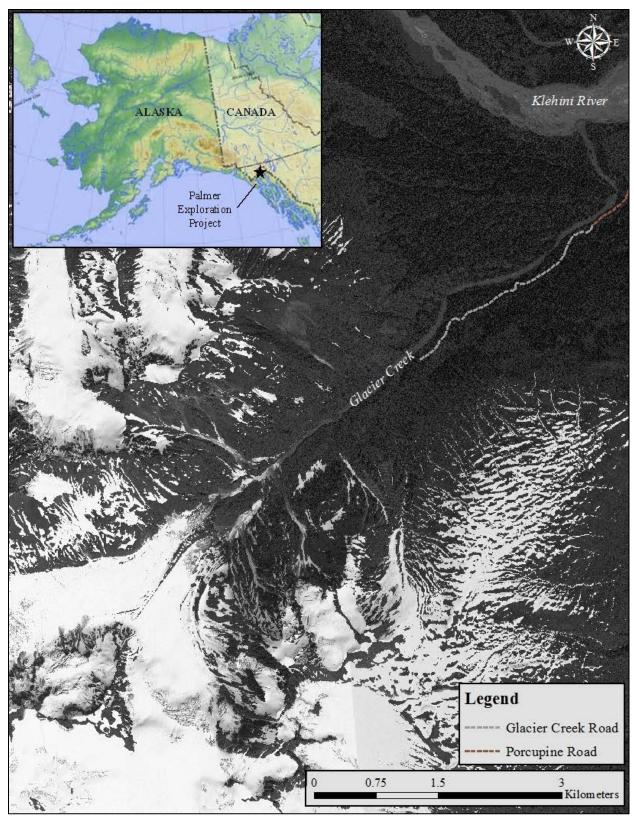



Figure 1.-Palmer Exploration Project area map.

Tetra Tech (2013) and ADF&G biologists documented<sup>b</sup> Dolly Varden char in Glacier Creek and three tributaries. In 2016 and 2017, CNI contracted with the ADF&G Division of Habitat to begin baseline studies in Glacier Creek. Following review of CNI's water quality sample data, Division of Habitat biologists developed a study plan to investigate and document aquatic resources in Glacier Creek, similar to aquatic sampling programs at the Greens Creek Mine and Kensington Gold Mine (Timothy and Kanouse 2014, Zutz 2017), underground hard rock mines in Southeast Alaska. The study plan included sampling periphyton, benthic macroinvertebrates, and fish, aquatic resources influenced by water and sediment quality through natural processes and development, to provide baseline information on aquatic productivity in Glacier Creek.

## **PURPOSE**

The purpose of this investigation and technical report is to document the condition, abundance, and composition of biological communities and sediments in Glacier Creek.

## **AQUATIC STUDIES**

We completed the following studies in Glacier Creek:

- chlorophyll *a* density and community composition;
- benthic macroinvertebrate density and community composition;
- Dolly Varden char condition and whole body element concentrations; and
- sediment composition and element concentrations.

## STUDY AREA

Glacier Creek is about 7 km long, drains a 39 km<sup>2</sup> watershed between its headwaters at the Saksaia Glacier and its confluence with the Klehini River, and contributes about 5% of the total Klehini River drainage area measured from the U.S. Geological Survey gage at the Klehini River bridge–about 20 km downstream of the project.<sup>c</sup>

Continuous discharge data do not exist for Glacier Creek. Based on the relative size of the Glacier Creek and Klehini River drainage areas, Integral Consulting, Inc.<sup>d</sup> estimates average Glacier Creek discharge between May and September at 150 ft<sup>3</sup>/s, less than the discharges measured in June 2015, August 2015, and June 2016, which ranged 225–272 ft<sup>3</sup>/s. In June and July 2017, water levels were too high to measure discharge; on September 3, 2017, discharge at the Lower Glacier Creek sample site was 146 ft<sup>3</sup>/s (A. Cairns, Environmental Manager, Constantine North Inc., Vancouver, personal communication).

Matthew Kern, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Glacier Creek investigation trip report; dated 6/26/2014. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Division of Habitat, 802 3rd St, Douglas, AK.

Marcia Greenblatt and Alice Conovitz, Integral Consulting, to Darwin Green, Constantine North. Memorandum: Klehini River and Glacier Creek Hydrologic Data Summary; dated 2/24/2016. Unpublished document, can be obtained from Constantine North, Inc., 800 W. Pender St. Ste. 320, Vancouver, BC, Canada.

Marcia Greenblatt and Alice Conovitz, Integral Consulting, to Darwin Green and Allegra Cairns, Constantine North. Memorandum: Klehini River and Glacier Creek Hydrologic Data Summary–Fall 2016 Update; dated 12/19/2016. Unpublished document, can be obtained from Constantine North, Inc., 800 W. Pender St. Ste. 320, Vancouver, BC, Canada.

CNI's 2008–2014 and 2017 Glacier Creek basic water quality data documents total suspended solids ranging 9–2,470 mg/L, turbidity ranging 18–2,760 nephelometric turbidity units (NTU), and pH ranging 6.59–8.33 standard units (USDI 2016). Nutrients, arsenic (As), and other elements were generally below detection limits, except total aluminum (Al), which usually exceeded the 2008 Alaska acute aquatic life criteria (ADEC 2008).

The lower 1 km of Glacier Creek (Stream No. 115-32-10250-2077-3151) provides habitat for coho salmon *Oncorhynchus kisutch*, cutthroat trout *O. clarkii*, and Dolly Varden char (Johnson and Blossom 2017). On June 9, 2017, we captured Dolly Varden char 0.6 km upstream of the Christmas Creek confluence, a nonglacial tributary located 4.5 km upstream of the Glacier Creek confluence with the Klehini River; previously, Tetra Tech (2013) and ADF&G documented the upper extent of Dolly Varden char below the Christmas Creek confluence. We sampled two locations in Glacier Creek: Lower Glacier Creek and Middle Glacier Creek (Figure 2).

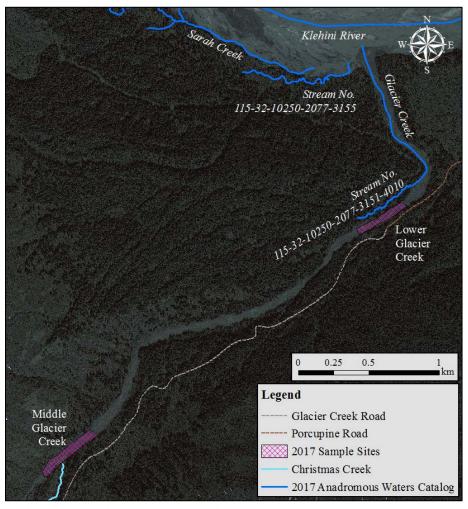



Figure 2.–Glacier Creek sample sites.

-

<sup>&</sup>lt;sup>e</sup> We sampled fish within the upper 300 m of this reach on June 8, 2017, and captured several Dolly Varden char, no other fish species.

Kate Kanouse, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: 2017 Palmer Project Glacier Creek sampling; dated 8/9/2017. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Division of Habitat, 802 3rd St, Douglas, AK.

#### **Lower Glacier Creek**

The Lower Glacier Creek sample site is located at the former Glacier Creek bridge near 230 m elevation, about 1.5 km upstream of the Klehini River (Table 1, Figure 3). We accessed the site from the old bridge crossing at the end of Porcupine Road.

Lower Glacier Creek is a medium glacial outwash channel (Paustian 2010). Streambed gradient ranges 2–4% and the substrate is composed of gravel and cobble underlain with sand and silt. In 2017, we sampled a 400 m reach, about twice as long as the 2016 sample reach<sup>g</sup>, collecting periphyton, benthic macroinvertebrate, and sediment samples in channel braids and along the main channel margin upstream of the old crossing, and fish throughout the sample reach. We could not measure stream discharge because flows prevented us from safely crossing the creek.

Comparing stream characteristics at the Lower Glacier Creek sample site between years, we observed fewer channel braids upstream of the old crossing in 2017, which were more incised than in 2016, and the side channel present downstream of the old crossing within the 2016 sample area had washed-out and was dry in 2017. The main channel generally flowed a similar course both years.

Table 1.–2017 Lower Glacier Creek sample site location data.

|              | Latitude | Longitude  |
|--------------|----------|------------|
| Upper extent | 59.41642 | -136.30415 |
| Lower extent | 59.41835 | -136.29903 |

Note: WGS84 datum.



Figure 3.-Lower Glacier Creek, looking upstream.

<sup>&</sup>lt;sup>g</sup> Higher water limited sampling areas so we sampled a larger reach.

#### Middle Glacier Creek

The Middle Glacier Creek sample site is located near 350 m elevation, about 4.5 km upstream of the Klehini River (Table 2; Figure 4), and in 2017 we accessed the site by helicopter.

Middle Glacier Creek is also characterized as a medium glacial outwash channel (Paustian 2010). Streambed gradient ranges 4–6% and the substrate is composed of cobble, gravel, sand, and silt. We sampled a 450 m reach upstream and downstream of the Christmas Creek confluence, about twice as long as the 2016 sample reach<sup>h</sup>. We collected periphyton, benthic macroinvertebrate, and sediment samples in channel braids, and fish throughout the sample reach. We did not sample the main channel margin and could not measure stream discharge because flows prevented us from safely crossing the creek.

Comparing stream characteristics at the Middle Glacier Creek sample site between years, we observed many channel braids both years, though the 2017 channels were shallower and many were not incised. The main channel shifted from river left to river right, preventing Christmas Creek from flowing within the Glacier Creek floodplain as we observed in 2016.

Table 2.–2017 Middle Glacier Creek sample site location data.

|              | Latitude | Longitude  |
|--------------|----------|------------|
| Upper extent | 59.40272 | -136.33965 |
| Lower extent | 59.40371 | -136.33735 |

Note: WGS84 datum.



Figure 4.-Middle Glacier Creek and Christmas Creek confluence (yellow arrow), looking downstream.

h Ibid.

## **METHODS**

## WATER QUALITY

We collected basic water quality data with a YSI Pro 2030, a Hach 2100P Portable Turbidimeter, and Hanna Instrument model HI98108 pH meter, and calibrated the YSI and the Hach instruments on site per the manufacturer's instructions before sampling. We present the data by site in a table.

#### PERIPHYTON: CHLOROPHYLL DENSITY AND COMPOSITION

Periphyton is composed of primary producing organisms, such as algae, cyanobacteria, and heterotrophic microbes, and detritus attached to the submerged surfaces of aquatic ecosystems. Algal density and community structure are influenced by water and sediment quality through physical, chemical, and biological disturbances that change throughout the year (Barbour et al. 1999). We sampled periphyton in Lower Glacier Creek and Middle Glacier Creek to estimate algal density and community composition at each site, using concentrations of chlorophylls a, b, and c. Chlorophyll a pigment is produced by algae and provides an estimate of active algal density. Chlorophyll b and c pigments provide an estimate of the composition of algal organisms present, such as green algae that produces chlorophyll b, and diatoms and brown algae that produce chlorophyll c. We use the periphyton data to document baseline primary productivity.

## **Sample Collection and Analysis**

We collected 10 smooth, flat, undisturbed, and perennially wetted rocks from submerged cobble in riffle habitats in less than 0.45 m water depth at each sample site. We placed a  $5 \times 5$  cm square of high-density foam on each rock and scrubbed the area around the foam with a toothbrush to remove algae and other organisms outside the covered area, then rinsed the rock by dipping it with foam intact in the stream.

We removed the foam square and scrubbed the sample area with a rinsed toothbrush over a 1  $\mu$ m, 47 mm glass fiber filter attached to a vacuum pump. We used stream water in a wash bottle to rinse the loosened periphyton from the rock, the toothbrush, and the inside of the vacuum pump onto the filter. We pumped most of the water through the filter and added a few drops of saturated magnesium carbonate solution (MgCO<sub>3</sub>) to the filter to prevent acidification and conversion of chlorophyll to phaeophytin, before we pumped the sample dry. We removed the dry glass fiber filter, folded it in half with the sample on the inside, and wrapped it in a white coffee filter to absorb additional water. We placed the samples in a sealed, labeled plastic bag with desiccant and stored the samples in a light-proof cooler containing frozen icepacks during transportation, in a camp freezer while onsite, and in a  $-20^{\circ}$ C freezer until we processed them in an ADF&G laboratory.

We followed U.S. Environmental Protection Agency (1997) protocol for chlorophyll extraction and measurement, determining instrument and estimated detection limits, and data analysis. We removed the samples from the freezer, cut them into small pieces, and placed the filter pieces for

This measurement is not exact as the amount of water used to saturate the magnesium carbonate solution is not exact and fixes the sample regardless of the concentration and without affecting sample integrity.

Except, we store the samples longer than 3.5 weeks and we cut the sample filters, rather than homogenize them, to reduce staff risk of acetone exposure.

each sample into individual centrifuge tubes containing 10 mL of 90% buffered acetone. We cap the centrifuge tubes, placed them in a rack, covered them with aluminum foil, and stored them in a refrigerator for less than 24 h to extract the chlorophyll. We centrifuged the samples for 20 min at 1,600 rpm and measured each sample absorbance at wavelengths 664 nm, 647 nm, 630 nm, and 750 nm using a Shimadzu UV-1800 Spectrophotometer. We used a 90% acetone stock solution to correct for absorbance of the solvent. We treated each sample with 80  $\mu$ L of 0.1 N hydrochloric acid to convert the chlorophyll to phaeophytin, and measured absorbance at wavelengths 665 nm and 750 nm.

We used trichromatic equations to estimate chlorophylls a, b, and c concentration, and corrected chlorophyll a concentrations when phaeophytin was detected. When chlorophyll a was not detected in a sample, we report the concentration at the estimated detection limit and do not report values for chlorophylls b or c. The 2017 chlorophyll a concentration estimated detection limit was  $0.19 \text{ mg/m}^2$ .

#### **Data Presentation**

For each site and by year, we present mean density of chlorophylls a, b, and c in a table, mean chlorophyll a density in a figure, mean proportions of chlorophylls a, b, and c in a figure, and provide the 2016 and 2017 data in Appendix A.

#### BENTHIC MACROINVERTEBRATE DENSITY AND COMMUNITY COMPOSITION

Benthic macroinvertebrates classified in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), collectively known as EPT taxa, have complex and short life cycles, and many genera are sensitive to changes in water and sediment quality (Barbour et al. 1999). These organisms are secondary producers, feed upon periphyton and other macroinvertebrates, and provide a food source for fish. We sampled benthic macroinvertebrates in Lower Glacier Creek and Middle Glacier Creek to estimate density and community composition at each site and document baseline conditions.

#### **Sample Collection and Analysis**

We opportunistically sampled benthic macroinvertebrates using a Surber stream bottom sampler in riffle and run habitats with cobble substrate and different flow velocities (Barbour et al. 1999), collecting six samples at each site. Sampling only riffles and runs, habitats that support greater benthic macroinvertebrate densities and number of taxa, reduces variability in the data.

The Surber stream bottom sampler has a 0.093 m<sup>2</sup> sample area and a 0.3 mm mesh net and cod end. After securing the frame on the substrate, we scrubbed rocks within the sample area with a brush and disturbed gravels, sand, and silt to about 10 cm depth to dislodge macroinvertebrates into the net. We rinsed the net in the stream to ensure all organisms floated into the cod end of the Surber sampler, transferred each sample from the cod end to a labeled 500 mL plastic bottle, and preserved the samples in 95% ethanol at a ratio of three parts ethanol to one part sample.

Habitat biologists used an elutriator system and 0.5 mm and 0.3 mm sieves to sort macroinvertebrates from debris, k,1 and identified organisms to the lowest practical taxonomic

\_

Gordon Willson-Naranjo and Greg Albrecht, Habitat Biologists, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Benthic macroinvertebrate elutriation trials amendment; dated 12/17/2013. Unpublished document can be obtained from the Southeast Regional Supervisor, ADF&G Division of Habitat, 802 3rd St, Douglas, AK.

level<sup>m</sup> using Merritt and Cummins (1996) and Stewart and Oswood (2006). Habitat biologists provided quality assurance and control by verifying macroinvertebrate identification of two samples.

We calculated benthic macroinvertebrate density (per m<sup>2</sup>) for each sample by dividing the number of macroinvertebrates by 0.093 m<sup>2</sup>, the Surber sampling area. We estimated mean benthic macroinvertebrate density for each site by calculating the mean density among the six samples. We report taxa richness as the number of taxonomic groups identified to the lowest practical level, excluding terrestrial organisms from all calculations.

#### **Data Presentation**

For each site and by year we present mean benthic macroinvertebrate data by site in a table, illustrate mean density and community composition in a figure, and provide the raw data for each 2017 sample and a summary of the 2016 and 2017 data for each site in Appendix B.

#### FISH CONDITION

Age, sex, season, maturation, diet, gut contents, fat reserve, and muscular development affect fish condition. We measured and weighed fish captured in Lower Glacier Creek and Middle Glacier Creek for element concentrations analyses to estimate fish condition.

## Sample Collection and Analysis

We measured FL and weight of resident Dolly Varden char, recording FL to the nearest 1 mm and weight to the nearest 0.1 g. We used the FL and weight data to calculate Fulton's condition factor (K) for each fish using the equation given in Anderson and Neumann (1996), where the fish weight (W) is divided by the cubed length (L), and the product multiplied by 100,000:

$$K = \frac{W}{L^3} \times 100,000$$

#### **Data Presentation**

We present the mean fish condition factor of Dolly Varden char for each site, and provide the raw data in Appendix C.

#### RESIDENT FISH ELEMENT CONCENTRATIONS

Heavy metals bioavailability and bioaccumulation depends on physical and chemical factors and interactions among biological communities (Tchounwou et al. 2012). Similar to other studies in Alaska (Legere and Timothy 2016), we sampled resident Dolly Varden char in Lower Glacier Creek and Middle Glacier Creek and measured whole body concentrations of Ag, As, cadmium (Cd), Cu, lead (Pb), mercury (Hg), selenium (Se), and Zn to document baseline concentrations and variability. We selected these elements based on CNI's Glacier Creek water sample data and potential target metals identified in the ore body.

Katrina Lee, Administrative Assistant, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Benthic macroinvertebrate sample enumeration procedures; dated 6/28/2016. Unpublished document can be obtained from the Southeast Regional Supervisor, ADF&G Division of Habitat, 802 3rd St, Douglas, AK.

m Insects of the orders Ephemeroptera, Plecoptera, Trichoptera, and Diptera to genus, except nonbiting midges to family Chironomidae, and all others to class or order.

#### **Sample Collection and Analysis**

We captured fish using a Smithroot LR-24 backpack electrofisher. We attempted to capture Dolly Varden char measuring 90–130 mm FL, as other Southeast Alaska Dolly Varden char sampling programs require (Legere and Timothy 2016, Timothy and Kanouse 2014, Zutz 2017), though we retained all fish captured regardless of size due to few fish captures. A 90 mm fish provides the minimum weight requirement for laboratory testing, while a 130 mm fish is 2–3 years old and young enough to reasonably conclude it is resident and nonanadromous. We retained fish as they were captured, some outside the size criteria, assuming all fish were resident based on headwater location—about 60 km upriver from Chilkat Inlet. We processed samples as a composite of 2 fish if there was uncertainty whether 1 fish would meet the minimum weight requirement for laboratory testing.

We wore latex gloves when handling fish and placed each fish in an individually labeled plastic bag. We placed all samples from each site in a larger plastic bag labeled with the sample location. We stored the samples in a cooler with frozen icepacks during transport, in a camp freezer while onsite, and in a -20 °C freezer in the ADF&G Douglas lab. Upon returning to the lab, we measured FL and weight of each fish in the sample bag, and corrected for bag weight.

We shipped the samples to ALS Environmental in Kelso, WA in a cooler with frozen icepacks via overnight air freight, and maintained written chain of custody documentation. ALS Environmental measured total concentrations of Ag, As, Cd, Cu, Pb, Hg, Se, and Zn in each sample on a dry-weight basis, following EPA method 1631E (Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry) for Hg, and EPA method 6020A° for the other elements. The laboratory provided Tier II quality assurance/quality information including results for matrix spikes, standard reference materials, sample blanks, and sample duplicates.

#### **Data Presentation**

For each site and by year, we present Dolly Varden char whole body median element concentrations in a table, and we present minimum, median, and maximum concentrations in a figure. A table with the raw data and the laboratory report are in Appendix C.

#### SEDIMENT ELEMENT CONCENTRATIONS

Sediment element concentrations are influenced by a variety of factors, such as geochemical composition and weathering within the watershed, sediment grain size, organic content, and development (Tchounwou et al. 2012). Subsequently, sediment element concentrations influence benthic aquatic productivity. We sampled Lower Glacier Creek and Middle Glacier Creek fine sediments for total organic carbon, acid volatile sulfide, and total concentrations of Ag, Al, As, Cd, Cu, iron (Fe), Hg, Pb, Se, and Zn to document baseline conditions. We selected these elements based on CNI's Glacier Creek water sample data and potential target metals identified in the ore body.

In 2016, we used minnow traps baited with disinfected salmon eggs to capture fish in Lower Glacier Creek, and we used the same electrofisher in Middle Glacier Creek.

<sup>&</sup>lt;sup>o</sup> The same lab processed the 2016 fish samples using EPA method 200.8.

## Sample Collection and Analysis

Wearing latex gloves, we opportunistically collected one sample each from sand/silt bars about 3–5 m length and retained a total of five replicate samples in glass jars for element analyses and plastic bags for particle size analyses. We stored the samples in a camp refrigerator while onsite, and on June 12, 2017, CNI staff transported the sediment samples in coolers with ice packs to the ALS Environmental lab in Whitehorse, BC.

ALS Environmental measured total organic carbon, acid volatile sulfide, and total concentrations of Ag, Al, As, Cd, Cu, Fe, Hg, Pb, Se, and Zn, on a dry-weight basis using Canadian methods listed in Table 3. The laboratory provided quality control results for sample duplicates.

| Test Description                     | Analyte                                | Method                  |
|--------------------------------------|----------------------------------------|-------------------------|
| Particle size distribution           | Particle size determination            | CSSS (1993) 47.2        |
| Total inorganic carbon in soil       | Total inorganic carbon                 | CSSS (2008) P216-217    |
| Total organic carbon calculation     | Total organic carbon                   | CSSS (2008) 21.2        |
| Total Carbon by combustion method    | Total carbon                           | CSSS (2008) 21.2        |
| Mercury in soil by CVAFS             | Hg                                     | EPA 200.2 / 1631E (mod) |
| Inorganic carbon as CaCO3 equivalent | Inorganic carbon                       | Calculation             |
| Metals in soil by CRC ICPMS          | Ag, Al, As, Cd, Cu, Fe, Pb, Se, and Zn | EPA 200.2/6020A (mod)   |
| Sulfide, acid volatile               | Acid volatile sulfides                 | APHA 4500S2J            |

#### **Data Presentation**

For each site and by year, we present sediment composition data in a table and element concentrations in a figure, and compare the element concentrations data with the Screening Quick Reference Tables for inorganics in freshwater sediment guidelines developed by the National Oceanic and Atmospheric Administration (Buchman 2008), specifically the threshold effects concentrations (TEC) and the probable effects concentrations (PEC). The guidelines are based on results of controlled laboratory bioassays, wherein element concentrations below the TECs rarely affect aquatic life survival and growth, and element concentrations above the PECs can affect aquatic life survival and growth. Appendix D contains the laboratory report.

\_

<sup>&</sup>lt;sup>p</sup> The 2016 Glacier Creek sediment samples were processed by an ALS Environmental lab in Kelso, WA. The methods each lab used were different, but the results are comparable, though Al and Fe concentrations were greater in the 2017 samples. The parameters analyzed were different between labs; we present and compare data between years where applicable.

# **RESULTS**

## LOWER GLACIER CREEK

We sampled Lower Glacier Creek on June 8, 2017, and measured basic water quality at 1310 (Table 4).

Table 4.–2017 Lower Glacier Creek water quality data.

| Temperature | Dissolved     | Conductivity | Turbidity | pН   |
|-------------|---------------|--------------|-----------|------|
| (°C)        | Oxygen (mg/L) | $(\mu S/cm)$ | (NTU)     | (SU) |
| 6.5         | 13.6          | 129          | 306       | 8.32 |

## Periphyton: Chlorophyll Density and Composition

Among the 2017 Lower Glacier Creek periphyton samples, mean chlorophyll a density was 1.73 mg/m<sup>2</sup>, less than the 2016 mean density (Table 5; Figure 5). The 2016 and 2017 samples contained about 85% chlorophyll a and 15% chlorophyll c, and we did not observe chlorophyll b (Figure 6).

Table 5.–Lower Glacier Creek mean chlorophylls a, b, and c densities.

| Sample   | Chlorophyll a   | Chlorophyll b | Chlorophyll c |
|----------|-----------------|---------------|---------------|
| Date     | $(mg/m^2)$      | $(mg/m^2)$    | $(mg/m^2)$    |
| 6/7/2016 | $2.27 \pm 1.07$ | 0.00          | 0.35          |
| 6/8/2017 | $1.73 \pm 0.89$ | 0.00          | 0.26          |

*Note*: Chlorophyll a mean density  $\pm 1$  SD.

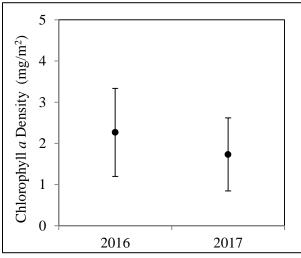



Figure 5.–Lower Glacier Creek mean chlorophyll a densities  $\pm 1$  SD.

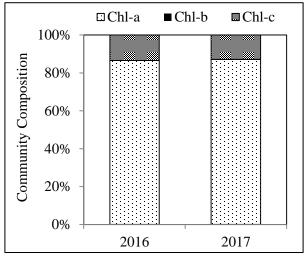



Figure 6.—Lower Glacier Creek mean proportions of chlorophylls a, b, and c.

## Benthic Macroinvertebrate Density and Community Composition

Mean benthic macroinvertebrate density and number of taxa among the 2017 Lower Glacier Creek samples were greater than in 2016, and the dominant taxon remained Diptera: Chironomidae (Table 6; Figures 7, 8). We observed about double the number of EPT insects among the 2017 samples compared to the 2016 samples, nearly doubling the proportion of EPT insects.

Table 6.-Lower Glacier Creek benthic macroinvertebrate data summaries.

|                                                    | 6/7/2016  | 6/8/2017      |
|----------------------------------------------------|-----------|---------------|
| Mean benthic macroinvertebrates per m <sup>2</sup> | 995 ± 373 | 2,136 ± 1,015 |
| Number of taxa                                     | 17        | 30            |
| Proportion of EPT insects                          | 10%       | 17%           |
| Proportion of dominant taxon, Chironomidae         | 85%       | 78%           |

*Note:* Mean benthic macroinvertebrate density data ± 1 SD.

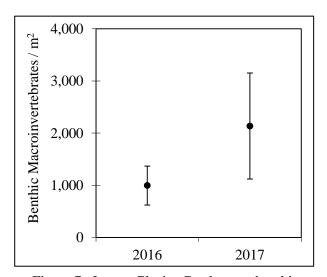



Figure 7.–Lower Glacier Creek mean benthic macroinvertebrate densities  $\pm$  1 SD.

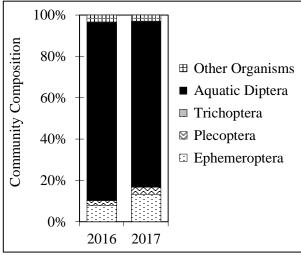



Figure 8.–Lower Glacier Creek mean benthic macroinvertebrate community compositions.

#### Fish Condition and Element Concentrations

Mean fish condition of the 8 Dolly Varden char we captured and retained (75–175 mm) in 2017 was 1.2.<sup>q</sup> We did not capture other fish species while sampling Lower Glacier Creek. Median whole body Dolly Varden char element concentrations among samples collected in 2016 and 2017 are presented in Table 7 and Figure 9.

14

<sup>&</sup>lt;sup>q</sup> Not including 4 Dolly Varden char processed as 2 composite samples.

Table 7.-Lower Glacier Creek Dolly Varden char median element concentrations.

| Sample   | Ag      | As      | Cd      | Cu      | Hg      | Pb      | Se      | Zn      |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| Date     | (mg/kg) |
| 6/7/2016 | 0.020   | 0.50    | 0.613   | 3.67    | 0.0414  | 0.180   | 6.75    | 154     |
| 6/8/2017 | 0.020   | < 0.50  | 0.604   | 4.28    | 0.0514  | 0.107   | 7.46    | 151     |

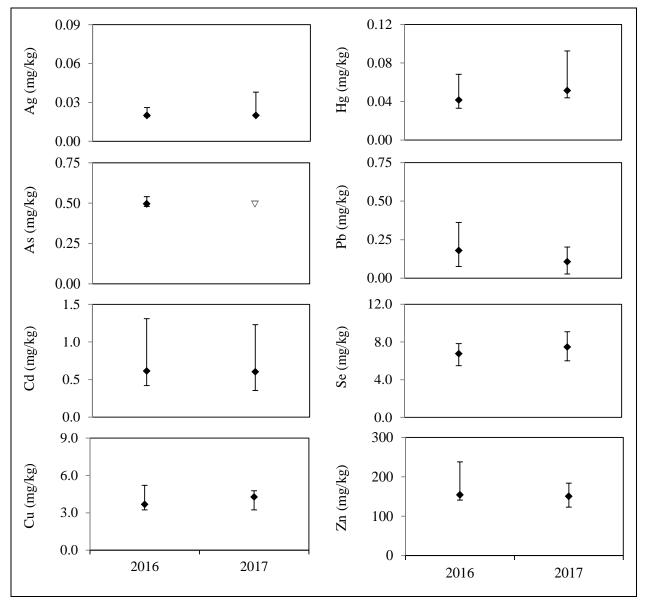



Figure 9.–Lower Glacier Creek whole body Dolly Varden char element concentrations. *Note:* Median ( $\blacklozenge$ ), minimum, and maximum concentrations presented; elements undetected ( $\triangledown$ ) are presented at the method reporting limit.

## Sediment Composition and Element Concentrations

The 2017 Lower Glacier Creek sediment samples were composed of particles less than 2 mm. Total organic carbon ranged less than 0.16% to 0.25% and acid volatile sulfide was not detected.

Element concentrations for the Lower Glacier Creek sediment samples are presented in Table 8. The predominant elements were Al and Fe, which made up 99.6% of the 10 elements presented, similar to the 2016 results.

Table 8.-Lower Glacier Creek sediment element concentrations.

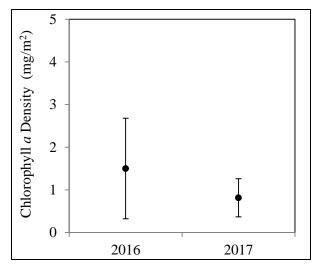
| Sample   | Ag      | Al      | As      | Cd      | Cu      | Fe      | Hg      | Pb      | Se      | Zn      |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Date     | (mg/kg) |
| 6/7/2016 | 0.190   | 9,460   | 4.98    | 1.170   | 51.1    | 35,700  | < 0.020 | 9.06    | 1.69    | 193     |
| 6/9/2017 | 0.14    | 15,500  | 3.91    | 0.510   | 37.0    | 47,300  | 0.012   | 7.90    | 1.22    | 133     |
| 6/9/2017 | 0.25    | 16,300  | 5.68    | 0.910   | 58.5    | 57,800  | 0.019   | 20.60   | 1.35    | 202     |
| 6/9/2017 | 0.26    | 14,700  | 5.49    | 1.010   | 53.6    | 51,100  | 0.020   | 8.49    | 1.67    | 186     |
| 6/9/2017 | 0.21    | 14,900  | 4.66    | 0.821   | 60.1    | 53,600  | 0.014   | 20.10   | 1.39    | 173     |
| 6/9/2017 | 0.17    | 13,300  | 3.94    | 0.818   | 48.9    | 51,400  | 0.014   | 7.03    | 1.54    | 186     |

## MIDDLE GLACIER CREEK

We sampled Middle Glacier Creek on June 9, 2017, and measured basic water quality at 1110 (Table 9).

Table 9.–2017 Middle Glacier Creek water quality data.

| Temperature | Dissolved     | Conductivity | Turbidity | pН   |
|-------------|---------------|--------------|-----------|------|
| (°C)        | Oxygen (mg/L) | (µS/cm)      | (NTU)     | (SU) |
| 3.1         | 16.7          | 113.5        | > 1000    | 8.38 |


#### Periphyton: Chlorophyll Density and Composition

Among the 2017 Middle Glacier Creek periphyton samples, mean chlorophyll a density was 0.81 mg/m<sup>2</sup>, less than the 2016 mean density (Table 10; Figure 10). The 2016 and 2017 samples contained about 85% chlorophyll a and 15% chlorophyll c, and we did not observe chlorophyll b (Figure 11).

Table 10.–Middle Glacier Creek mean chlorophylls a, b, and c densities.

| Sample   | Chlorophyll a   | Chlorophyll b | Chlorophyll c |
|----------|-----------------|---------------|---------------|
| Date     | $(mg/m^2)$      | $(mg/m^2)$    | $(mg/m^2)$    |
| 6/8/2016 | $1.50 \pm 1.18$ | 0.00          | 0.25          |
| 6/9/2017 | $0.81 \pm 0.45$ | 0.00          | 0.10          |

*Note*: Chlorophyll a mean density  $\pm 1$  SD.



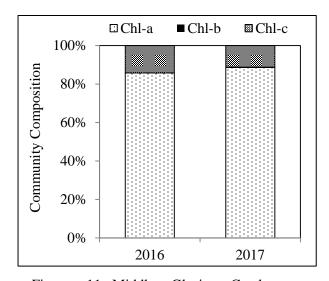



Figure 10.–Middle Glacier Creek mean chlorophyll a densities  $\pm$  1 SD.

Figure 11.–Middle Glacier Creek mean proportions of chlorophylls a, b, and c.

## Benthic Macroinvertebrate Density and Community Composition

Mean benthic macroinvertebrate density and number of taxa among the 2017 Middle Glacier Creek samples were lower than in 2016, and the dominant taxon remained Diptera: Chironomidae (Table 11; Figures 12, 13). We observed four times fewer EPT and Diptera insects among the 2017 samples compared to the 2016 samples, and a similar proportion of EPT and Chironomidae.

Table 11.–Middle Glacier Creek benthic macroinvertebrate data summaries.

|                                               | 6/8/2016    | 6/9/2017  |
|-----------------------------------------------|-------------|-----------|
| Benthic Macroinvertebrates per m <sup>2</sup> | 2,299 ± 976 | 593 ± 392 |
| Number of taxa                                | 22          | 14        |
| Proportion of EPT insects                     | 13%         | 12%       |
| Proportion of dominant taxon, Chironomidae    | 85%         | 82%       |

*Note:* Mean benthic macroinvertebrate density data ± 1 SD.

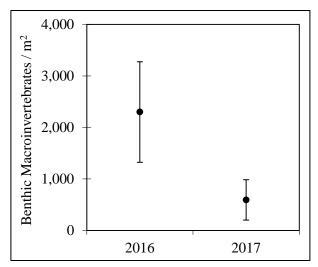



Figure 12.–Middle Glacier Creek mean benthic macroinvertebrate densities  $\pm$  1 SD.

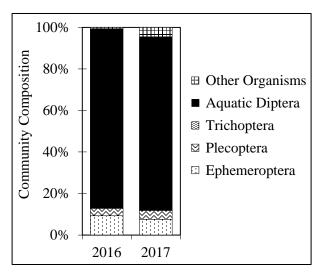



Figure 13.–Middle Glacier Creek mean benthic macroinvertebrate community compositions.

#### Fish Condition and Element Concentrations

Mean fish condition of the 6 Dolly Varden char we captured and retained (90–210 mm) in 2017 was 1.2. We did not capture other fish species while sampling Middle Glacier Creek. Median whole body Dolly Varden char element concentrations among samples collected in 2016 and 2017 are presented in Table 12 and Figure 14.

Table 12.-Middle Glacier Creek Dolly Varden char median element concentrations.

| Sample   | Ag      | As      | Cd      | Cu      | Hg      | Pb      | Se      | Zn      |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| Date     | (mg/kg) |
| 6/8/2016 | 0.020   | < 0.50  | 0.328   | 3.45    | 0.0300  | 0.099   | 5.41    | 133     |
| 6/9/2017 | < 0.020 | < 0.50  | 0.316   | 3.28    | 0.0375  | 0.037   | 6.60    | 121     |

-

Despite extensively fishing, we were unable to capture 4 more Dolly Varden char to achieve 10 samples.

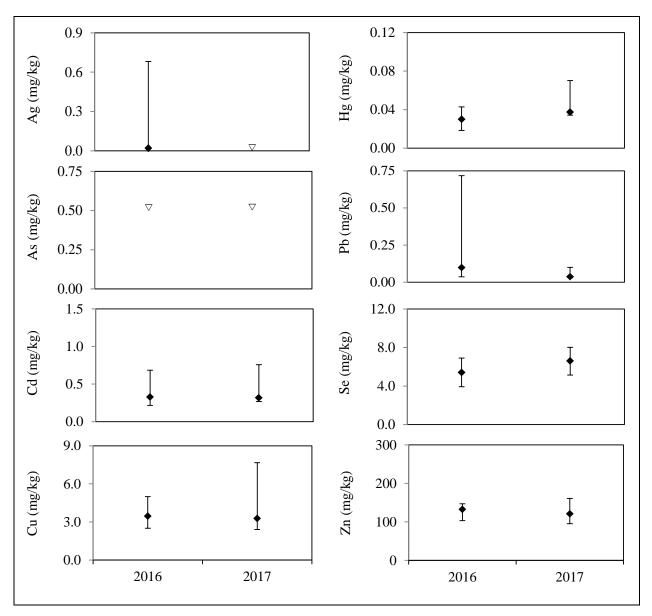
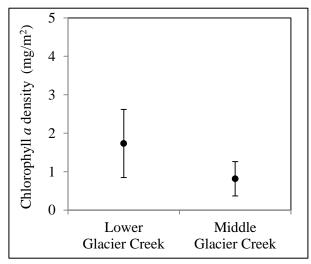


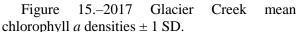

Figure 14.—Middle Glacier Creek whole body Dolly Varden char element concentrations. *Note:* Median ( $\blacklozenge$ ), minimum, and maximum concentrations presented; elements undetected ( $\triangledown$ ) are presented at the method reporting limit.

#### Sediment Composition and Element Concentrations

The 2017 Middle Glacier Creek sediment samples were composed of particles less than 2 mm. Total organic carbon ranged less than 0.16% to 0.27% and acid volatile sulfide ranged less than 0.2 mg/kg to 0.3 mg/kg.

Element concentrations for the Middle Glacier Creek sediment samples are presented in Table 13. The predominant elements were Al and Fe, which made up 99.6% of the 10 elements presented, similar to 2016 results.


| T 11 10    | 3 51 1 11 01 |             |                |                        |
|------------|--------------|-------------|----------------|------------------------|
| Table 13.  | -Middle (₹   | acier ( ree | z cediment e   | lement concentrations. |
| Table 1.7. | -wildale Ci  | acici Cicc  | N SCUIIIICHL C | iemeni concentiations. |


| Sample   | Ag      | Al      | As      | Cd      | Cu      | Fe      | Hg      | Pb      | Se      | Zn      |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Date     | (mg/kg) |
| 6/8/2016 | 0.156   | 7,650   | 4.33    | 0.87    | 55.8    | 32,400  | < 0.020 | 12.00   | 1.14    | 170     |
| 6/9/2017 | 0.140   | 15,700  | 3.68    | 0.76    | 48.1    | 49,400  | 0.009   | 8.67    | 0.90    | 190     |
| 6/9/2017 | 0.150   | 13,800  | 4.76    | 0.90    | 45.5    | 53,400  | 0.018   | 14.80   | 0.93    | 203     |
| 6/9/2017 | 0.330   | 14,700  | 4.88    | 1.11    | 75.6    | 54,500  | 0.016   | 12.50   | 2.05    | 189     |
| 6/9/2017 | 0.180   | 16,000  | 4.47    | 1.14    | 55.7    | 47,500  | 0.021   | 12.30   | 1.30    | 205     |
| 6/9/2017 | 0.210   | 15,600  | 4.73    | 1.07    | 62.1    | 50,800  | 0.018   | 11.90   | 1.42    | 199     |

#### **COMPARISON AMONG SITES**

## Periphyton: Chlorophyll Density and Composition

Similar to the 2016 results, mean chlorophyll a density was greater among the 2017 Lower Glacier Creek samples than the Middle Glacier Creek samples, and most samples contained about 85% chlorophyll a and 15% chlorophyll c (Figures 15, 16). We did not observe chlorophyll b in samples from either site.





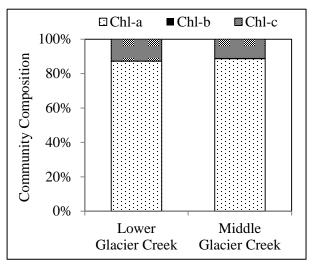
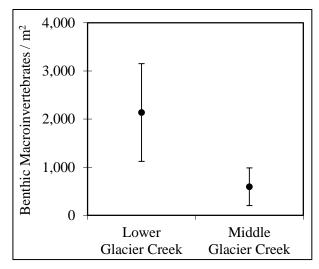
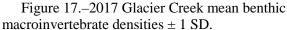





Figure 16.–2017 Glacier Creek mean proportions of chlorophylls a, b, and c.

### Benthic Macroinvertebrate Density and Community Composition

Opposite of the 2016 results, mean benthic macroinvertebrate density and number of taxa were greater among the 2017 Lower Glacier Creek samples than the Middle Glacier Creek samples. The proportions of EPT insects and dominant taxon, Diptera: Chironomidae, were similar among sites (Figures 17, 18).





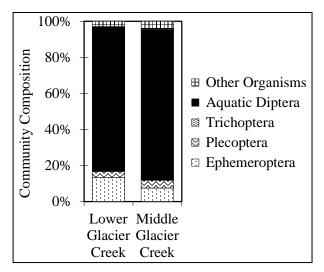



Figure 18.–2017 Glacier Creek mean benthic macroinvertebrate community compositions.

#### Fish Condition and Element Concentrations

Mean fish condition among the 2017 Lower and Middle Glacier Creek Dolly Varden char samples were the same, and similar to Dolly Varden char condition data collected in Southeast Alaska (Kanouse and Zutz 2017, Zutz 2017).

When we pooled the 2016 and 2017 concentration data by site, most median whole body Dolly Varden char element concentrations were greater among the Lower Glacier Creek samples, while Ag and As concentrations were often not detected (Figure 19). All concentrations were reasonable when compared with samples collected from reference and exploration sites elsewhere in Alaska (Legere and Timothy 2016).

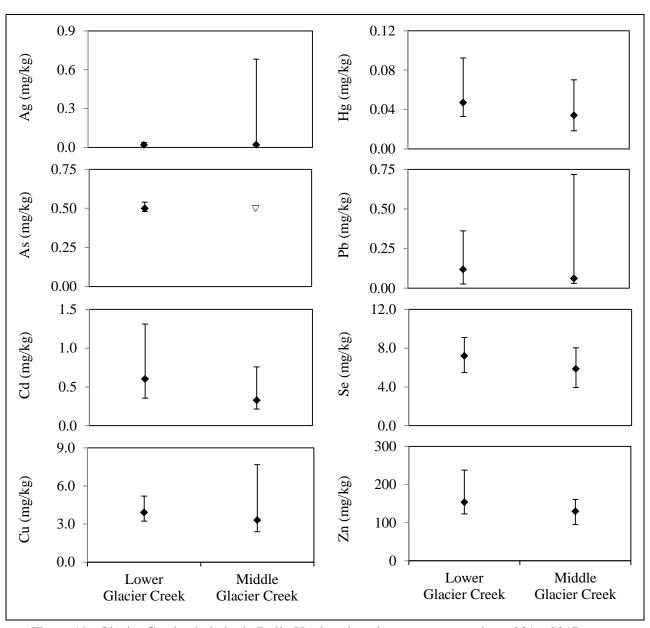



Figure 19.—Glacier Creek whole body Dolly Varden char element concentrations, 2016–2017. *Note:* Median ( $\blacklozenge$ ), minimum, and maximum concentrations presented; elements undetected ( $\triangledown$ ) are presented at the method reporting limit.

# Sediment Composition and Element Concentrations

The 2017 Lower and Middle Glacier Creek sediment samples were generally composed of sand and silt, and total organic carbon and acid volatile sulfide were low or not detected (Table 14).

We evaluated the element concentration data against the guidelines for freshwater sediments published in Buchman (2008), and similar to the 2016 results found Cd, Cu, and Zn

Table 14.–2017 Glacier Creek sediment sample compositions.

| -                    | % weight) |      |      |           |           |               |
|----------------------|-----------|------|------|-----------|-----------|---------------|
|                      |           |      | `    | Coarse    | % Total A | Acid Volatile |
|                      |           |      |      | material  | Organic   | Sulfide       |
| Location             | Clay      | Silt | Sand | (> 2  mm) | Carbon    | (mg/kg)       |
| Lower Glacier Creek  | 2.0       | 26.4 | 71.3 | 0.3       | < 0.16    | < 0.20        |
| Lower Glacier Creek  | 1.6       | 38.8 | 59.5 | 0.1       | < 0.17    | < 0.20        |
| Lower Glacier Creek  | 0.7       | 18.0 | 81.3 | 0.0       | 0.20      | < 0.20        |
| Lower Glacier Creek  | 1.3       | 27.4 | 70.7 | 0.6       | 0.25      | < 0.20        |
| Lower Glacier Creek  | 0.4       | 3.1  | 95.6 | 0.9       | < 0.16    | < 0.20        |
| Middle Glacier Creek | 0.7       | 10.9 | 84.1 | 4.3       | < 0.16    | < 0.20        |
| Middle Glacier Creek | 0.6       | 15.8 | 81.1 | 2.5       | < 0.17    | < 0.20        |
| Middle Glacier Creek | 1.2       | 28.0 | 70.8 | 0.1       | < 0.19    | 0.30          |
| Middle Glacier Creek | 2.3       | 48.1 | 49.6 | 0.0       | 0.27      | < 0.20        |
| Middle Glacier Creek | 2.6       | 45.0 | 52.4 | 0.0       | < 0.19    | < 0.20        |

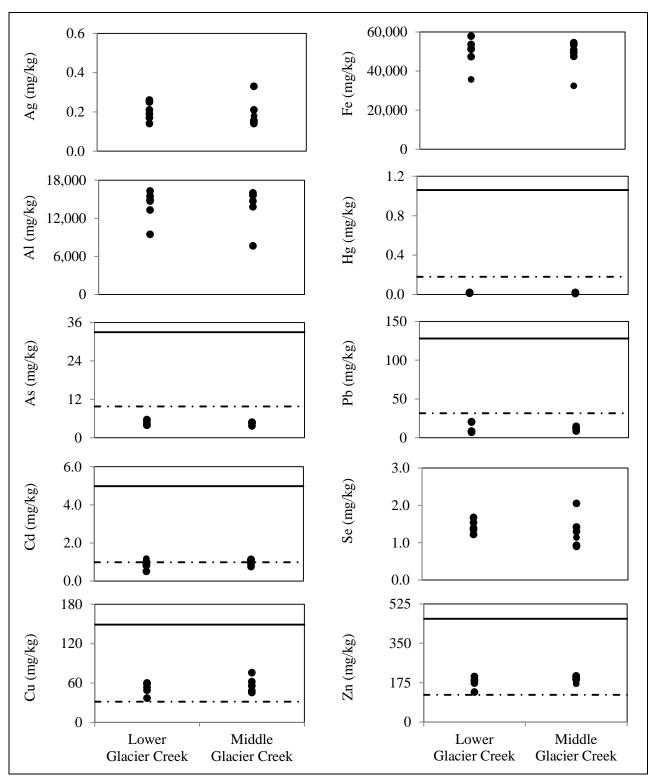



Figure 20.—Glacier Creek sediment element concentrations, 2016–2017.

*Note:* The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

# **REFERENCES CITED**

- ADEC (Alaska Department of Environmental Conservation). 2008. Alaska water quality criteria manual for toxic and other deleterious organic and inorganic substances.
- Anderson, R. O. and R. M. Neumann. 1996. Length, weight, and associated structural indices. [*In*] B. R. Murphy and D. W. Willis, editors. Fisheries Techniques. 2nd edition. American Fisheries Society, Bethesda, MD.
- Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edition. EPA 841-B-99-002. U. S. Environmental Protection Agency, Office of Water, Washington, D.C.
- Buchman, M. F. 2008. NOAA screening quick reference tables, National Oceanic and Atmospheric Administration, Office of Response and Restoration Division, Report 08-1, Seattle, WA.
- CNI. 2015. Palmer Exploration Project plan of operations. Prepared for the Bureau of Land Management, Alaska Department of Environmental Conservation, and Alaska Department of Natural Resources, Vancouver, BC.
- Entrekin, S. A., J. B. Wallace, and S. L. Eggert. 2007. The response of Chironomidae (Diptera) to a long-term exclusion of terrestrial organic matter. Hydrobiologia 575(1):401-413.
- Johnson, J. and B. Blossom. 2017. Catalog of waters important for the spawning, rearing, or migration of anadromous fishes Southeastern Region. Effective June 1, 2017. Alaska Department of Fish and Game, Special Publication No. 17-04, Anchorage, AK.
- Kanouse, K. M. and J. Zutz. 2017. Aquatic studies at Kensington Gold Mine, 2016. Alaska Department of Fish and Game, Technical Report No. 17-02, Douglas, AK.
- Legere, N. M. and J. Timothy. 2016. Tulsequah Chief acid mine drainage and Dolly Varden char metals concentrations. Alaska Department of Fish and Game, Technical Report No. 16-06, Douglas, AK.
- Merritt, R. W. and K. W. Cummins, editors. 1996. An introduction to the aquatic insects of North America. 3rd edition. Kendall/Hunt Publishing Co., Dubuque, IA.
- Paustian, S. 2010. Channel type user guide revision 2010. USDA Forest Services, R-10-TP-26.
- Stewart, K. W. and M. W. Oswood. 2006. The stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press, Columbus, OH.
- Tetra Tech. 2013. Palmer VMS Project preliminary aquatic investigation. Prepared for Constantine North, Inc., Anchorage, AK.
- Timothy, J. and K. M. Kanouse. 2014. Aquatic studies at Kensington Gold Mine, 2013. Alaska Department of Fish and Game, Technical Report No. 14-01, Douglas, AK.
- Tchounwou, P. B., C. G. Yedjou, A. K. Patlolla, D. J. Sutton. 2012. Heavy metal toxicity and the environment. Pages 133-164 [*In*] Experimentia Supplementum: Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology. Springer Basel.
- USDI (U.S. Department of the Interior). 2016. Environmental Assessment for the Palmer Exploration Project. Case File AA-094088, U.S. Department of the Interior, Bureau of Land Management, Glennallen Field Office, Glennallen, AK.
- U.S. Environmental Protection Agency. 1997. Method 446.0: In vitro determination of chlorophylls a, b, c<sub>1</sub> + c<sub>2</sub> and pheopigments in marine and freshwater algae by visible spectrophotometry (Revision 1.2). Adapted by Elizabeth J. Arar, U. S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research of Development, Cincinnati, OH.
- Zutz, J. 2017. Aquatic biomonitoring at Greens Creek Mine, 2016. Alaska Department of Fish and Game Technical Report No. 17-03, Douglas, AK.

| APPENDIX A: CHLOROPHYLL DATA |  |
|------------------------------|--|
|                              |  |
|                              |  |

Appendix A.1.–Lower Glacier Creek chlorophylls a, b, and c densities.

| _       |       | 2016  |       |       | 2017  |       |
|---------|-------|-------|-------|-------|-------|-------|
| mg/m²   | Chl-a | Chl-b | Chl-c | Chl-a | Chl-b | Chl-c |
|         | 3.35  | 0.00  | 0.47  | 1.50  | 0.00  | 0.17  |
|         | 3.31  | 0.00  | 0.51  | 1.28  | 0.00  | 0.25  |
|         | 2.56  | 0.00  | 0.45  | 2.89  | 0.00  | 0.30  |
|         | 1.28  | 0.00  | 0.29  | 1.82  | 0.00  | 0.20  |
|         | 3.10  | 0.00  | 0.38  | 1.92  | 0.00  | 0.25  |
|         | 1.97  | 0.00  | 0.29  | 3.31  | 0.00  | 0.46  |
|         | 0.53  | 0.00  | 0.11  | 1.92  | 0.00  | 0.24  |
|         | 2.03  | 0.00  | 0.30  | 0.19  | ND    | ND    |
|         | 3.52  | 0.00  | 0.63  | 1.39  | 0.00  | 0.21  |
|         | 1.01  | 0.00  | 0.09  | 1.09  | 0.00  | 0.22  |
| Mean    | 2.27  | 0.00  | 0.35  | 1.73  | 0.00  | 0.26  |
| Median  | 2.30  | 0.00  | 0.34  | 1.66  | 0.00  | 0.24  |
| Maximum | 3.52  | 0.00  | 0.63  | 3.31  | 0.00  | 0.46  |
| Minimum | 0.53  | 0.00  | 0.09  | 0.19  | 0.00  | 0.17  |

*Note*: Bold value is the instrument detection limit, chlorophyll a was not detected in the sample.

Appendix A.2.–Middle Glacier Creek chlorophylls a, b, and c densities.

|         |       | 2016  |       |       | 2017  |       |
|---------|-------|-------|-------|-------|-------|-------|
| mg/m²   | Chl-a | Chl-b | Chl-c | Chl-a | Chl-b | Chl-c |
|         | 1.82  | 0.00  | 0.30  | 0.96  | 0.00  | 0.15  |
|         | 4.38  | 0.00  | 0.75  | 0.75  | 0.00  | 0.15  |
|         | 0.96  | 0.00  | 0.10  | 1.38  | 0.00  | 0.08  |
|         | 1.60  | 0.00  | 0.26  | 1.56  | 0.00  | 0.22  |
|         | 0.19  | ND    | ND    | 0.43  | 0.00  | 0.00  |
|         | 1.17  | 0.00  | 0.13  | 0.75  | 0.00  | 0.05  |
|         | 0.96  | 0.00  | 0.15  | 0.50  | 0.00  | 0.03  |
|         | 1.82  | 0.00  | 0.27  | 1.17  | 0.00  | 0.23  |
|         | 0.28  | 0.00  | 0.00  | 0.21  | 0.02  | 0.10  |
| _       | 1.82  | 0.00  | 0.27  | 0.43  | 0.00  | 0.02  |
| Mean    | 1.50  | 0.00  | 0.25  | 0.81  | 0.00  | 0.10  |
| Median  | 1.39  | 0.00  | 0.26  | 0.75  | 0.00  | 0.09  |
| Maximum | 4.38  | 0.00  | 0.75  | 1.56  | 0.02  | 0.23  |
| Minimum | 0.19  | 0.00  | 0.00  | 0.21  | 0.00  | 0.00  |

Note: Bold value is the instrument detection limit, chlorophyll a was not detected in the sample.



Appendix B.1.–2017 Lower Glacier Creek benthic macroinvertebrate sample data.

|               |               |                | Sample Number  |     |     |     |     |     |     |       |
|---------------|---------------|----------------|----------------|-----|-----|-----|-----|-----|-----|-------|
| Phyllum/Class | Order         | Family         | Genus          | 1   | 2   | 3   | 4   | 5   | 6   | Total |
| Insecta       | Ephemeroptera | Amelitidae     | Ameletus       |     | 1   |     |     |     |     | 1     |
|               |               | Baetidae       | Baetis         | 16  | 20  | 46  | 22  | 24  | 18  | 146   |
|               |               | Heptageniidae  | Cinygmula      |     |     |     | 1   | 1   |     | 2     |
|               |               |                | Epeorus        |     |     | 2   |     | 2   | 2   | 6     |
|               |               |                | Rhithrogena    | 1   |     |     |     | 1   | 1   | 3     |
|               | Plecoptera    | Capniidae      | Capnia         |     | 1   | 3   |     |     |     | 4     |
|               |               |                | Isocapnia      |     | 1   |     |     |     |     | 1     |
|               |               | Chloroperlidae | Suwallia       | 7   | 3   |     | 5   | 3   | 5   | 23    |
|               |               |                | Unidentified   |     |     | 2   |     | 3   | 2   | 7     |
|               |               | Nemouridae     | Podmosta       | 2   |     |     |     |     |     | 2     |
|               |               |                | Zapada         | 1   |     |     | 1   | 2   |     | 4     |
|               | Trichoptera   | Glossosomatida | a Glossosoma   |     |     |     |     | 1   |     | 1     |
|               |               | Rhyacophilidae | Rhyacophila    | 1   | 1   |     |     |     |     | 2     |
|               | Diptera       | Chironomidae   | Unidentified   | 168 | 105 | 135 | 77  | 330 | 120 | 935   |
|               |               | Dolichopodidae | Unidentified   |     |     |     |     |     | 1   | 1     |
|               |               | Empididae      | Clinocera      |     |     |     | 1   | 1   |     | 2     |
|               |               |                | Unidentified   |     |     |     |     |     |     | 0     |
|               |               | Limoniidae     | Gonomyodes     | 3   |     | 2   | 1   | 2   |     | 8     |
|               |               | Simuliidae     | Prosimulium    |     |     | 3   |     | 1   |     | 4     |
|               |               | Tipulidae      | Dicranota      | 1   |     |     |     |     |     | 1     |
|               |               |                | Limonia        |     |     | 1   |     |     |     | 1     |
|               |               |                | Pedicia        |     |     |     |     |     | 1   | 1     |
|               |               |                | Unidentified   |     |     | 1   |     |     |     | 1     |
|               |               | Psychodidae    | Pericoma       |     |     |     | 1   |     |     | 1     |
|               | Hemiptera     | Unidentified   | Unidentified   | 1   |     |     |     | 1   |     | 2     |
|               | Coleoptera    | Gyrinidae      | Spanglerogyrus |     |     |     |     | 1   |     | 1     |
|               |               | Staphylinidae  | Unidentified   |     |     | 1   |     | 1   | 1   | 3     |
|               |               | Unidentified   | Unidentified   |     | 2   |     |     | 1   |     | 3     |
| Entognatha    | Collembola    | Unidentified   | Unidentified   |     | 2   | 1   | 4   | 1   | 2   | 10    |
| Nematoda      | Unidentified  | Unidentified   | Unidentified   |     | 1   |     |     |     |     | 1     |
| Oligochaeta   | Unidentified  | Unidentified   | Unidentified   | 2   | 3   | 1   | 1   | 2   | 2   | 11    |
| Ostracoda     | Unidentified  | Unidentified   | Unidentified   | 1   |     | 2   | 1   |     |     | 4     |
|               |               |                | Total          | 204 | 140 | 200 | 115 | 378 | 155 | 1,192 |

Appendix B.2.-Lower Glacier Creek benthic macroinvertebrate data summaries.

|                                                           | 2016  | 2017  |
|-----------------------------------------------------------|-------|-------|
| Total benthic macroinvertebrate taxa counted              | 17    | 30    |
| Number of Ephemeroptera                                   | 44    | 158   |
| Number of Plecoptera                                      | 13    | 41    |
| Number of Trichoptera                                     | 1     | 3     |
| Number of aquatic Diptera                                 | 478   | 955   |
| Number of other organisms                                 | 19    | 35    |
| % Ephemeroptera                                           | 8%    | 13%   |
| % Plecoptera                                              | 2%    | 3%    |
| % Trichoptera                                             | 0%    | 0%    |
| % Aquatic Diptera                                         | 86%   | 80%   |
| % Other organisms                                         | 3%    | 3%    |
| % EPT                                                     | 10%   | 17%   |
| % Chironomidae                                            | 85%   | 79%   |
| Number of terrestrial organisms                           | 17    | 18    |
| Number of benthic macroinvertebrates                      | 555   | 1,192 |
| Total terrestrial and macroinvertebrates counted          | 572   | 1,210 |
| % Sample aquatic                                          | 97%   | 99%   |
| % Sample terrestrial                                      | 3%    | 1%    |
| Total Sample Area (m <sup>2</sup> )                       | 0.558 | 0.558 |
| Mean benthic macroinvertebrate density per m <sup>2</sup> | 995   | 2,136 |
| ± 1 standard deviation                                    | 373   | 1,015 |

Appendix B.3.–2017 Middle Glacier Creek benthic macroinvertebrate sample data.

|              |               |                | _            | Sample Number |    |    |    |    |    |       |
|--------------|---------------|----------------|--------------|---------------|----|----|----|----|----|-------|
| Phyllum/Clas | s Order       | Family         | Genus        | 1             | 2  | 3  | 4  | 5  | 6  | Total |
| Insecta      | Ephemeroptera | Baetidae       | Baetis       | 6             | 0  | 4  | 12 | 1  | 2  | 25    |
|              | Plecoptera    | Capniidae      | Capnia       | 1             | 0  | 1  | 0  | 0  | 2  | 4     |
|              |               | Chloroperlidae | Suwallia     | 1             | 0  | 0  | 2  | 0  | 4  | 7     |
|              |               |                | Unidentified | 0             | 0  | 1  | 0  | 0  | 0  | 1     |
|              |               | Nemouridae     | Podmosta     | 0             | 0  | 0  | 1  | 0  | 0  | 1     |
|              |               |                | Shipsa       | 0             | 0  | 0  | 1  | 0  | 0  | 1     |
|              | Trichoptera   | Rhyacophilidae | Rhyacophila  | 0             | 1  | 0  | 0  | 0  | 0  | 1     |
|              | Diptera       | Chironomidae   | Unidentified | 88            | 17 | 42 | 76 | 11 | 39 | 273   |
|              |               | Limoniidae     | Gonomyodes   | 0             | 0  | 0  | 2  | 0  | 0  | 2     |
|              |               | Tanyderidae    | Unidentified | 0             | 1  | 0  | 0  | 0  | 0  | 1     |
| Arachnida    | Unidentified  | Unidentified   | Unidentified | 0             | 0  | 1  | 0  | 0  | 0  | 1     |
| Entognatha   | Collembola    | Unidentified   | Unidentified | 0             | 0  | 0  | 0  | 0  | 1  | 1     |
| Gastropoda   | Unidentified  | Unidentified   | Unidentified | 1             | 0  | 0  | 0  | 0  | 0  | 1     |
| Nematoda     | Unidentified  | Unidentified   | Unidentified | 0             | 1  | 0  | 0  | 0  | 0  | 1     |
| Oligochaeta  | Unidentified  | Unidentified   | Unidentified | 3             | 0  | 4  | 0  | 0  | 4  | 11    |
|              |               |                | Total        | 100           | 20 | 53 | 94 | 12 | 52 | 331   |

Appendix B.4.-Middle Glacier Creek benthic macroinvertebrate data summaries.

|                                                           | 2016  | 2017  |
|-----------------------------------------------------------|-------|-------|
| Total benthic macroinvertebrate taxa counted              | 22    | 14    |
| Number of Ephemeroptera                                   | 119   | 25    |
| Number of Plecoptera                                      | 45    | 14    |
| Number of Trichoptera                                     | 4     | 1     |
| Number of aquatic Diptera                                 | 1,107 | 276   |
| Number of other organisms                                 | 8     | 15    |
| % Ephemeroptera                                           | 9%    | 8%    |
| % Plecoptera                                              | 4%    | 4%    |
| % Trichoptera                                             | 0%    | 0%    |
| % Aquatic Diptera                                         | 86%   | 83%   |
| % Other organisms                                         | 1%    | 5%    |
| % EPT                                                     | 13%   | 12%   |
| % Chironomidae                                            | 85%   | 82%   |
| Number of terrestrial organisms                           | 19    | 8     |
| Number of benthic macroinvertebrates                      | 1,283 | 331   |
| Total terrestrial and macroinvertebrates counted          | 1,302 | 339   |
| % Sample aquatic                                          | 99%   | 98%   |
| % Sample terrestrial                                      | 1%    | 2%    |
| Total Sample Area (m <sup>2</sup> )                       | 0.558 | 0.558 |
| Mean benthic macroinvertebrate density per m <sup>2</sup> | 2,299 | 593   |
| ± 1 standard deviation                                    | 976   | 392   |

# APPENDIX C: RESIDENT FISH ELEMENT CONCENTRATIONS AND LABORATORY REPORT

Appendix C.1.-Lower Glacier Creek whole body Dolly Varden char element concentrations data.

| Sample Date         Length (mm)         Weight Condition         Ag (mg/kg)         As (mg/kg)         Cd (mg/kg)         Cu (mg/kg)         Hg (mg/kg)         Pb (mg/kg)         Se (mg/kg)         Zn (mg/kg)           67/2016         108         12.7         1.0         <0.019         <0.48         0.429         3.55         0.0466         0.076         7.23         153           67/2016         68         4.8         1.5         <0.020         <0.50         0.501         3.75         0.0330         0.182         7.60         173           6/7/2016         112         17.7         1.3         0.025         <0.48         1.310         3.63         0.0567         0.230         5.48         145           6/7/2016         105         15.9         1.4         <0.019         <0.48         0.585         3.23         0.0590         0.078         7.56         150           6/7/2016         113         14.3         1.0         <0.020         0.50         0.420         3.42         0.0427         0.177         6.21         154           6/7/2016         94         10.8         1.3         <0.019         <0.52         0.441         4.35         0.0381         0.195         7.83 |          |                      |          |           |         |         |         |         |         |         |         |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|----------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|
| 6/7/2016         108         12.7         1.0         <0.019         <0.48         0.429         3.55         0.0466         0.076         7.23         153           6/7/2016         68         4.8         1.5         <0.020         <0.50         0.501         3.75         0.0330         0.182         7.60         173           6/7/2016         112         17.7         1.3         0.025         <0.48         1.310         3.63         0.0567         0.230         5.48         145           6/7/2016         105         15.9         1.4         <0.019         <0.48         0.585         3.23         0.0509         0.078         7.56         150           6/7/2016         113         14.3         1.0         <0.020         0.50         0.420         3.42         0.0427         0.177         6.21         154           6/7/2016         94         10.8         1.3         <0.019         0.52         0.441         4.35         0.0381         0.195         7.83         167           6/7/2016         109         14.6         1.1         0.026         <0.50         1.250         5.20         0.0683         0.362         6.46         238                                          | Sample   | Length               | Weight ( | Condition | Ag      | As      | Cd      | Cu      | Hg      | Pb      | Se      | Zn      |
| 6/7/2016         68         4.8         1.5         <0.020         <0.50         0.501         3.75         0.0330         0.182         7.60         173           6/7/2016         112         17.7         1.3         0.025         <0.48         1.310         3.63         0.0567         0.230         5.48         145           6/7/2016         105         15.9         1.4         <0.019         <0.48         0.585         3.23         0.0509         0.078         7.56         150           6/7/2016         113         14.3         1.0         <0.020         0.50         0.420         3.42         0.0427         0.177         6.21         154           6/7/2016         94         10.8         1.3         <0.019         0.52         0.441         4.35         0.0381         0.195         7.83         167           6/7/2016         199         14.6         1.1         0.026         <0.50         1.250         5.20         0.0683         0.362         6.46         238           6/7/2016         97         11.2         1.2         <0.019         <0.49         0.641         3.71         0.0401         0.172         6.11         154                                           | Date     | (mm)                 | (g)      | (K)       | (mg/kg) |
| 6/7/2016         112         17.7         1.3         0.025         <0.48         1.310         3.63         0.0567         0.230         5.48         145           6/7/2016         105         15.9         1.4         <0.019         <0.48         0.585         3.23         0.0509         0.078         7.56         150           6/7/2016         113         14.3         1.0         <0.020         0.50         0.420         3.42         0.0427         0.177         6.21         154           6/7/2016         94         10.8         1.3         <0.019         0.52         0.441         4.35         0.0381         0.195         7.83         167           6/7/2016         99         14.6         1.1         0.026         <0.50         1.250         5.20         0.0683         0.362         6.46         238           6/7/2016         97         11.2         1.2         <0.019         <0.49         0.641         3.71         0.0401         0.172         6.11         154           6/8/2016         93         9.5         1.2         <0.020         <0.49         0.960         3.32         0.0349         0.091         7.04         141                                            | 6/7/2016 | 108                  | 12.7     | 1.0       | < 0.019 | < 0.48  | 0.429   | 3.55    | 0.0466  | 0.076   | 7.23    | 153     |
| 6/7/2016         105         15.9         1.4         <0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6/7/2016 | 68                   | 4.8      | 1.5       | < 0.020 | < 0.50  | 0.501   | 3.75    | 0.0330  | 0.182   | 7.60    | 173     |
| 6/7/2016         113         14.3         1.0         <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6/7/2016 | 112                  | 17.7     | 1.3       | 0.025   | < 0.48  | 1.310   | 3.63    | 0.0567  | 0.230   | 5.48    | 145     |
| 6/7/2016         94         10.8         1.3         <0.019         0.52         0.441         4.35         0.0381         0.195         7.83         167           6/7/2016         109         14.6         1.1         0.026         <0.50         1.250         5.20         0.0683         0.362         6.46         238           6/7/2016         97         11.2         1.2         <0.019         <0.49         0.641         3.71         0.0401         0.172         6.11         154           6/8/2016         93         9.5         1.2         <0.020         <0.49         0.960         3.32         0.0349         0.091         7.04         141           6/8/2016         73         4.7         1.2         0.025         0.54         0.730         4.67         0.0353         0.360         6.31         168           6/8/2017         133         29.1         1.2         0.023         <0.50         0.727         4.47         0.0599         0.109         6.00         184           6/8/2017         105         12.6         1.1         <0.020         <0.50         0.601         3.23         0.0523         0.038         7.16         134           <                                  | 6/7/2016 | 105                  | 15.9     | 1.4       | < 0.019 | < 0.48  | 0.585   | 3.23    | 0.0509  | 0.078   | 7.56    | 150     |
| 6/7/2016         109         14.6         1.1         0.026         <0.50         1.250         5.20         0.0683         0.362         6.46         238           6/7/2016         97         11.2         1.2         <0.019         <0.49         0.641         3.71         0.0401         0.172         6.11         154           6/8/2016         93         9.5         1.2         <0.020         <0.49         0.960         3.32         0.0349         0.091         7.04         141           6/8/2016         73         4.7         1.2         0.025         0.54         0.730         4.67         0.0353         0.360         6.31         168           6/8/2017         133         29.1         1.2         0.023         <0.50         0.727         4.47         0.0599         0.109         6.00         184           6/8/2017         113         15.7         1.1         <0.020         <0.50         0.426         3.69         0.0505         0.027         7.01         148           6/8/2017         105         12.6         1.1         <0.020         <0.50         0.601         3.23         0.0523         0.038         7.16         134                                            | 6/7/2016 | 113                  | 14.3     | 1.0       | < 0.020 | 0.50    | 0.420   | 3.42    | 0.0427  | 0.177   | 6.21    | 154     |
| 6/7/2016         97         11.2         1.2         <0.019         <0.49         0.641         3.71         0.0401         0.172         6.11         154           6/8/2016         93         9.5         1.2         <0.020         <0.49         0.960         3.32         0.0349         0.091         7.04         141           6/8/2016         73         4.7         1.2         0.025         0.54         0.730         4.67         0.0353         0.360         6.31         168           6/8/2017         133         29.1         1.2         0.023         <0.50         0.727         4.47         0.0599         0.109         6.00         184           6/8/2017         113         15.7         1.1         <0.020         <0.50         0.426         3.69         0.0505         0.027         7.01         148           6/8/2017         105         12.6         1.1         <0.020         <0.50         0.601         3.23         0.0523         0.038         7.16         134           6/8/2017         106         12.8         1.1         <0.020         <0.50         0.606         4.06         0.0532         0.104         9.09         153                                           | 6/7/2016 | 94                   | 10.8     | 1.3       | < 0.019 | 0.52    | 0.441   | 4.35    | 0.0381  | 0.195   | 7.83    | 167     |
| 6/8/2016         93         9.5         1.2         <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/7/2016 | 109                  | 14.6     | 1.1       | 0.026   | < 0.50  | 1.250   | 5.20    | 0.0683  | 0.362   | 6.46    | 238     |
| 6/8/2016         73         4.7         1.2         0.025         0.54         0.730         4.67         0.0353         0.360         6.31         168           6/8/2017         133         29.1         1.2         0.023         <0.50         0.727         4.47         0.0599         0.109         6.00         184           6/8/2017         113         15.7         1.1         <0.020         <0.50         0.426         3.69         0.0505         0.027         7.01         148           6/8/2017         105         12.6         1.1         <0.020         <0.50         0.601         3.23         0.0523         0.038         7.16         134           6/8/2017         90         9.2         1.3         0.038         <0.50         1.230         3.24         0.0473         0.088         8.33         123           6/8/2017         106         12.8         1.1         <0.020         <0.50         0.606         4.06         0.0532         0.104         9.09         153           6/8/2017         175         60.5         1.1         <0.020         <0.50         0.355         4.71         0.0438         0.202         7.86         157                                           | 6/7/2016 | 97                   | 11.2     | 1.2       | < 0.019 | < 0.49  | 0.641   | 3.71    | 0.0401  | 0.172   | 6.11    | 154     |
| 6/8/2017         133         29.1         1.2         0.023         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/8/2016 | 93                   | 9.5      | 1.2       | < 0.020 | < 0.49  | 0.960   | 3.32    | 0.0349  | 0.091   | 7.04    | 141     |
| 6/8/2017         113         15.7         1.1         <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6/8/2016 | 73                   | 4.7      | 1.2       | 0.025   | 0.54    | 0.730   | 4.67    | 0.0353  | 0.360   | 6.31    | 168     |
| 6/8/2017         105         12.6         1.1         <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6/8/2017 | 133                  | 29.1     | 1.2       | 0.023   | < 0.50  | 0.727   | 4.47    | 0.0599  | 0.109   | 6.00    | 184     |
| 6/8/2017         90         9.2         1.3         0.038         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/8/2017 | 113                  | 15.7     | 1.1       | < 0.020 | < 0.50  | 0.426   | 3.69    | 0.0505  | 0.027   | 7.01    | 148     |
| 6/8/2017         106         12.8         1.1         <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6/8/2017 | 105                  | 12.6     | 1.1       | < 0.020 | < 0.50  | 0.601   | 3.23    | 0.0523  | 0.038   | 7.16    | 134     |
| 6/8/2017         175         60.5         1.1         <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6/8/2017 | 90                   | 9.2      | 1.3       | 0.038   | < 0.50  | 1.230   | 3.24    | 0.0473  | 0.088   | 8.33    | 123     |
| 6/8/2017         75         5.7         1.4         <0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/8/2017 | 106                  | 12.8     | 1.1       | < 0.020 | < 0.50  | 0.606   | 4.06    | 0.0532  | 0.104   | 9.09    | 153     |
| 6/8/2017 110 17.3 1.3 0.025 <0.50 0.736 4.35 0.0446 0.074 9.03 126 6/8/2017 59, 118 <sup>a</sup> 20.2 ND <0.020 <0.50 0.472 4.20 0.0456 0.119 7.30 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6/8/2017 | 175                  | 60.5     | 1.1       | < 0.020 | < 0.50  | 0.355   | 4.71    | 0.0924  | 0.119   | 6.90    | 162     |
| 6/8/2017 59, 118 <sup>a</sup> 20.2 ND <0.020 <0.50 0.472 4.20 0.0456 0.119 7.30 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6/8/2017 | 75                   | 5.7      | 1.4       | < 0.020 | < 0.50  | 0.429   | 4.77    | 0.0438  | 0.202   | 7.86    | 157     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6/8/2017 | 110                  | 17.3     | 1.3       | 0.025   | < 0.50  | 0.736   | 4.35    | 0.0446  | 0.074   | 9.03    | 126     |
| <u>6</u> /8/2017 102, 70 <sup>a</sup> 15.6 ND <0.020 <0.50 0.865 4.55 0.0642 0.196 7.62 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6/8/2017 | 59, 118 <sup>a</sup> | 20.2     | ND        | < 0.020 | < 0.50  | 0.472   | 4.20    | 0.0456  | 0.119   | 7.30    | 160     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6/8/2017 | $102, 70^{a}$        | 15.6     | ND        | < 0.020 | < 0.50  | 0.865   | 4.55    | 0.0642  | 0.196   | 7.62    | 130     |

<sup>&</sup>lt;sup>a</sup> Composite sample of two fish.

 $Appendix\ C.2.-Middle\ Glacier\ Creek\ whole\ body\ Dolly\ Varden\ char\ element\ concentrations\ data.$ 

| Sample   | Length | Weight | Condition | Ag      | As      | Cd      | Cu      | Hg      | Pb      | Se      | Zn      |
|----------|--------|--------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|
| Date     | (mm)   | (g)    | (K)       | (mg/kg) |
| 6/8/2016 | 150    | 36.0   | 1.1       | 0.031   | < 0.48  | 0.605   | 3.37    | 0.0429  | 0.069   | 5.66    | 143     |
| 6/8/2016 | 108    | 15.9   | 1.3       | < 0.020 | < 0.50  | 0.327   | 4.33    | 0.0337  | 0.183   | 6.91    | 147     |
| 6/8/2016 | 123    | 26.5   | 1.4       | < 0.020 | < 0.50  | 0.683   | 3.83    | 0.0301  | 0.717   | 5.64    | 117     |
| 6/8/2016 | 73     | 5.2    | 1.3       | < 0.020 | < 0.49  | 0.288   | 4.99    | 0.0260  | 0.128   | 3.94    | 128     |
| 6/8/2016 | 180    | 66.7   | 1.1       | < 0.020 | < 0.50  | 0.329   | 3.11    | 0.0376  | 0.061   | 5.17    | 132     |
| 6/8/2016 | 77     | 6.0    | 1.3       | < 0.020 | < 0.50  | 0.215   | 3.53    | 0.0259  | 0.259   | 4.80    | 146     |
| 6/8/2016 | 83     | 7.8    | 1.4       | < 0.020 | < 0.50  | 0.280   | 3.75    | 0.0247  | 0.182   | 6.05    | 132     |
| 6/8/2016 | 146    | 31.5   | 1.0       | < 0.020 | < 0.50  | 0.521   | 2.50    | 0.0299  | 0.062   | 4.90    | 103     |
| 6/8/2016 | 83     | 7.0    | 1.2       | < 0.020 | < 0.50  | 0.678   | 2.56    | 0.0328  | 0.046   | 4.66    | 139     |
| 6/8/2016 | 70     | 5.0    | 1.5       | 0.682   | < 0.50  | 0.257   | 2.63    | 0.0184  | 0.036   | 6.29    | 133     |
| 6/9/2017 | 154    | 45.5   | 1.2       | < 0.020 | < 0.50  | 0.267   | 3.29    | 0.0364  | 0.036   | 5.14    | 116     |
| 6/9/2017 | 130    | 24.3   | 1.1       | < 0.020 | < 0.50  | 0.333   | 3.23    | 0.0343  | 0.056   | 6.86    | 95      |
| 6/9/2017 | 210    | 115    | 1.2       | < 0.020 | < 0.50  | 0.758   | 7.67    | 0.0701  | 0.031   | 6.34    | 161     |
| 6/9/2017 | 141    | 34.7   | 1.2       | < 0.020 | < 0.50  | 0.291   | 3.33    | 0.0430  | 0.037   | 8.02    | 126     |
| 6/9/2017 | 131    | 24.3   | 1.1       | < 0.020 | < 0.50  | 0.299   | 3.26    | 0.0385  | 0.100   | 6.10    | 128     |
| 6/9/2017 | 90     | 7.4    | 1.0       | < 0.020 | < 0.50  | 0.343   | 2.40    | 0.0361  | 0.034   | 6.86    | 101     |



ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

**T**:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

August 28, 2017

**Analytical Report for Service Request No: K1707899** 

Kate Kanouse
Alaska Department of Fish and Game
Division of Habitat
802 3rd Street
P.O. Box 110024
Douglas, AK 99811-0024

RE: 2017 Palmer Project Biomonitoring / 160004158

Dear Kate.

Enclosed are the results of the sample(s) submitted to our laboratory July 27, 2017 For your reference, these analyses have been assigned our service request number **K1707899**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3293. You may also contact me via email at Shar.Samy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Shar Samy, Ph.D. Project Manager



ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

## **Table of Contents**

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

**Total Solids** 

Metals

### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                     | Number      |
|--------------------------|------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                               | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                     | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                              | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                          | 2795        |
| DOD ELAP                 | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm               | L14-51      |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                      | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                    | -           |
| ISO 17025                | http://www.pjlabs.com/                                                       | L16-57      |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                       | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                   | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                  | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                       | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                   | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                    | 12060       |
|                          | https://deq.nc.gov/about/divisions/water-resources/water-resources-          |             |
|                          | data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- |             |
| North Carolina DEQ       | certification                                                                | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                | 9801        |
|                          | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator    |             |
| Oregon – DEQ (NELAP)     | yAccreditation/Pages/index.aspx                                              | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/             | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html               | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-  | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                            | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.



## Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

#### ALS ENVIRONMENTAL

Client:Alaska Department of Fish and GameService Request No.:K1707899Project:2017 Palmer Project Biomonitoring/160004185Date Received:07/27/17

**Sample Matrix:** Animal Tissue

#### **Case Narrative**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Matrix/Duplicate Matrix Spike (MS/DMS).

#### **Sample Receipt**

Sixteen tissue samples were received for analysis at ALS Environmental on 07/27/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in frozen at -20°C upon receipt at the laboratory.

#### **Total Metals**

#### **Matrix Spike Recovery Exceptions:**

The matrix spike recovery of Selenium for sample 2017 LGCDV1 was outside control criteria (126% recover versus an upper control limit of 125%). Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Approved by



## **Chain of Custody**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

| A   |               |
|-----|---------------|
| ALS | Environmental |

## **CHAIN OF CUSTODY**

| SR# | K1707899                              |
|-----|---------------------------------------|
|     | · · · · · · · · · · · · · · · · · · · |

| 1                                       | 317 South | 13th Ave.,            | Kelso, WA           | 98626            | +1 3     | 60 577         |                  | -          |                                         |                      | 22                                     | +1 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 636             | 1068               |                                        |         | AGE                                    |                                             |          | _ OF                                  |                      | <u>~</u>                                         | _ CO            | C#     |                     |
|-----------------------------------------|-----------|-----------------------|---------------------|------------------|----------|----------------|------------------|------------|-----------------------------------------|----------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|----------------------------------------|---------|----------------------------------------|---------------------------------------------|----------|---------------------------------------|----------------------|--------------------------------------------------|-----------------|--------|---------------------|
| PROJECT NUMBER                          | Provêc    | y Bin                 | unuiter             | رهاه             |          |                | 7                |            | [ ]                                     | 7/ /                 | 7                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                 | 7.                 | 7                                      | 7       | I                                      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \       | /        | $T_{\sim}$                            | 7                    | 7                                                | Ethane   Ethene | 7      | <del>/ / / / </del> |
|                                         |           |                       |                     | 0                |          |                |                  | 1          | SAT                                     | BIEX                 | / /                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | / /               | 8751 <sub>[]</sub> | / /                                    | / /     |                                        | §. \                                        |          | $/\frac{y}{8}$                        | 101                  | / /                                              |                 | ′ /    | / /                 |
| PROJECT LANGER KANON                    | جو        |                       |                     |                  |          | $\square$      | , /              | 18         |                                         | S (* See Delow) BTEX |                                        | § /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~/                | ₩.                 | _/                                     | $I_{I}$ | 7 /4                                   |                                             | 7        | □905 □050, □500<br>□03□ □050          | 1003<br>1003<br>1003 |                                                  |                 |        | / /                 |
| COMPANY MAME Dept of ADDRESSOR 3 TO ST. | Fish e    | Game                  | ·                   |                  |          | _/ 🐇           | [                | 18         | 9/                                      |                      | . 7 / 8<br>1 / 8<br>1 / 8              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                 |                    | و ای                                   | / È     | 7 P                                    | ;/≷`                                        | 8/ 8     | $\frac{j}{2}$                         | Ĭ/                   |                                                  | han             | /      | / /                 |
| ADDR 802 3 rd St.                       |           |                       |                     |                  |          | / ×            | /                | 138        | 3/ 8                                    |                      |                                        | / &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 1 2 6              |                                        | / §     | 10,1                                   | 15                                          | Ĭ/ Š     |                                       | //                   | 18'E                                             | <u> </u>        | /      | / /                 |
| CITY/GTATE/ZIP                          | K 99      | 824                   | <del></del>         |                  |          | CONTAINEDS     | / /              | 9an<br>788 | 8                                       | 1 2 E                |                                        | / ද්                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rbicides          | 20                 |                                        | / ž     |                                        | 000                                         | 16       | / දුෆි                                | 1. [7]               | 8 8                                              | / /             | / /    | ' /                 |
| E-MAIL ADDRESS KANOUS                   | e@ala     | s)ca . go             | v                   |                  | /        | <i>六 /</i> ◎   |                  | 0,2/       | 16gg                                    |                      | 53                                     | _ /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # 5 / S           |                    | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | . /¿    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ₹ <b>`</b>                                  |          | 800                                   | £ 8/                 | Şeş Şey                                          | /               |        | /                   |
| (907)465                                | -429      | ρ <sup>^^</sup> *     |                     |                  | _/ ,     | $\tilde{x}/$   |                  |            | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                      | 五                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                 |                    | $\frac{1}{2}$                          | B B     | 8/₹                                    | ````}\{<br>```````````````````````````````` | 07 / 3   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                      |                                                  |                 |        | /                   |
| SAMPLER'S SIGNATURE                     |           |                       |                     |                  | - NAMON  | <sup>9</sup> / | Semiyolatile     | Volatile O | [] \[ \frac{2}{2} \]                    | Oli & Gres Diesel &  |                                        | \$\f\colon \\ \colon \\ \co | Chioophe 8817 814 |                    | Cyanicle 7                             | ] /@`.  | (circle) NH3-178, Ci. SQL PQL F        | ٠/څ                                         | Alkalii. |                                       | Dissolved C          | <u>}</u>                                         |                 |        |                     |
| SAMPLE I.D.                             | DATE      | TIME                  | LAB I.D.            | MATRIX           | <u> </u> | /              | 100              | \_>.8      | 1 2                                     | 0                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | / « E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OF                | 120                | 10                                     | /હેં ≷  | 130                                    | / ×                                         | / ₹      | 10,6                                  | 10%                  | <u> </u>                                         | $\angle$        |        | REMARKS             |
| see attachme                            | nt 1      | 0/10                  | 1                   |                  | 16       |                |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | X                  |                                        |         |                                        |                                             |          |                                       |                      |                                                  |                 |        |                     |
| Whole body in                           | mile      | feh.                  |                     |                  |          |                |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       |                      |                                                  |                 |        |                     |
| whole body just individual s            | 4         | 11210                 |                     |                  |          |                |                  |            | <del></del>                             |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       |                      |                                                  |                 |        |                     |
| mairiana s                              | ampie     | 2                     |                     |                  |          |                |                  |            |                                         | ļ                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       |                      | <del>                                     </del> |                 |        |                     |
|                                         |           |                       |                     |                  |          |                |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       |                      | <b> </b>                                         | $\vdash$        |        |                     |
|                                         |           |                       |                     |                  |          |                |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       |                      |                                                  |                 |        |                     |
|                                         |           |                       |                     |                  |          |                |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       |                      |                                                  |                 |        |                     |
|                                         |           |                       |                     |                  |          |                |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       |                      |                                                  |                 |        |                     |
|                                         |           |                       |                     |                  |          |                |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       |                      | <del> </del>                                     |                 |        |                     |
|                                         |           | <u> </u>              |                     |                  |          |                |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       |                      |                                                  |                 |        |                     |
|                                         |           |                       |                     |                  |          | 75<br>75       |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       |                      |                                                  |                 |        |                     |
|                                         |           |                       |                     |                  |          |                |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        | 1       |                                        |                                             |          |                                       |                      |                                                  |                 |        | }                   |
| DEDORT DEGLEDEN                         | ENTO      | INVO                  | ICE INFOR           | MATION           | 1        | Circle         | which n          | netals     | are to                                  | be ana               | yzed:                                  | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                    |                                        |         |                                        |                                             |          | ******                                |                      |                                                  |                 |        |                     |
| REPORT REQUIREM                         |           | <del>- P.O. #</del> _ | )arwir i<br>Constan | Greer            | }        |                |                  |            |                                         |                      |                                        | R Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                | Co C               | × 6                                    | ) Fa 4  | 6D M                                   | ı Mn                                        | . Ma     | . Nii                                 | ĸ 🙆                  | Na 1                                             | ക               | r Ti ( | Sn V Zn fg          |
| I. Routine Report: I Blank, Surrogate   |           | Bill To:              | CONStan             | tine             |          | 100            | ii iviciai       | s. 711     | G,                                      | ж <u>-</u>           | -                                      | D 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63                | 00 0               | . 6                                    | /,   (  | <del>ک</del>                           | , 1911                                      | . 1010   | . 141                                 | ``(Z                 | ''a (                                            | ٥               |        |                     |
| / required                              | , ασ      | Gacion                | n@const             | untine<br>Is.com |          |                |                  | _          |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       |                      |                                                  |                 |        | Sn V Zn Hg          |
| II. Report Dup., MS                     | . MSD as  | THENIAD               | OUND REC            |                  |          | *IND           | ICATE<br>CIAL IN | STA        | TE H                                    | YDRO                 | CARE                                   | BON F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROC              | EDU                | RE: A                                  | K C     | A W                                    | l N                                         | ORT      | HWES                                  | зт от                | HER:                                             |                 |        | (CIRCLE ONE)        |
| required                                | ,         |                       | )r                  |                  | .1413    |                |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    | 4 .                                    |         |                                        |                                             |          |                                       | 1                    |                                                  |                 |        |                     |
| III. CLP Like Summa                     | ary       | 5 da                  |                     | _ 40 111.        |          | Ple            | ase<br>I to      | sen        | d x                                     | epoi                 | 4+                                     | o K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iate              | Ka                 | nou:                                   | je,     |                                        |                                             |          |                                       | Coi                  | ntanin                                           | er Sı           | 1DBIA  | / Number            |
| (no raw data)                           |           | Star                  | ndard (15 wor       | king davs        | :)       | and            | l to             | A          | legr                                    | n (                  | air                                    | ns:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al                | legn               | 2000                                   | Onsta   | uthine                                 | met                                         | als.c    | com                                   |                      |                                                  | A COLUMN        |        |                     |
| IV. Data Validation R                   | leport    |                       | ide FAX Res         |                  | ,<br>,   |                |                  |            | U                                       |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | •                  |                                        |         |                                        |                                             |          |                                       | 1/                   | \(\BB111                                         | 79              | 921 \  | B HEBINIEL IEBY     |
| V. EDD                                  |           |                       |                     |                  |          |                |                  |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             |          |                                       | V                    |                                                  | $\bigcup$       | , /    | <b>、</b> /          |
|                                         |           | Red                   | quested Repo        | ort Date         |          | Sa             | ample            | Ship       | ment                                    | conta                | ains U                                 | SDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | regul             | ated:              | soil sa                                | ample   | s (che                                 | ck b                                        | ox if    | appli                                 | cable)               | 1                                                |                 |        |                     |
| I/ I/I/ RELINQUI                        | SHED BY:  | _1                    |                     | 7 //             | ŘECE     | IVED           | BY:              |            | 094                                     | to                   | ······································ | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RELI              | NQUI               | SHED                                   | BY:     |                                        |                                             |          |                                       |                      | RE                                               | CEIVI           | ED BY  |                     |
| Hallen                                  | 7/2       | 117                   | 1 1                 | Media            |          |                | 37/2             |            |                                         |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                    |                                        |         |                                        |                                             | 1.       |                                       |                      |                                                  |                 |        |                     |
| LARE ZANDUSE                            | ADATA Tim | e 0800                | Signat              | ure<br>Wtze      | e Cina   | A Da           | ite/Tim          | e T        | ,                                       |                      | Signa                                  | ture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    | Date                                   | e/Time  |                                        |                                             |          | Signa                                 | ture                 |                                                  |                 | Date/  | /Time               |
| Printed Name                            | Firm      |                       | Printed             | d Name           |          | Fir            | m                |            |                                         |                      | Printe                                 | d Nar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ne                |                    | Firm                                   | }       |                                        |                                             |          | Printe                                | d Nan                | ne                                               |                 | Firm   |                     |

Project Name:

2017 Palmer Project Biomonitoring

Project Manager:

Kate Kanouse

Company Name:

Alaska Department of Fish and Game

Contact Information:

kate.kanouse@alaska.gov; (907) 465-4290

Sample Type:

Whole body juvenile Dolly Varden char

Analysis:

Total metals, dry weight basis, report percent solids

K170 7899

Attachment 1 of 1

|            | Sample   |                                         |             |                                | Fork Length          | Weight      |
|------------|----------|-----------------------------------------|-------------|--------------------------------|----------------------|-------------|
| Matrix     | Date     | Sample Name                             | Sample ID   | Total Metals                   | (mm)                 | (g)         |
| Whole Body | 6/8/2017 | Lower Glacier Creek DV Metals Fish #1   | 2017LGCDV1  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 133                  | 29.1        |
| Whole Body | 6/8/2017 | Lower Glacier Creek DV Metals Fish #2   | 2017LGCDV2  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 113                  | 15.7        |
| Whole Body | 6/8/2017 | Lower Glacier Creek DV Metals Fish #3   | 2017LGCDV3  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 105                  | 12.6        |
| Whole Body | 6/8/2017 | Lower Glacier Creek DV Metals Fish #4   | 2017LGCDV4  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 90                   | 9.2         |
| Whole Body | 6/8/2017 | Lower Glacier Creek DV Metals Fish #5   | 2017LGCDV5  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 106                  | 12.8        |
| Whole Body | 6/8/2017 | Lower Glacier Creek DV Metals Fish #6   | 2017LGCDV6  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 175                  | 60.5        |
| Whole Body | 6/8/2017 | Lower Glacier Creek DV Metals Fish #7   | 2017LGCDV7  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 75                   | 5.7         |
| Whole Body | 6/8/2017 | Lower Glacier Creek DV Metals Fish #8   | 2017LGCDV8  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 110                  | 17.3        |
| Whole Body | 6/8/2017 | Lower Glacier Creek DV Metals Fish #9   | 2017LGCDV9  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 59, 118 <sup>a</sup> | 20.2        |
| Whole Body | 6/8/2017 | Lower Glacier Creek DV Metals Fish #10  | 2017LGCDV10 | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 102, 70 <sup>a</sup> | 15.6        |
| Whole Body | 6/9/2017 | Middle Glacier Creek DV Metals Fish #4  | 2017MGCDV4  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 154                  | 45.5        |
| Whole Body | 6/9/2017 | Middle Glacier Creek DV Metals Fish #5  | 2017MGCDV5  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 130                  | 24.3        |
| Whole Body | 6/9/2017 | Middle Glacier Creek DV Metals Fish #7  | 2017MGCDV7  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 210                  | 115.0       |
| Whole Body | 6/9/2017 | Middle Glacier Creek DV Metals Fish #8  | 2017MGCDV8  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 141                  | 34.7        |
| Whole Body | 6/9/2017 | Middle Glacier Creek DV Metals Fish #9  | 2017MGCDV9  | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 131                  | 24.3        |
| Whole Body | 6/9/2017 | Middle Glacier Creek DV Metals Fish #10 | 2017MGCDV10 | Ag, As, Cd, Cu, Hg, Pb, Se, Zn | 90                   | 7. <u>4</u> |

<sup>&</sup>lt;sup>a</sup> Composite sample of two fish.



Cooler Receipt and Preservation Form

| lient<br>eceived:                                |                                                                                   |                                                                               |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |                                                                           |                                              | quest <i>K1</i><br>Unloade |                     | 127 117                          | By: du                                  | )                                       |
|--------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|----------------------------|---------------------|----------------------------------|-----------------------------------------|-----------------------------------------|
| Sample<br>Sample                                 | es were rece<br>es were rece<br>custody seal                                      | eived via?<br>eived in: (ci                                                   | USPS                                                                         | Ced Ex<br>Cooler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           | DH<br>Envelo                                                              | L PDX                                        | Couri<br>ther              | er H                | and Delivered                    |                                         |                                         |
|                                                  | ent, were cu                                                                      | _                                                                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r N                                                                                       | _                                                                         | If present, w                                |                            |                     | d dated?                         | Y                                       |                                         |
| Raw<br>oler Temp                                 | Corrected.                                                                        | Raw                                                                           | Corrected                                                                    | Сеп.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Thermor                                                                                   |                                                                           | Coeler/COC                                   |                            |                     | Tracking Nu                      |                                         |                                         |
| · 8<br>0.5                                       | Cooler Temp  2.6  -0.7                                                            | Hill<br>3,0                                                                   | Fermp Blank 4.4 28                                                           | Factor<br>-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 375<br>298                                                                                |                                                                           |                                              |                            | 872                 | 8895391                          | 9                                       | NA Fil                                  |
|                                                  |                                                                                   | 7.1                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |                                                                           |                                              |                            |                     |                                  | *************************************** |                                         |
|                                                  | •                                                                                 | _                                                                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                         | ,                                                                         | dicate in the                                |                            |                     |                                  | NA (Y                                   | ) N                                     |
| Did all s<br>Were a<br>Were t<br>Were V          | sample labe                                                                       | bels completels and tags<br>bottles/conterved bottle<br>received wi<br>ative? | ete (i.e anal<br>agree with<br>ainers and<br>es (see SMO                     | ysis, presencustody particular volumes represented to GEN SOP) space? Ina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eceived for a                                                                             | .)? cate major the tests i t the appr table bei                           | Frozen (or discrepant indicated? opriate pH? |                            | table or            | , 0                              | NA Y NA Y NA Y NA Y NA Y                | и ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( |
| Did all s<br>Were a<br>Were t<br>Were V          | sample labe<br>ppropriate the pH-preso<br>VOA vials resolved.                     | bels completels and tags bottles/conterved bottle received with attive?       | ete (i.e anal<br>agree with<br>ainers and<br>es (see SMO<br>thout heads      | ysis, preservous providence of the count of | rvation, etc<br>apers? Indi<br>eccived for<br>received at<br>dicate in the                | cate major<br>the tests in<br>the tests in<br>the appropriate table below | Frozen or discrepantindicated? copriate pH?  | cies in the                | table or            | page 2.                          | NA Y NA Y NA Y NA Y                     | N<br>N<br>N                             |
| Did all s<br>Were a<br>Were t<br>Were V          | sample labe<br>ppropriate the pH-prese<br>VOA vials re<br>12/Res neg              | bels completels and tags bottles/conterved bottle received with attive?       | ete (i.e anal<br>agree with<br>ainers and<br>es (see SMO<br>thout heads      | ysis, preservous providence of the count of | rvation, etc<br>apers? Indi<br>eccived for<br>received at<br>dicate in the<br>Sample ID o | cate major<br>the tests in<br>the tests in<br>the appropriate table below | Frozen or discrepantindicated? copriate pH?  | cies in the                | table or in the tal | page 2. ble below Identified by: | NA Y NA Y NA Y NA Y NA Y                | N N N N N N N N N N N N N N N N N N N   |
| Did all s<br>Were a<br>Were t<br>Were V          | sample labe<br>ppropriate the pH-prese<br>VOA vials re<br>12/Res neg              | bels completels and tags bottles/conterved bottle received with attive?       | ete (i.e anal<br>agree with<br>ainers and<br>es (see SMO<br>thout heads      | ysis, preservous providence of the count of | rvation, etc<br>apers? Indi<br>eccived for<br>received at<br>dicate in the<br>Sample ID o | cate major<br>the tests in<br>the tests in<br>the appropriate table below | Frozen or discrepantindicated? copriate pH?  | cies in the                | table or in the tal | page 2. ble below Identified by: | NA Y NA Y NA Y NA Y NA Y                | N<br>N<br>N                             |
| Did all s<br>Were a<br>Were t<br>Were V<br>Was C | sample labe<br>ppropriate the pH-prese<br>VOA vials re<br>12/Res neg              | bels completels and tags bottles/conterved bottle received with attive?       | ete (i.e anal agree with ainers and es (see SMO) thout heads  Bottle  Bottle | ysis, preservous providence of the count of | rvation, etc<br>apers? Indi<br>eccived for<br>received at<br>dicate in the<br>Sample ID o | cate major<br>the tests in<br>the tests in<br>the appropriate table below | Frozen or discrepantindicated? copriate pH?  | cies in the                | table or in the tal | page 2. ble below Identified by: | NA Y NA Y NA Y NA Y NA Y                | N<br>N<br>N                             |
| Did all s Were a Were t Were V Was C             | sample labe ppropriate the pH-press VOA vials response to the pH-press 12/Res neg | bels completels and tags bottles/conterved bottle received with attive?       | ete (i.e anal agree with ainers and es (see SMO) thout heads  Bottle  Bottle | ysis, preservous providence of the count of | rvation, etc<br>apers? Indi<br>eccived for<br>received at<br>dicate in the<br>Sample ID o | cate major<br>the tests in<br>the tests in<br>the appropriate table below | Frozen or discrepantindicated? copriate pH?  | cies in the                | table or in the tal | page 2. ble below Identified by: | NA Y NA Y NA Y NA Y NA Y                | N<br>N<br>N                             |

Page 11 of 43



## **Total Solids**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

**Client:** Alaska Department of Fish and Game

**Date Collected:** 06/08/17 - 06/09/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 **Sample Matrix:** Animal Tissue

**Analysis Method:** Freeze Dry Units: Percent **Prep Method:** None

Basis: Wet

Service Request: K1707899

### **Total Solids**

| Sample Name  | Lab Code     | Result  | MRL   | Dil. | Date<br>Analyzed | Q |
|--------------|--------------|---------|-------|------|------------------|---|
|              | 240 0040     | 2100011 | 1,222 | 211  | 121101, 200      |   |
| 2017 LGCDV1  | K1707899-001 | 22.7    | -     | 1    | 08/08/17 17:10   |   |
| 2017 LGCDV2  | K1707899-002 | 24.3    | -     | 1    | 08/08/17 17:10   |   |
| 2017 LGCDV3  | K1707899-003 | 25.9    | -     | 1    | 08/08/17 17:10   |   |
| 2017 LGCDV4  | K1707899-004 | 24.3    | -     | 1    | 08/08/17 17:10   |   |
| 2017 LGCDV5  | K1707899-005 | 25.9    | -     | 1    | 08/08/17 17:10   |   |
| 2017 LGCDV6  | K1707899-006 | 24.6    | -     | 1    | 08/08/17 17:10   |   |
| 2017 LGCDV7  | K1707899-007 | 24.9    | -     | 1    | 08/08/17 17:10   |   |
| 2017 LGCDV8  | K1707899-008 | 24.7    | -     | 1    | 08/08/17 17:10   |   |
| 2017 LGCDV9  | K1707899-009 | 24.3    | -     | 1    | 08/08/17 17:10   |   |
| 2017 LGCDV10 | K1707899-010 | 23.7    | -     | 1    | 08/08/17 17:10   |   |
| 2017 MGCDV4  | K1707899-011 | 27.1    | -     | 1    | 08/08/17 17:10   |   |
| 2017 MGCDV5  | K1707899-012 | 28.6    | -     | 1    | 08/08/17 17:10   |   |
| 2017 MGCDV7  | K1707899-013 | 24.1    | -     | 1    | 08/08/17 17:10   |   |
| 2017 MGCDV8  | K1707899-014 | 26.0    | -     | 1    | 08/08/17 17:10   |   |
| 2017 MGCDV9  | K1707899-015 | 24.6    | -     | 1    | 08/08/17 17:10   |   |
| 2017 MGCDV10 | K1707899-016 | 24.3    | -     | 1    | 08/08/17 17:10   | · |

QA/QC Report

Service Request:K1707899

Client: Alaska Department of Fish and Game

Project 2017 Palmer Project Biomonitoring/160004158 **Date Collected:**06/08/17 - 06/09/17

Sample Matrix: Animal Tissue Date Received:07/27/17

Analysis Method:Freeze DryUnits:PercentPrep Method:NoneBasis:Wet

## Replicate Sample Summary Inorganic Parameters

| Sample Name: | Lab Code:       | MDI | Sample | Duplicate | <b>A</b> | DDD | RPD   | Date     |
|--------------|-----------------|-----|--------|-----------|----------|-----|-------|----------|
| Sample Name. | Lab Coue.       | MRL | Result | Result    | Average  | RPD | Limit | Analyzed |
| 2017 LGCDV6  | K1707899-006DUP | -   | 24.6   | 24.9      | 24.8     | 1   | 20    | 08/08/17 |
| 2017 MGCDV7  | K1707899-013DUP | _   | 24.1   | 24.8      | 24.5     | 3   | 20    | 08/08/17 |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 08/18/17 11:43:54 AM Superset Reference:17-0000433403 rev 00



## Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

**Client:** Alaska Department of Fish and Game

**Service Request:** K1707899 **Date Collected:** 06/08/17 **Project:** 2017 Palmer Project Biomonitoring/160004158 **Sample Matrix: Date Received:** 07/27/17 Animal tissue

Mercury, Total

Prep Method: **METHOD** Units: ng/g Analysis Method: 1631E Basis: Dry

Test Notes:

| Sample Name    | Lab Code     | MRL | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Result | Result<br>Notes |
|----------------|--------------|-----|--------------------|-------------------|------------------|--------|-----------------|
| 2017 LGCDV1    | K1707899-001 | 4.7 | 5                  | 08/24/17          | 08/25/17         | 59.9   |                 |
| 2017 LGCDV2    | K1707899-002 | 5.0 | 5                  | 08/24/17          | 08/25/17         | 50.5   |                 |
| 2017 LGCDV3    | K1707899-003 | 4.8 | 5                  | 08/24/17          | 08/25/17         | 52.3   |                 |
| 2017 LGCDV4    | K1707899-004 | 5.0 | 5                  | 08/24/17          | 08/25/17         | 47.3   |                 |
| 2017 LGCDV5    | K1707899-005 | 4.9 | 5                  | 08/24/17          | 08/25/17         | 53.2   |                 |
| 2017 LGCDV6    | K1707899-006 | 4.9 | 5                  | 08/24/17          | 08/25/17         | 92.4   |                 |
| 2017 LGCDV7    | K1707899-007 | 4.8 | 5                  | 08/24/17          | 08/25/17         | 43.8   |                 |
| 2017 LGCDV8    | K1707899-008 | 4.6 | 5                  | 08/24/17          | 08/25/17         | 44.6   |                 |
| 2017 LGCDV9    | K1707899-009 | 4.9 | 5                  | 08/24/17          | 08/25/17         | 45.6   |                 |
| 2017 LGCDV10   | K1707899-010 | 4.8 | 5                  | 08/24/17          | 08/25/17         | 64.2   |                 |
| 2017 MGCDV4    | K1707899-011 | 4.5 | 5                  | 08/24/17          | 08/25/17         | 36.4   |                 |
| 2017 MGCDV5    | K1707899-012 | 4.9 | 5                  | 08/24/17          | 08/25/17         | 34.3   |                 |
| 2017 MGCDV7    | K1707899-013 | 4.6 | 5                  | 08/24/17          | 08/25/17         | 70.1   |                 |
| 2017 MGCDV8    | K1707899-014 | 4.9 | 5                  | 08/24/17          | 08/25/17         | 43.0   |                 |
| 2017 MGCDV9    | K1707899-015 | 4.9 | 5                  | 08/24/17          | 08/25/17         | 38.5   |                 |
| 2017 MGCDV10   | K1707899-016 | 4.4 | 5                  | 08/24/17          | 08/25/17         | 36.1   |                 |
| Method Blank 1 | K1707899-MB1 | 1.0 | 1                  | 08/24/17          | 08/25/17         | ND     |                 |
| Method Blank 2 | K1707899-MB2 | 1.0 | 1                  | 08/24/17          | 08/25/17         | ND     |                 |
| Method Blank 3 | K1707899-MB3 | 1.0 | 1                  | 08/24/17          | 08/25/17         | ND     |                 |
|                |              |     |                    |                   |                  |        |                 |

K1707899ICP.JB1 - Sample 08/28/17 Page No.:

QA/QC Report

Client: Alaska Department of Fish and Game

**Project:** 2017 Palmer Project Biomonitoring/160004158

Sample Matrix: Animal tissue

 Date Collected:
 06/08/17

 Date Received:
 07/27/17

 Date Extracted:
 08/24/17

 Date Analyzed:
 08/25/17

Units: ng/g

Basis: Dry

Service Request: K1707899

Matrix Spike/Duplicate Matrix Spike Summary

**Total Metals** 

Sample Name: 2017 LGCDV1

Lab Code: K1707899-001MS, K1707899-001MSD

Test Notes:

Percent Recovery

|         | Prep   | Analysis |     | Spike | e Level | Sample | Spike | Result | гег | cent | ALS Acceptance | Relative<br>Percent | Result |
|---------|--------|----------|-----|-------|---------|--------|-------|--------|-----|------|----------------|---------------------|--------|
| Analyte | Method | Method   | MRL | MS    | DMS     | Result | MS    | DMS    | MS  | DMS  | Limits         | Difference          | Notes  |
| Mercury | METHOD | 1631E    | 4.8 | 234   | 238     | 59.9   | 275   | 288    | 92  | 96   | 70-130         | 5                   |        |

K1707899ICP.JB1 - DMS 08/28/17 Page No.:

QA/QC Report

Client: Alaska Department of Fish and Game

2017 Palmer Project Biomonitoring/160004158

Sample Matrix: Animal tissue

 Date Collected:
 06/09/17

 Date Received:
 07/27/17

 Date Extracted:
 08/24/17

 Date Analyzed:
 08/25/17

Units: ng/g

Basis: Dry

Service Request: K1707899

Matrix Spike/Duplicate Matrix Spike Summary

**Total Metals** 

Sample Name: 2017 MGCDV5

Lab Code: K1707899-001MS, K1707899-001MSD

Test Notes:

**Project:** 

Percent Recovery

|         |        |          |     |       |         |        |       |        | 1 61 | Cent | Recovery   |            |        |
|---------|--------|----------|-----|-------|---------|--------|-------|--------|------|------|------------|------------|--------|
|         |        |          |     |       |         |        |       |        |      |      | ALS        | Relative   |        |
|         | Prep   | Analysis |     | Spike | e Level | Sample | Spike | Result |      |      | Acceptance | Percent    | Result |
| Analyte | Method | Method   | MRL | MS    | DMS     | Result | MS    | DMS    | MS   | DMS  | Limits     | Difference | Notes  |
|         |        |          |     |       |         |        |       |        |      |      |            |            |        |
| Mercury | METHOD | 1631E    | 4.7 | 230   | 236     | 34.3   | 255   | 270    | 96   | 100  | 70-130     | 6          |        |

K1707899ICP.JB1 - DMS (2) 08/28/17 Page No.:

## ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1707899

Project:2017 Palmer Project Biomonitoring/160004158Date Collected:NALCS Matrix:WaterDate Received:NA

**Date Extracted:** NA **Date Analyzed:** 08/25/17

Ongoing Precision and Recovery (OPR) Sample Summary

**Total Metals** 

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

|         |        |          |       |        |          | ALS        |        |
|---------|--------|----------|-------|--------|----------|------------|--------|
|         |        |          |       |        |          | Percent    |        |
|         |        |          |       |        |          | Recovery   |        |
|         | Prep   | Analysis | True  |        | Percent  | Acceptance | Result |
| Analyte | Method | Method   | Value | Result | Recovery | Limits     | Notes  |
| Mercury | METHOD | 1631E    | 5.00  | 4.71   | 94       | 70-130     |        |

K1707899ICP.JB1 - OPR (lcsw) 08/28/17 Page No.:

## ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1707899

Project:2017 Palmer Project Biomonitoring/160004158Date Collected:NALCS Matrix:WaterDate Received:NA

**Date Extracted:** NA **Date Analyzed:** 08/25/17

Ongoing Precision and Recovery (OPR) Sample Summary

**Total Metals** 

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

| Analyte | Prep<br>Method | Analysis<br>Method | True<br>Value | Result | Percent<br>Recovery | Recovery<br>Acceptance<br>Limits | Result<br>Notes |
|---------|----------------|--------------------|---------------|--------|---------------------|----------------------------------|-----------------|
| Mercury | METHOD         | 1631E              | 5.00          | 4.98   | 100                 | 70-130                           |                 |

## ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1707899

Project:2017 Palmer Project Biomonitoring/160004158Date Collected:NALCS Matrix:Animal tissueDate Received:NA

Date Extracted: 08/24/17
Date Analyzed: 08/25/17

Quality Control Sample (QCS) Summary

**Total Metals** 

Sample Name: Quality Control Sample Units: ng/g

Lab Code: Basis: Dry

Test Notes:

Source: TORT-3 ALS

**Percent** Recovery Analysis True Percent Acceptance Result Prep Analyte Method Limits Method Value Result Recovery **Notes** 277 **METHOD** 1631E 292 95 70-130 Mercury

K1707899ICP.JB1 - QCS (icv) 08/28/17 Page No.:

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/08/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 LGCDV1 Basis: Dry

Lab Code: K1707899-001

### **Total Metals**

|              | Analysis |        |       |       |      |                |                       |   |
|--------------|----------|--------|-------|-------|------|----------------|-----------------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | <b>Date Extracted</b> | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 17:58 | 08/22/17              |   |
| Cadmium      | 6020A    | 0.747  | mg/Kg | 0.020 | 5    | 08/24/17 17:58 | 08/22/17              |   |
| Copper       | 6020A    | 4.48   | mg/Kg | 0.10  | 5    | 08/24/17 17:58 | 08/22/17              |   |
| Lead         | 6020A    | 0.118  | mg/Kg | 0.020 | 5    | 08/24/17 17:58 | 08/22/17              |   |
| Selenium     | 6020A    | 6.1    | mg/Kg | 1.0   | 5    | 08/24/17 17:58 | 08/22/17              |   |
| Silver       | 6020A    | 0.025  | mg/Kg | 0.020 | 5    | 08/24/17 17:58 | 08/22/17              |   |
| Zinc         | 6020A    | 183    | mg/Kg | 0.50  | 5    | 08/24/17 17:58 | 08/22/17              |   |
|              |          |        |       |       |      |                |                       |   |

Printed 8/28/2017 2:16:37 PM Superset Reference:

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/08/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 LGCDV2 Basis: Dry

Lab Code: K1707899-002

### **Total Metals**

|              | Analysis |        |       |       |      |                |                |   |
|--------------|----------|--------|-------|-------|------|----------------|----------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | Date Extracted | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 18:13 | 08/22/17       |   |
| Cadmium      | 6020A    | 0.426  | mg/Kg | 0.020 | 5    | 08/24/17 18:13 | 08/22/17       |   |
| Copper       | 6020A    | 3.69   | mg/Kg | 0.099 | 5    | 08/24/17 18:13 | 08/22/17       |   |
| Lead         | 6020A    | 0.027  | mg/Kg | 0.020 | 5    | 08/24/17 18:13 | 08/22/17       |   |
| Selenium     | 6020A    | 7.01   | mg/Kg | 0.99  | 5    | 08/24/17 18:13 | 08/22/17       |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 18:13 | 08/22/17       |   |
| Zinc         | 6020A    | 148    | mg/Kg | 0.50  | 5    | 08/24/17 18:13 | 08/22/17       |   |

Printed 8/28/2017 2:16:37 PM Superset Reference:

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/08/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 LGCDV3 Basis: Dry

Lab Code: K1707899-003

### **Total Metals**

|              | Analysis |        |       |       |      |                |                |   |
|--------------|----------|--------|-------|-------|------|----------------|----------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | Date Extracted | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 18:16 | 08/22/17       |   |
| Cadmium      | 6020A    | 0.601  | mg/Kg | 0.020 | 5    | 08/24/17 18:16 | 08/22/17       |   |
| Copper       | 6020A    | 3.23   | mg/Kg | 0.100 | 5    | 08/24/17 18:16 | 08/22/17       |   |
| Lead         | 6020A    | 0.038  | mg/Kg | 0.020 | 5    | 08/24/17 18:16 | 08/22/17       |   |
| Selenium     | 6020A    | 7.16   | mg/Kg | 1.00  | 5    | 08/24/17 18:16 | 08/22/17       |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 18:16 | 08/22/17       |   |
| Zinc         | 6020A    | 134    | mg/Kg | 0.50  | 5    | 08/24/17 18:16 | 08/22/17       |   |

Printed 8/28/2017 2:16:38 PM Superset Reference:

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/08/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 LGCDV4 Basis: Dry

Lab Code: K1707899-004

### **Total Metals**

|              | Analysis |        |       |       |      |                |                       |   |
|--------------|----------|--------|-------|-------|------|----------------|-----------------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | <b>Date Extracted</b> | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 18:18 | 08/22/17              |   |
| Cadmium      | 6020A    | 1.23   | mg/Kg | 0.020 | 5    | 08/24/17 18:18 | 08/22/17              |   |
| Copper       | 6020A    | 3.24   | mg/Kg | 0.099 | 5    | 08/24/17 18:18 | 08/22/17              |   |
| Lead         | 6020A    | 0.088  | mg/Kg | 0.020 | 5    | 08/24/17 18:18 | 08/22/17              |   |
| Selenium     | 6020A    | 8.33   | mg/Kg | 0.99  | 5    | 08/24/17 18:18 | 08/22/17              |   |
| Silver       | 6020A    | 0.038  | mg/Kg | 0.020 | 5    | 08/24/17 18:18 | 08/22/17              |   |
| Zinc         | 6020A    | 123    | mg/Kg | 0.50  | 5    | 08/24/17 18:18 | 08/22/17              |   |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/08/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 LGCDV5 Basis: Dry

Lab Code: K1707899-005

### **Total Metals**

|              | Analysis |        |       |       |      |                |                       |   |
|--------------|----------|--------|-------|-------|------|----------------|-----------------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | <b>Date Extracted</b> | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 18:21 | 08/22/17              |   |
| Cadmium      | 6020A    | 0.606  | mg/Kg | 0.020 | 5    | 08/24/17 18:21 | 08/22/17              |   |
| Copper       | 6020A    | 4.06   | mg/Kg | 0.099 | 5    | 08/24/17 18:21 | 08/22/17              |   |
| Lead         | 6020A    | 0.104  | mg/Kg | 0.020 | 5    | 08/24/17 18:21 | 08/22/17              |   |
| Selenium     | 6020A    | 9.09   | mg/Kg | 0.99  | 5    | 08/24/17 18:21 | 08/22/17              |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 18:21 | 08/22/17              |   |
| Zinc         | 6020A    | 153    | mg/Kg | 0.50  | 5    | 08/24/17 18:21 | 08/22/17              |   |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/08/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 LGCDV6 Basis: Dry

Lab Code: K1707899-006

### **Total Metals**

|              | Analysis |              |       |       |      |                |                |   |
|--------------|----------|--------------|-------|-------|------|----------------|----------------|---|
| Analyte Name | Method   | Result       | Units | MRL   | Dil. | Date Analyzed  | Date Extracted | Q |
| Arsenic      | 6020A    | ND U         | mg/Kg | 0.50  | 5    | 08/24/17 18:36 | 08/22/17       |   |
| Cadmium      | 6020A    | 0.355        | mg/Kg | 0.020 | 5    | 08/24/17 18:36 | 08/22/17       |   |
| Copper       | 6020A    | <b>4.7</b> 1 | mg/Kg | 0.10  | 5    | 08/24/17 18:36 | 08/22/17       |   |
| Lead         | 6020A    | 0.119        | mg/Kg | 0.020 | 5    | 08/24/17 18:36 | 08/22/17       |   |
| Selenium     | 6020A    | 6.9          | mg/Kg | 1.0   | 5    | 08/24/17 18:36 | 08/22/17       |   |
| Silver       | 6020A    | ND U         | mg/Kg | 0.020 | 5    | 08/24/17 18:36 | 08/22/17       |   |
| Zinc         | 6020A    | 162          | mg/Kg | 0.50  | 5    | 08/24/17 18:36 | 08/22/17       |   |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/08/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 LGCDV7 Basis: Dry

Lab Code: K1707899-007

### **Total Metals**

|              | Analysis |        |       |       |      |                |                       |   |
|--------------|----------|--------|-------|-------|------|----------------|-----------------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | <b>Date Extracted</b> | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 18:39 | 08/22/17              |   |
| Cadmium      | 6020A    | 0.429  | mg/Kg | 0.020 | 5    | 08/24/17 18:39 | 08/22/17              |   |
| Copper       | 6020A    | 4.77   | mg/Kg | 0.100 | 5    | 08/24/17 18:39 | 08/22/17              |   |
| Lead         | 6020A    | 0.202  | mg/Kg | 0.020 | 5    | 08/24/17 18:39 | 08/22/17              |   |
| Selenium     | 6020A    | 7.86   | mg/Kg | 1.00  | 5    | 08/24/17 18:39 | 08/22/17              |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 18:39 | 08/22/17              |   |
| Zinc         | 6020A    | 157    | mg/Kg | 0.50  | 5    | 08/24/17 18:39 | 08/22/17              |   |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/08/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 LGCDV8 Basis: Dry

Lab Code: K1707899-008

### **Total Metals**

|              | Analysis |        |       |       |      |                |                       |   |
|--------------|----------|--------|-------|-------|------|----------------|-----------------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | <b>Date Extracted</b> | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 18:42 | 08/22/17              |   |
| Cadmium      | 6020A    | 0.736  | mg/Kg | 0.020 | 5    | 08/24/17 18:42 | 08/22/17              |   |
| Copper       | 6020A    | 4.35   | mg/Kg | 0.100 | 5    | 08/24/17 18:42 | 08/22/17              |   |
| Lead         | 6020A    | 0.074  | mg/Kg | 0.020 | 5    | 08/24/17 18:42 | 08/22/17              |   |
| Selenium     | 6020A    | 9.03   | mg/Kg | 1.00  | 5    | 08/24/17 18:42 | 08/22/17              |   |
| Silver       | 6020A    | 0.025  | mg/Kg | 0.020 | 5    | 08/24/17 18:42 | 08/22/17              |   |
| Zinc         | 6020A    | 126    | mg/Kg | 0.50  | 5    | 08/24/17 18:42 | 08/22/17              |   |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/08/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 LGCDV9 Basis: Dry

Lab Code: K1707899-009

### **Total Metals**

|              | Analysis |        |       |       |      |                |                       |   |
|--------------|----------|--------|-------|-------|------|----------------|-----------------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | <b>Date Extracted</b> | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 18:45 | 08/22/17              |   |
| Cadmium      | 6020A    | 0.472  | mg/Kg | 0.020 | 5    | 08/24/17 18:45 | 08/22/17              |   |
| Copper       | 6020A    | 4.20   | mg/Kg | 0.10  | 5    | 08/24/17 18:45 | 08/22/17              |   |
| Lead         | 6020A    | 0.119  | mg/Kg | 0.020 | 5    | 08/24/17 18:45 | 08/22/17              |   |
| Selenium     | 6020A    | 7.3    | mg/Kg | 1.0   | 5    | 08/24/17 18:45 | 08/22/17              |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 18:45 | 08/22/17              |   |
| Zinc         | 6020A    | 160    | mg/Kg | 0.50  | 5    | 08/24/17 18:45 | 08/22/17              |   |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/08/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 LGCDV10 Basis: Dry

Lab Code: K1707899-010

### **Total Metals**

| A 1 / N      | Analysis | D 1/   | <b>T</b> T *4 | MDI   | D.I  | D ( A 1 1      |                | 0        |
|--------------|----------|--------|---------------|-------|------|----------------|----------------|----------|
| Analyte Name | Method   | Result | Units         | MRL   | Dil. | Date Analyzed  | Date Extracted | <u>Q</u> |
| Arsenic      | 6020A    | ND U   | mg/Kg         | 0.50  | 5    | 08/24/17 18:48 | 08/22/17       |          |
| Cadmium      | 6020A    | 0.865  | mg/Kg         | 0.020 | 5    | 08/24/17 18:48 | 08/22/17       |          |
| Copper       | 6020A    | 4.55   | mg/Kg         | 0.100 | 5    | 08/24/17 18:48 | 08/22/17       |          |
| Lead         | 6020A    | 0.196  | mg/Kg         | 0.020 | 5    | 08/24/17 18:48 | 08/22/17       |          |
| Selenium     | 6020A    | 7.62   | mg/Kg         | 1.00  | 5    | 08/24/17 18:48 | 08/22/17       |          |
| Silver       | 6020A    | ND U   | mg/Kg         | 0.020 | 5    | 08/24/17 18:48 | 08/22/17       |          |
| Zinc         | 6020A    | 130    | mg/Kg         | 0.50  | 5    | 08/24/17 18:48 | 08/22/17       |          |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/09/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 MGCDV4 Basis: Dry

Lab Code: K1707899-011

### **Total Metals**

|              | Analysis |        |       |       |      |                |                       |   |
|--------------|----------|--------|-------|-------|------|----------------|-----------------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | <b>Date Extracted</b> | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 18:51 | 08/22/17              |   |
| Cadmium      | 6020A    | 0.267  | mg/Kg | 0.020 | 5    | 08/24/17 18:51 | 08/22/17              |   |
| Copper       | 6020A    | 3.29   | mg/Kg | 0.099 | 5    | 08/24/17 18:51 | 08/22/17              |   |
| Lead         | 6020A    | 0.036  | mg/Kg | 0.020 | 5    | 08/24/17 18:51 | 08/22/17              |   |
| Selenium     | 6020A    | 5.14   | mg/Kg | 0.99  | 5    | 08/24/17 18:51 | 08/22/17              |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 18:51 | 08/22/17              |   |
| Zinc         | 6020A    | 116    | mg/Kg | 0.50  | 5    | 08/24/17 18:51 | 08/22/17              |   |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/09/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 MGCDV5 Basis: Dry

Lab Code: K1707899-012

### **Total Metals**

|              | Analysis |        |       |       |      |                |                       |   |
|--------------|----------|--------|-------|-------|------|----------------|-----------------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | <b>Date Extracted</b> | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 18:54 | 08/22/17              |   |
| Cadmium      | 6020A    | 0.333  | mg/Kg | 0.020 | 5    | 08/24/17 18:54 | 08/22/17              |   |
| Copper       | 6020A    | 3.23   | mg/Kg | 0.099 | 5    | 08/24/17 18:54 | 08/22/17              |   |
| Lead         | 6020A    | 0.056  | mg/Kg | 0.020 | 5    | 08/24/17 18:54 | 08/22/17              |   |
| Selenium     | 6020A    | 6.86   | mg/Kg | 0.99  | 5    | 08/24/17 18:54 | 08/22/17              |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 18:54 | 08/22/17              |   |
| Zinc         | 6020A    | 95.0   | mg/Kg | 0.50  | 5    | 08/24/17 18:54 | 08/22/17              |   |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/09/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 MGCDV7 Basis: Dry

Lab Code: K1707899-013

### **Total Metals**

|              | Analysis |        |       |       |      |                |                |   |
|--------------|----------|--------|-------|-------|------|----------------|----------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | Date Extracted | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 18:57 | 08/22/17       |   |
| Cadmium      | 6020A    | 0.758  | mg/Kg | 0.020 | 5    | 08/24/17 18:57 | 08/22/17       |   |
| Copper       | 6020A    | 7.67   | mg/Kg | 0.100 | 5    | 08/24/17 18:57 | 08/22/17       |   |
| Lead         | 6020A    | 0.031  | mg/Kg | 0.020 | 5    | 08/24/17 18:57 | 08/22/17       |   |
| Selenium     | 6020A    | 6.34   | mg/Kg | 1.00  | 5    | 08/24/17 18:57 | 08/22/17       |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 18:57 | 08/22/17       |   |
| Zinc         | 6020A    | 161    | mg/Kg | 0.50  | 5    | 08/24/17 18:57 | 08/22/17       |   |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/09/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 MGCDV8 Basis: Dry

Lab Code: K1707899-014

### **Total Metals**

|              | Analysis |        |       |       |      |                |                |   |
|--------------|----------|--------|-------|-------|------|----------------|----------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | Date Extracted | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 18:59 | 08/22/17       |   |
| Cadmium      | 6020A    | 0.291  | mg/Kg | 0.020 | 5    | 08/24/17 18:59 | 08/22/17       |   |
| Copper       | 6020A    | 3.33   | mg/Kg | 0.099 | 5    | 08/24/17 18:59 | 08/22/17       |   |
| Lead         | 6020A    | 0.037  | mg/Kg | 0.020 | 5    | 08/24/17 18:59 | 08/22/17       |   |
| Selenium     | 6020A    | 8.02   | mg/Kg | 0.99  | 5    | 08/24/17 18:59 | 08/22/17       |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 18:59 | 08/22/17       |   |
| Zinc         | 6020A    | 126    | mg/Kg | 0.50  | 5    | 08/24/17 18:59 | 08/22/17       |   |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/09/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 MGCDV9 Basis: Dry

Lab Code: K1707899-015

### **Total Metals**

|              | Analysis |        |       |       |      |                |                       |   |
|--------------|----------|--------|-------|-------|------|----------------|-----------------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | <b>Date Extracted</b> | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 19:02 | 08/22/17              |   |
| Cadmium      | 6020A    | 0.299  | mg/Kg | 0.020 | 5    | 08/24/17 19:02 | 08/22/17              |   |
| Copper       | 6020A    | 3.26   | mg/Kg | 0.10  | 5    | 08/24/17 19:02 | 08/22/17              |   |
| Lead         | 6020A    | 0.100  | mg/Kg | 0.020 | 5    | 08/24/17 19:02 | 08/22/17              |   |
| Selenium     | 6020A    | 6.1    | mg/Kg | 1.0   | 5    | 08/24/17 19:02 | 08/22/17              |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 19:02 | 08/22/17              |   |
| Zinc         | 6020A    | 128    | mg/Kg | 0.50  | 5    | 08/24/17 19:02 | 08/22/17              |   |

### Analytical Report

**Client:** Alaska Department of Fish and Game

Service Request: K1707899 **Date Collected:** 06/09/17 **Project:** 2017 Palmer Project Biomonitoring/160004158

**Date Received:** 07/27/17 09:40 **Sample Matrix:** Animal Tissue

**Sample Name:** 2017 MGCDV10 Basis: Dry

Lab Code: K1707899-016

### **Total Metals**

|              | Analysis |        |       |       |      |                |                       |   |
|--------------|----------|--------|-------|-------|------|----------------|-----------------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | <b>Date Extracted</b> | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 19:14 | 08/22/17              |   |
| Cadmium      | 6020A    | 0.343  | mg/Kg | 0.020 | 5    | 08/24/17 19:14 | 08/22/17              |   |
| Copper       | 6020A    | 2.40   | mg/Kg | 0.099 | 5    | 08/24/17 19:14 | 08/22/17              |   |
| Lead         | 6020A    | 0.034  | mg/Kg | 0.020 | 5    | 08/24/17 19:14 | 08/22/17              |   |
| Selenium     | 6020A    | 6.86   | mg/Kg | 0.99  | 5    | 08/24/17 19:14 | 08/22/17              |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 19:14 | 08/22/17              |   |
| Zinc         | 6020A    | 101    | mg/Kg | 0.50  | 5    | 08/24/17 19:14 | 08/22/17              |   |

### Analytical Report

Client: Alaska Department of Fish and Game

**Service Request:** K1707899

**Project:** 2017 Palmer Project Biomonitoring/160004158

Date Collected: NA

**Sample Matrix:** Animal Tissue

Date Received: NA

Sample Name: Method Blank

Basis: Dry

**Lab Code:** KQ1711848-01

### **Total Metals**

|              | Analysis |        |       |       |      |                |                |   |
|--------------|----------|--------|-------|-------|------|----------------|----------------|---|
| Analyte Name | Method   | Result | Units | MRL   | Dil. | Date Analyzed  | Date Extracted | Q |
| Arsenic      | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 17:41 | 08/22/17       |   |
| Cadmium      | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 17:41 | 08/22/17       |   |
| Copper       | 6020A    | ND U   | mg/Kg | 0.10  | 5    | 08/24/17 17:41 | 08/22/17       |   |
| Lead         | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 17:41 | 08/22/17       |   |
| Selenium     | 6020A    | ND U   | mg/Kg | 1.0   | 5    | 08/24/17 17:41 | 08/22/17       |   |
| Silver       | 6020A    | ND U   | mg/Kg | 0.020 | 5    | 08/24/17 17:41 | 08/22/17       |   |
| Zinc         | 6020A    | ND U   | mg/Kg | 0.50  | 5    | 08/24/17 17:41 | 08/22/17       |   |

### ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

2017 LGCDV1

Service Request: K1707899

**Project** 2017 Palmer Project Biomonitoring/160004158

**Date Collected:** 06/08/17

Sample Matrix: Animal Tissue

**Date Received:** 07/27/17 **Date Analyzed:** 08/24/17

**Replicate Sample Summary** 

Total Metals

**Units:** mg/Kg

**Lab Code:** K1707899-001

Sample Name:

Basis: Dry

| A 1 / N      | Analysis<br>Method | MDI   | Sample | Duplicate Sample<br>KQ1711848-05 |         | DDD | DDD 1 ::4 |
|--------------|--------------------|-------|--------|----------------------------------|---------|-----|-----------|
| Analyte Name | Method             | MRL   | Result | Result                           | Average | RPD | RPD Limit |
| Arsenic      | 6020A              | 0.50  | ND U   | ND U                             | ND      | -   | 20        |
| Cadmium      | 6020A              | 0.020 | 0.747  | 0.707                            | 0.727   | 5   | 20        |
| Copper       | 6020A              | 0.100 | 4.48   | 4.46                             | 4.47    | <1  | 20        |
| Lead         | 6020A              | 0.020 | 0.118  | 0.100                            | 0.109   | 17  | 20        |
| Selenium     | 6020A              | 1.00  | 6.1    | 5.9                              | 6.01    | 3   | 20        |
| Silver       | 6020A              | 0.020 | 0.025  | 0.021                            | 0.023   | 19  | 20        |
| Zinc         | 6020A              | 0.50  | 183    | 185                              | 184     | 1   | 20        |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

2017 Palmer Project Biomonitoring/160004158

Sample Matrix: Animal Tissue

Service Request: Date Collected: K1707899

**Date Received:** 

06/08/17

Date Received: Date Analyzed: 07/27/17

Date Extracted:

08/24/17 08/22/17

**Matrix Spike Summary** 

**Total Metals** 

2017 LGCDV1

Units: Basis:

mg/Kg Dry

Lab Code:

**Sample Name:** 

**Project:** 

K1707899-001

**Analysis Method:** 

6020A

Prep Method:

PSEP Metals

Matrix Spike

KQ1711848-06

| Analyte Name | Sample Result | Result | Spike Amount | % Rec | % Rec Limits |
|--------------|---------------|--------|--------------|-------|--------------|
| Arsenic      | ND U          | 19.7   | 16.7         | 118   | 75-125       |
| Cadmium      | 0.747         | 6.12   | 5.00         | 107   | 75-125       |
| Copper       | 4.48          | 28.6   | 25.0         | 96    | 75-125       |
| Lead         | 0.118         | 48.3   | 50.0         | 96    | 75-125       |
| Selenium     | 6.1           | 27.1   | 16.7         | 126 N | 75-125       |
| Silver       | 0.025         | 5.02   | 5.00         | 100   | 75-125       |
| Zinc         | 183           | 235    | 50.0         | 104   | 75-125       |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Alaska Department of Fish and Game

Project: 2017 Palmer Project Biomonitoring/160004158 Date Analyzed: 08/24/17

Sample Matrix: Animal Tissue

### Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Service Request: K1707899

### **Lab Control Sample**

KQ1711848-02

| <b>Analyte Name</b> | <b>Analytical Method</b> | Result | Spike Amount | % Rec | % Rec Limits |
|---------------------|--------------------------|--------|--------------|-------|--------------|
| Arsenic             | 6020A                    | 17.7   | 16.7         | 106   | 80-120       |
| Cadmium             | 6020A                    | 5.05   | 5.00         | 101   | 80-120       |
| Copper              | 6020A                    | 24.9   | 25.0         | 100   | 80-120       |
| Lead                | 6020A                    | 51.5   | 50.0         | 103   | 80-120       |
| Selenium            | 6020A                    | 19.1   | 16.7         | 114   | 80-120       |
| Silver              | 6020A                    | 4.92   | 5.00         | 98    | 80-120       |
| Zinc                | 6020A                    | 51.6   | 50.0         | 103   | 80-120       |

### ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client:Alaska Department of Fish and GameService Request:K1707899Project:2017 Palmer Project Biomonitoring/160004158Date Collected:NALCS Matrix:TissueDate Received:NA

**Date Extracted:** 08/22/17 **Date Analyzed:** 08/24/17

Standard Reference Material Summary

**Total Metals** 

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: KQ1711848-03SRM1 Basis: Dry

Test Notes: Dorm-4 Solids = 94.5%

Source: N.R.C.C. Dorm-4

| Analyte  | Prep<br>Method | Analysis<br>Method | True<br>Value | Result | Percent<br>Recovery | Control<br>Limits | Result<br>Notes |
|----------|----------------|--------------------|---------------|--------|---------------------|-------------------|-----------------|
| Arsenic  | PSEP Tissue    | 6020A              | 6.8           | 7.6    | 112                 | 4.93-8.93         |                 |
| Cadmium  | PSEP Tissue    | 6020A              | 0.306         | 0.319  | 104                 | 0.233 - 0.385     |                 |
| Copper   | PSEP Tissue    | 6020A              | 15.9          | 14.8   | 93                  | 12.0 - 20.2       |                 |
| Lead     | PSEP Tissue    | 6020A              | 0.416         | 0.379  | 91                  | 0.290 - 0.563     |                 |
| Selenium | PSEP Tissue    | 6020A              | 3.56          | 4.12   | 116                 | 2.58 - 4.68       |                 |
| Zinc     | PSEP Tissue    | 6020A              | 52.20         | 51.1   | 98                  | 39.2 - 66.5       |                 |

K1707899ICP.SP2 - DORM4 08/28/17 Page No.:

### ALS Group USA, Corp. dba ALS Environmental QA/QC Report

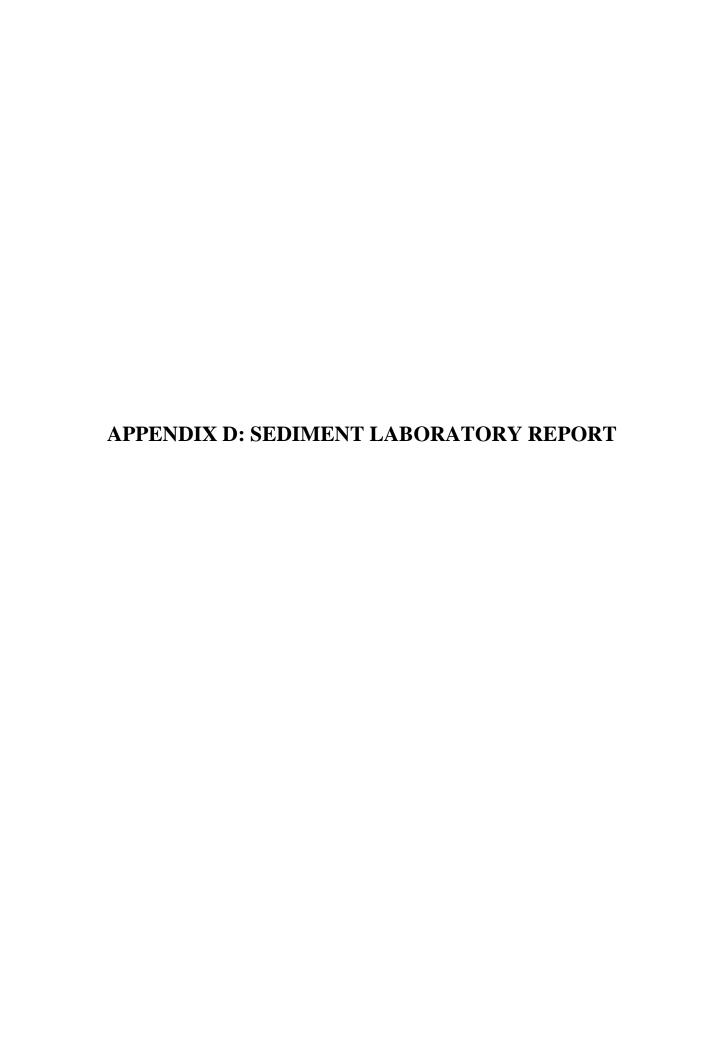
Client:Alaska Department of Fish and GameService Request:K1707899Project:2017 Palmer Project Biomonitoring/160004158Date Collected:NALCS Matrix:TissueDate Received:NA

Date Extracted: 08/22/17
Date Analyzed: 08/24/17

Standard Reference Material Summary

**Total Metals** 

Sample Name: Standard Reference Material Units: mg/Kg (ppm)


Lab Code: KQ1711848-04SRM2 Basis: Dry

Test Notes: Tort-3 Solids = 99.1%

Source: N.R.C.C. Tort-3

| Analyte  | Prep<br>Method | Analysis<br>Method | True<br>Value | Result | Percent<br>Recovery | Control<br>Limits | Result<br>Notes |
|----------|----------------|--------------------|---------------|--------|---------------------|-------------------|-----------------|
| Arsenic  | PSEP Tissue    | 6020A              | 59.5          | 70.3   | 118                 | 44.6-76.0         |                 |
| Cadmium  | PSEP Tissue    | 6020A              | 42.3          | 41.7   | 99                  | 32.4-52.9         |                 |
| Copper   | PSEP Tissue    | 6020A              | 497           | 432    | 87                  | 380-623           |                 |
| Lead     | PSEP Tissue    | 6020A              | 0.225         | 0.205  | 91                  | 0.166-0.292       |                 |
| Selenium | PSEP Tissue    | 6020A              | 10.9          | 11.9   | 109                 | 7.9-14.3          |                 |
| Zinc     | PSEP Tissue    | 6020A              | 136           | 135    | 99                  | 104-170           |                 |

K1707899ICP.SP2 - TORT3 08/28/17 Page No.:



### D.1. 2017 Glacier Creek sediment laboratory report.



Constantine North Inc. Date Received: 12-JUN-17

ATTN: Allegra Cairns Report Date: 23-JUN-17 13:16 (MT)

Version: FINAL

Vancouver BC V6C 2V6

Suite 320 - 800 West Pender St.

Client Phone: 604-329-5982

# Certificate of Analysis

Lab Work Order #: L1941345
Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: 14-470894

Legal Site Desc:

Elwin Ko Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🦣

L1941345 CONTD....

PAGE 2 of 9 23-JUN-17 13:16 (MT)

Version: FINAL

|               |                 | Sample ID Description Sampled Date Sampled Time Client ID | L1941345-1<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 1 | L1941345-2<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 2 | L1941345-3<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 3 | L1941345-4<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 4 | L1941345-5<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 5 |
|---------------|-----------------|-----------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| Grouping      | Analyte         |                                                           | •                                                                 |                                                                   |                                                                   |                                                                   |                                                                   |
| MISC.         |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
| Miscellaneous | Special Request |                                                           | See Attached                                                      |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
|               |                 |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1941345 CONTD....

PAGE 3 of 9 23-JUN-17 13:16 (MT)

Version: FINAL

|               |                 | Sample ID Description Sampled Date Sampled Time Client ID | L1941345-6<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 1 | L1941345-7<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 2 | L1941345-8<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 3 | L1941345-9<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 4 | L1941345-10<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 5 |
|---------------|-----------------|-----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
| Grouping      | Analyte         |                                                           | •                                                                  |                                                                    |                                                                    |                                                                    |                                                                     |
| MISC.         |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
| Miscellaneous | Special Request |                                                           | See Attached                                                        |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|               |                 |                                                           |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1941345 CONTD.... PAGE 4 of 9

### ALS ENVIRONMENTAL ANALYTICAL REPORT

23-JUN-17 13:16 (MT) Version: FINAL

|                               | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1941345-1<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 1 | L1941345-2<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 2 | L1941345-3<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 3 | L1941345-4<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 4 | L1941345-5<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 5 |
|-------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| Grouping                      | Analyte                                                               |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
| SOIL                          |                                                                       |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
| Physical Tests                | Loss on Ignition @ 550 C (%)                                          | <1                                                                | <1                                                                | 1                                                                 | 1                                                                 | 1                                                                 |
|                               | Moisture (%)                                                          | 17.7                                                              | 26.7                                                              | 26.1                                                              | 22.2                                                              | 23.7                                                              |
|                               | pH (1:2 soil:water) (pH)                                              | 8.60                                                              | 8.37                                                              | 8.32                                                              | 8.45                                                              | 8.55                                                              |
| Organic /<br>Inorganic Carbon | Total Organic Carbon (%)                                              | <0.16                                                             | <0.17                                                             | 0.20                                                              | 0.25                                                              | <0.16                                                             |
| Inorganic<br>Parameters       | Acid Volatile Sulphides (mg/kg)                                       | <0.20                                                             | <0.20                                                             | <0.20                                                             | <0.20                                                             | <0.20                                                             |
| Metals                        | Aluminum (Al) (mg/kg)                                                 | 15500                                                             | 16300                                                             | 14700                                                             | 14900                                                             | 13300                                                             |
|                               | Antimony (Sb) (mg/kg)                                                 | 0.36                                                              | 0.52                                                              | 0.60                                                              | 0.51                                                              | 0.56                                                              |
|                               | Arsenic (As) (mg/kg)                                                  | 3.91                                                              | 5.68                                                              | 5.49                                                              | 4.66                                                              | 3.94                                                              |
|                               | Barium (Ba) (mg/kg)                                                   | 131                                                               | 183                                                               | 168                                                               | 165                                                               | 79.9                                                              |
|                               | Beryllium (Be) (mg/kg)                                                | 0.20                                                              | 0.24                                                              | 0.24                                                              | 0.22                                                              | 0.20                                                              |
|                               | Bismuth (Bi) (mg/kg)                                                  | <0.20                                                             | <0.20                                                             | <0.20                                                             | <0.20                                                             | <0.20                                                             |
|                               | Boron (B) (mg/kg)                                                     | <5.0                                                              | <5.0                                                              | <5.0                                                              | <5.0                                                              | <5.0                                                              |
|                               | Cadmium (Cd) (mg/kg)                                                  | 0.510                                                             | 0.910                                                             | 1.01                                                              | 0.821                                                             | 0.818                                                             |
|                               | Calcium (Ca) (mg/kg)                                                  | 24400                                                             | 28800                                                             | 27300                                                             | 26600                                                             | 22800                                                             |
|                               | Chromium (Cr) (mg/kg)                                                 | 28.6                                                              | 29.2                                                              | 30.7                                                              | 28.9                                                              | 22.5                                                              |
|                               | Cobalt (Co) (mg/kg)                                                   | 22.9                                                              | 30.5                                                              | 25.4                                                              | 27.3                                                              | 26.2                                                              |
|                               | Copper (Cu) (mg/kg)                                                   | 37.0                                                              | 58.5                                                              | 53.6                                                              | 60.1                                                              | 48.9                                                              |
|                               | Iron (Fe) (mg/kg)                                                     | 47300                                                             | 57800                                                             | 51100                                                             | 53600                                                             | 51400                                                             |
|                               | Lead (Pb) (mg/kg)                                                     | 7.90                                                              | 20.6                                                              | 8.49                                                              | 20.1                                                              | 7.03                                                              |
|                               | Lithium (Li) (mg/kg)                                                  | 6.8                                                               | 7.2                                                               | 6.9                                                               | 6.8                                                               | 6.5                                                               |
|                               | Magnesium (Mg) (mg/kg)                                                | 12500                                                             | 12800                                                             | 11800                                                             | 12000                                                             | 11200                                                             |
|                               | Manganese (Mn) (mg/kg)                                                | 706                                                               | 820                                                               | 724                                                               | 715                                                               | 662                                                               |
|                               | Mercury (Hg) (mg/kg)                                                  | 0.0120                                                            | 0.0194                                                            | 0.0204                                                            | 0.0144                                                            | 0.0135                                                            |
|                               | Molybdenum (Mo) (mg/kg)                                               | 1.19                                                              | 1.45                                                              | 2.03                                                              | 1.66                                                              | 4.95                                                              |
|                               | Nickel (Ni) (mg/kg)                                                   | 18.5                                                              | 21.5                                                              | 23.5                                                              | 21.0                                                              | 17.0                                                              |
|                               | Phosphorus (P) (mg/kg)                                                | 981                                                               | 1080                                                              | 896                                                               | 940                                                               | 854                                                               |
|                               | Potassium (K) (mg/kg)                                                 | 1260                                                              | 1490                                                              | 1200                                                              | 1310                                                              | 1280                                                              |
|                               | Selenium (Se) (mg/kg)                                                 | 1.22                                                              | 1.35                                                              | 1.67                                                              | 1.39                                                              | 1.54                                                              |
|                               | Silver (Ag) (mg/kg)                                                   | 0.14                                                              | 0.25                                                              | 0.26                                                              | 0.21                                                              | 0.17                                                              |
|                               | Sodium (Na) (mg/kg)                                                   | 148                                                               | 192                                                               | 170                                                               | 185                                                               | 114                                                               |
|                               | Strontium (Sr) (mg/kg)                                                | 62.6                                                              | 75.4                                                              | 71.4                                                              | 68.9                                                              | 54.4                                                              |
|                               | Sulfur (S) (mg/kg)                                                    | 3900                                                              | 6200                                                              | 4700                                                              | 5600                                                              | 6200                                                              |
|                               | Thallium (TI) (mg/kg)                                                 | 0.064                                                             | 0.098                                                             | 0.079                                                             | 0.083                                                             | 0.067                                                             |
|                               | Tin (Sn) (mg/kg)                                                      | <2.0                                                              | <2.0                                                              | <2.0                                                              | <2.0                                                              | <2.0                                                              |
|                               | Titanium (Ti) (mg/kg)                                                 | 1760                                                              | 1980                                                              | 1750                                                              | 1790                                                              | 1090                                                              |
|                               | Tungsten (W) (mg/kg)                                                  | <0.50                                                             | <0.50                                                             | <0.50                                                             | <0.50                                                             | <0.50                                                             |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1941345 CONTD.... PAGE 5 of 9

23-JUN-17 13:16 (MT) Version: FINAL

|                               | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1941345-6<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 1 | L1941345-7<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 2 | L1941345-8<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 3 | L1941345-9<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 4 | L1941345-10<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 5 |
|-------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
| Grouping                      | Analyte                                                               |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
| SOIL                          |                                                                       |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
| Physical Tests                | Loss on Ignition @ 550 C (%)                                          | 1                                                                  | 1                                                                  | 1                                                                  | 2                                                                  | 1                                                                   |
|                               | Moisture (%)                                                          | 17.5                                                               | 19.7                                                               | 23.9                                                               | 25.2                                                               | 25.3                                                                |
|                               | pH (1:2 soil:water) (pH)                                              | 8.59                                                               | 8.69                                                               | 8.50                                                               | 8.47                                                               | 8.49                                                                |
| Organic /<br>Inorganic Carbon | Total Organic Carbon (%)                                              | <0.16                                                              | <0.17                                                              | <0.19                                                              | 0.27                                                               | <0.19                                                               |
| Inorganic<br>Parameters       | Acid Volatile Sulphides (mg/kg)                                       | <0.20                                                              | <0.20                                                              | 0.30                                                               | <0.20                                                              | <0.20                                                               |
| Metals                        | Aluminum (Al) (mg/kg)                                                 | 15700                                                              | 13800                                                              | 14700                                                              | 16000                                                              | 15600                                                               |
|                               | Antimony (Sb) (mg/kg)                                                 | 0.33                                                               | 0.39                                                               | 0.51                                                               | 0.49                                                               | 0.46                                                                |
|                               | Arsenic (As) (mg/kg)                                                  | 3.68                                                               | 4.76                                                               | 4.88                                                               | 4.47                                                               | 4.73                                                                |
|                               | Barium (Ba) (mg/kg)                                                   | 158                                                                | 100                                                                | 162                                                                | 196                                                                | 194                                                                 |
|                               | Beryllium (Be) (mg/kg)                                                | 0.23                                                               | 0.22                                                               | 0.22                                                               | 0.22                                                               | 0.22                                                                |
|                               | Bismuth (Bi) (mg/kg)                                                  | <0.20                                                              | <0.20                                                              | <0.20                                                              | <0.20                                                              | <0.20                                                               |
|                               | Boron (B) (mg/kg)                                                     | <5.0                                                               | <5.0                                                               | <5.0                                                               | <5.0                                                               | <5.0                                                                |
|                               | Cadmium (Cd) (mg/kg)                                                  | 0.758                                                              | 0.902                                                              | 1.11                                                               | 1.14                                                               | 1.07                                                                |
|                               | Calcium (Ca) (mg/kg)                                                  | 24400                                                              | 23200                                                              | 28200                                                              | 32100                                                              | 28800                                                               |
|                               | Chromium (Cr) (mg/kg)                                                 | 27.6                                                               | 22.7                                                               | 33.1                                                               | 33.0                                                               | 33.0                                                                |
|                               | Cobalt (Co) (mg/kg)                                                   | 23.4                                                               | 27.9                                                               | 24.9                                                               | 23.0                                                               | 24.9                                                                |
|                               | Copper (Cu) (mg/kg)                                                   | 48.1                                                               | 45.5                                                               | 75.6                                                               | 55.7                                                               | 62.1                                                                |
|                               | Iron (Fe) (mg/kg)                                                     | 49400                                                              | 53400                                                              | 54500                                                              | 47500                                                              | 50800                                                               |
|                               | Lead (Pb) (mg/kg)                                                     | 8.67                                                               | 14.8                                                               | 12.5                                                               | 12.3                                                               | 11.9                                                                |
|                               | Lithium (Li) (mg/kg)                                                  | 7.3                                                                | 6.7                                                                | 7.2                                                                | 7.4                                                                | 7.2                                                                 |
|                               | Magnesium (Mg) (mg/kg)                                                | 13000                                                              | 11800                                                              | 12100                                                              | 13100                                                              | 12600                                                               |
|                               | Manganese (Mn) (mg/kg)                                                | 755                                                                | 691                                                                | 711                                                                | 867                                                                | 794                                                                 |
|                               | Mercury (Hg) (mg/kg)                                                  | 0.0094                                                             | 0.0179                                                             | 0.0161                                                             | 0.0210                                                             | 0.0181                                                              |
|                               | Molybdenum (Mo) (mg/kg)                                               | 1.20                                                               | 1.00                                                               | 2.76                                                               | 2.20                                                               | 2.19                                                                |
|                               | Nickel (Ni) (mg/kg)                                                   | 19.2                                                               | 16.4                                                               | 26.0                                                               | 24.6                                                               | 24.7                                                                |
|                               | Phosphorus (P) (mg/kg)                                                | 967                                                                | 879                                                                | 912                                                                | 1080                                                               | 1080                                                                |
|                               | Potassium (K) (mg/kg)                                                 | 1410                                                               | 1490                                                               | 1240                                                               | 1320                                                               | 1360                                                                |
|                               | Selenium (Se) (mg/kg)                                                 | 0.90                                                               | 0.93                                                               | 2.05                                                               | 1.30                                                               | 1.42                                                                |
|                               | Silver (Ag) (mg/kg)                                                   | 0.14                                                               | 0.15                                                               | 0.33                                                               | 0.18                                                               | 0.21                                                                |
|                               | Sodium (Na) (mg/kg)                                                   | 178                                                                | 140                                                                | 148                                                                | 158                                                                | 161                                                                 |
|                               | Strontium (Sr) (mg/kg)                                                | 64.4                                                               | 54.3                                                               | 71.2                                                               | 79.6                                                               | 69.9                                                                |
|                               | Sulfur (S) (mg/kg)                                                    | 2800                                                               | 6700                                                               | 4800                                                               | 2900                                                               | 3200                                                                |
|                               | Thallium (TI) (mg/kg)                                                 | 0.083                                                              | 0.077                                                              | 0.084                                                              | 0.083                                                              | 0.093                                                               |
|                               | Tin (Sn) (mg/kg)                                                      | <2.0                                                               | <2.0                                                               | <2.0                                                               | <2.0                                                               | <2.0                                                                |
|                               | Titanium (Ti) (mg/kg)                                                 | 1520                                                               | 1390                                                               | 1590                                                               | 1680                                                               | 1420                                                                |
|                               | Tungsten (W) (mg/kg)                                                  | <0.50                                                              | <0.50                                                              | <0.50                                                              | <0.50                                                              | <0.50                                                               |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1941345 CONTD....

PAGE 6 of 9 23-JUN-17 13:16 (MT)

Version: FINAL

| SOIL                                                                                                                                                                                                                                                                                        |                            | Sample ID Description Sampled Date Sampled Time Client ID | L1941345-1<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 1 | L1941345-2<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 2 | L1941345-3<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 3 | L1941345-4<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 4 | L1941345-5<br>Soil<br>09-JUN-17<br>14:00<br>LOWER GLACIER<br>CK 5 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| Metals         Uranium (U) (mg/kg)         0.274         0.339         0.426         0.344         0.277           Vanadium (V) (mg/kg)         112         125         116         122         108           Zinc (Zn) (mg/kg)         133         202         186         173         186 | Grouping Analyte           |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
| Vanadium (V) (mg/kg)     112     125     116     122     108       Zinc (Zn) (mg/kg)     133     202     186     173     186                                                                                                                                                                | SOIL                       |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |
| Vanadium (V) (mg/kg)     112     125     116     122     108       Zinc (Zn) (mg/kg)     133     202     186     173     186                                                                                                                                                                | Metals Uranium (U) (mg/kg) |                                                           | 0.274                                                             | 0.339                                                             | 0.426                                                             | 0.344                                                             | 0.277                                                             |
|                                                                                                                                                                                                                                                                                             | Vanadium (V) (mg/kg)       |                                                           |                                                                   |                                                                   | 116                                                               |                                                                   |                                                                   |
| Zirconium (Zi) (mg/kg) 1.7 2.2 1.6 2.1 1.2                                                                                                                                                                                                                                                  | Zinc (Zn) (mg/kg)          |                                                           | 133                                                               | 202                                                               | 186                                                               | 173                                                               | 186                                                               |
|                                                                                                                                                                                                                                                                                             | Zirconium (Zr) (mg/kg)     |                                                           | 1.7                                                               | 2.2                                                               | 1.6                                                               | 2.1                                                               | 1.2                                                               |
|                                                                                                                                                                                                                                                                                             |                            |                                                           |                                                                   |                                                                   |                                                                   |                                                                   |                                                                   |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1941345 CONTD....

PAGE 7 of 9 23-JUN-17 13:16 (MT)

Version: FINAL

|          |                        | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1941345-6<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 1 | L1941345-7<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 2 | L1941345-8<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 3 | L1941345-9<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 4 | L1941345-10<br>Soil<br>09-JUN-17<br>12:00<br>MIDDLE GLACIER<br>CK 5 |
|----------|------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
| Grouping | Analyte                |                                                                       | -                                                                  |                                                                    |                                                                    |                                                                    |                                                                     |
| SOIL     |                        |                                                                       |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
| Metals   | Uranium (U) (mg/kg)    |                                                                       | 0.321                                                              | 0.224                                                              | 0.487                                                              | 0.377                                                              | 0.363                                                               |
|          | Vanadium (V) (mg/kg)   |                                                                       | 115                                                                | 116                                                                | 120                                                                | 107                                                                | 111                                                                 |
|          | Zinc (Zn) (mg/kg)      |                                                                       | 190                                                                | 203                                                                | 189                                                                | 205                                                                | 199                                                                 |
|          | Zirconium (Zr) (mg/kg) |                                                                       | 1.5                                                                | 1.5                                                                | 1.8                                                                | 1.6                                                                | 1.4                                                                 |
|          |                        |                                                                       |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|          |                        |                                                                       |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |
|          |                        |                                                                       |                                                                    |                                                                    |                                                                    |                                                                    |                                                                     |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

## Reference Information

L1941345 CONTD.... PAGE 8 of 9 23-JUN-17 13:16 (MT) Version: FINΔI

QC Samples with Qualifiers & Comments:

| QC Type Description | Parameter       | Qualifier | Applies to Sample Number(s) |  |
|---------------------|-----------------|-----------|-----------------------------|--|
| Duplicate           | Copper (Cu)     | DUP-H     | L1941345-1, -10, -2, -9     |  |
| Duplicate           | Molybdenum (Mo) | DUP-H     | L1941345-1, -10, -2, -9     |  |

**Qualifiers for Individual Parameters Listed:** 

Qualifier Description

DUP-H Duplicate results outside ALS DQO, due to sample heterogeneity.

**Test Method References:** 

**ALS Test Code** Matrix Method Reference\*\* **Test Description** C-TIC-PCT-SK Soil Total Inorganic Carbon in Soil CSSS (2008) P216-217

A known quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of the resulting solution is measured and compared against a standard curve relating pH to weight of carbonate.

C-TOC-CALC-SK Soil **Total Organic Carbon Calculation** 

CSSS (2008) 21.2

Total Organic Carbon (TOC) is calculated by the difference between total carbon (TC) and total inorganic carbon. (TIC)

C-TOT-LECO-SK Soil Total Carbon by combustion method CSSS (2008) 21.2

The sample is ignited in a combustion analyzer where carbon in the reduced CO2 gas is determined using a thermal conductivity detector.

HG-200.2-CVAF-VA Soil Mercury in Soil by CVAFS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAFS.

IC-CACO3-CALC-SK Inorganic Carbon as CaCO3 Equivalent Calculation Soil

LOI-550-SK Loss on Ignition @ 550 C CSSS (1993) p.461-462

The sample is air dried at 40C overnight, then ground to < 2mm in particle size using a flail grinder. A portion of the dried and ground sample is dried at 105C overnight, then ignited at 550C for 16-20 hours. Loss on ignition at 550C is reported on a dry sample basis.

Loss on Ignition at 550C can be used as an estimation of Organic Matter (CSSS 2008)

MET-200.2-CCMS-VA Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod) Soil

This method uses a heated strong acid digestion with HNO3 and HCI and is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.

MOISTURE-VA Moisture content CWS for PHC in Soil - Tier 1 Soil

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction) BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

SPECIAL REQUEST-SK Misc. SEE SUBLET LAB RESULTS Special Request Sask Lab

SULPHIDE-WT APHA 4500S2J Soil Sulphide, Acid Volatile

This analysis is carried out in accordance with the method described in APHA 4500 S2-J. Hydrochloric acid is added to sediment samples within a purge and trap system. The evolved hydrogen sulphide (H2S) is carried into a basic solution by inert gas. The acid volatile sulfide is then determined colourimetrically.

\*\* ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

| <b>Laboratory Definition Code</b> | Laboratory Location                                     |
|-----------------------------------|---------------------------------------------------------|
| SK                                | ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA     |
| WT                                | ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA           |
| VA                                | ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA |
| Chain of Custody Numbers:         |                                                         |

#### Chain of Custody Numbers:

**Reference Information** 

L1941345 CONTD....

PAGE 9 of 9

23-JUN-17 13:16 (MT)

Version: FINAL

14-470894

### **GLOSSARY OF REPORT TERMS**

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

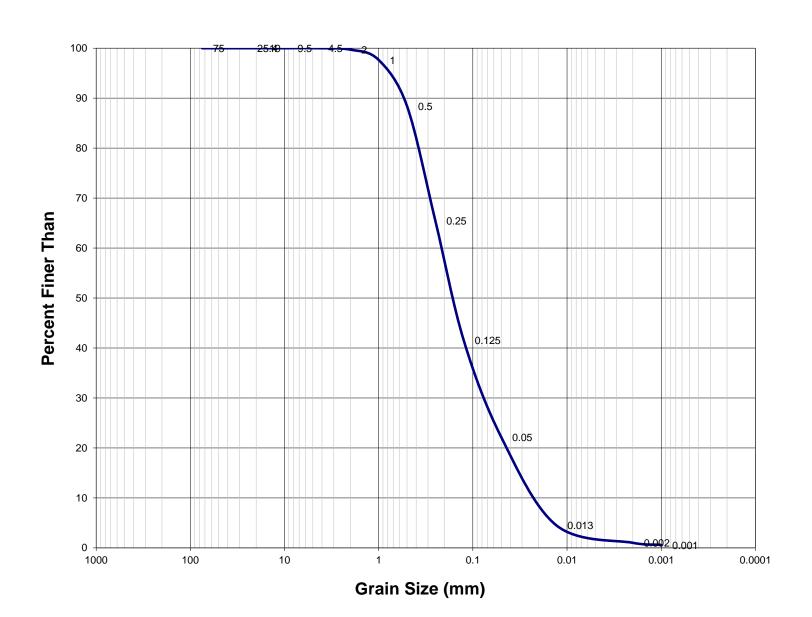
< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.


Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

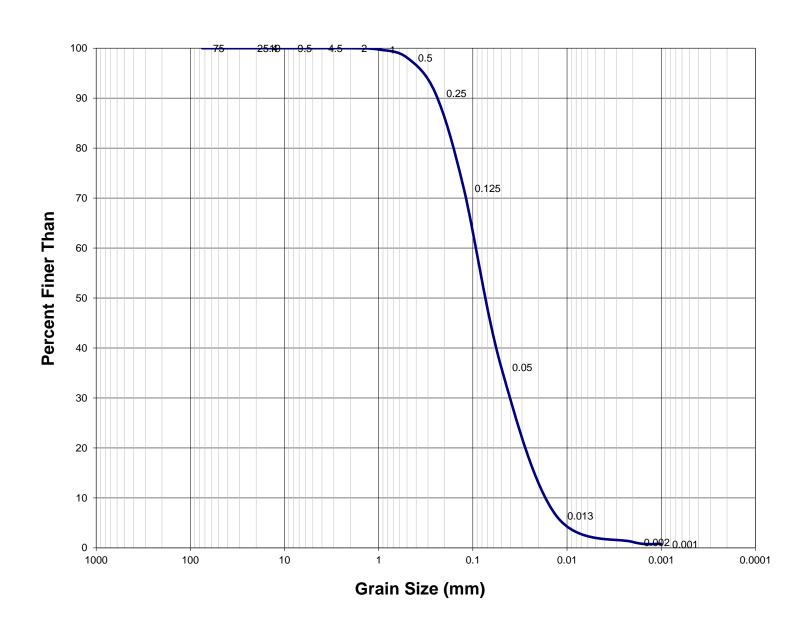
Project:

Sample ID: LOWER GLACIER CK 1

Lab ID: L1941345-1

# **Particle Size Distribution Curve**




| Size Class        | Range (mm)   | Wt. (%) | Size Class      | Range (mm)    | Wt. (%) |
|-------------------|--------------|---------|-----------------|---------------|---------|
| Gravel            | > 75         | 0.00    | Sand, Medium    | 0.425 - 0.25  | 16.08   |
| Gravel            | 75 - 19      | 0.00    | Sand, Fine      | 0.25 - 0.106  | 28.81   |
| Gravel            | 19 - 9.5     | 0.00    | Sand, Very Fine | 0.106 - 0.075 | 8.00    |
| Gravel, Medium    | 9.5 - 4.75   | 0.00    | Silt and Clay   | 0.075 - 0.074 | 0.26    |
| Gravel, Fine      | 4.75 - 2     | 0.29    | Silt and Clay   | 0.074 - 0.005 | 26.41   |
| Sand, Very Coarse | 2 - 0.85     | 4.83    | Silt and Clay   | 0.005 - 0.001 | 1.28    |
| Sand, Coarse      | 0.85 - 0.425 | 13.35   | Clay            | <0.001        | 0.70    |

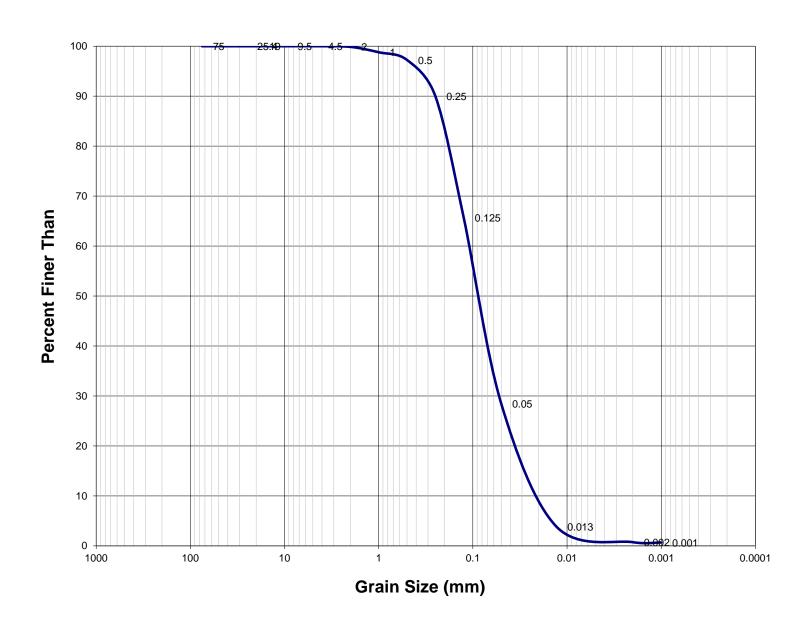
Project:

Sample ID: MIDDLE GLACIER CK 5

Lab ID: L1941345-10

# **Particle Size Distribution Curve**




| Size Class        | Range (mm)   | Wt. (%) | Size Class      | Range (mm)    | Wt. (%) |
|-------------------|--------------|---------|-----------------|---------------|---------|
| Gravel            | > 75         | 0.00    | Sand, Medium    | 0.425 - 0.25  | 4.98    |
| Gravel            | 75 - 19      | 0.00    | Sand, Fine      | 0.25 - 0.106  | 28.10   |
| Gravel            | 19 - 9.5     | 0.00    | Sand, Very Fine | 0.106 - 0.075 | 14.79   |
| Gravel, Medium    | 9.5 - 4.75   | 0.00    | Silt and Clay   | 0.075 - 0.074 | 0.48    |
| Gravel, Fine      | 4.75 - 2     | 0.00    | Silt and Clay   | 0.074 - 0.005 | 45.03   |
| Sand, Very Coarse | 2 - 0.85     | 0.75    | Silt and Clay   | 0.005 - 0.001 | 1.91    |
| Sand, Coarse      | 0.85 - 0.425 | 3.27    | Clay            | <0.001        | 0.71    |

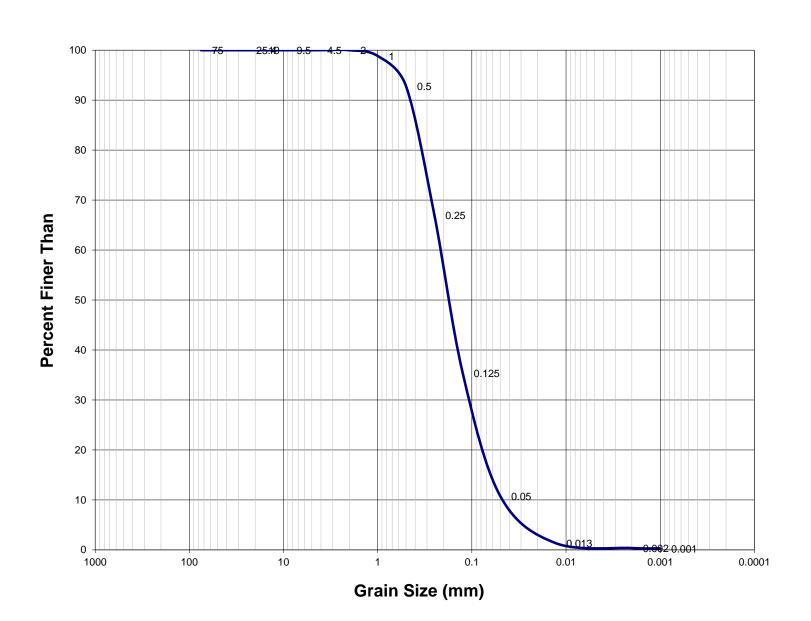
Project:

Sample ID: LOWER GLACIER CK 2

Lab ID: L1941345-2

# **Particle Size Distribution Curve**




| Size Class        | Range (mm)   | Wt. (%) | Size Class      | Range (mm)    | Wt. (%) |
|-------------------|--------------|---------|-----------------|---------------|---------|
| Gravel            | > 75         | 0.00    | Sand, Medium    | 0.425 - 0.25  | 5.08    |
| Gravel            | 75 - 19      | 0.00    | Sand, Fine      | 0.25 - 0.106  | 33.72   |
| Gravel            | 19 - 9.5     | 0.00    | Sand, Very Fine | 0.106 - 0.075 | 15.37   |
| Gravel, Medium    | 9.5 - 4.75   | 0.00    | Silt and Clay   | 0.075 - 0.074 | 0.50    |
| Gravel, Fine      | 4.75 - 2     | 0.14    | Silt and Clay   | 0.074 - 0.005 | 38.81   |
| Sand, Very Coarse | 2 - 0.85     | 1.54    | Silt and Clay   | 0.005 - 0.001 | 1.14    |
| Sand, Coarse      | 0.85 - 0.425 | 3.26    | Clay            | <0.001        | 0.46    |

Project:

Sample ID: LOWER GLACIER CK 3

Lab ID: L1941345-3

# **Particle Size Distribution Curve**




| Size Class        | Range (mm)   | Wt. (%) | Size Class      | Range (mm)    | Wt. (%) |
|-------------------|--------------|---------|-----------------|---------------|---------|
| Gravel            | > 75         | 0.00    | Sand, Medium    | 0.425 - 0.25  | 18.05   |
| Gravel            | 75 - 19      | 0.00    | Sand, Fine      | 0.25 - 0.106  | 37.87   |
| Gravel            | 19 - 9.5     | 0.00    | Sand, Very Fine | 0.106 - 0.075 | 10.16   |
| Gravel, Medium    | 9.5 - 4.75   | 0.00    | Silt and Clay   | 0.075 - 0.074 | 0.33    |
| Gravel, Fine      | 4.75 - 2     | 0.00    | Silt and Clay   | 0.074 - 0.005 | 18.02   |
| Sand, Very Coarse | 2 - 0.85     | 2.97    | Silt and Clay   | 0.005 - 0.001 | 0.37    |
| Sand, Coarse      | 0.85 - 0.425 | 11.96   | Clay            | <0.001        | 0.28    |

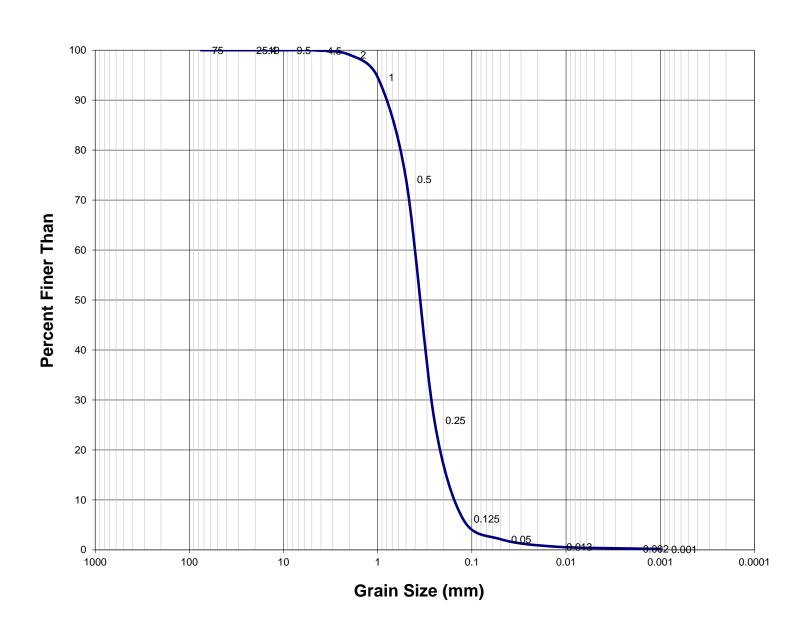
Project:

Sample ID: LOWER GLACIER CK 4

Lab ID: L1941345-4

# **Particle Size Distribution Curve**




| Size Class        | Range (mm)   | Wt. (%) | Size Class      | Range (mm)    | Wt. (%) |
|-------------------|--------------|---------|-----------------|---------------|---------|
| Gravel            | > 75         | 0.00    | Sand, Medium    | 0.425 - 0.25  | 14.11   |
| Gravel            | 75 - 19      | 0.00    | Sand, Fine      | 0.25 - 0.106  | 34.57   |
| Gravel            | 19 - 9.5     | 0.00    | Sand, Very Fine | 0.106 - 0.075 | 10.72   |
| Gravel, Medium    | 9.5 - 4.75   | 0.36    | Silt and Clay   | 0.075 - 0.074 | 0.35    |
| Gravel, Fine      | 4.75 - 2     | 0.26    | Silt and Clay   | 0.074 - 0.005 | 27.40   |
| Sand, Very Coarse | 2 - 0.85     | 2.16    | Silt and Clay   | 0.005 - 0.001 | 0.88    |
| Sand, Coarse      | 0.85 - 0.425 | 8.75    | Clay            | <0.001        | 0.45    |

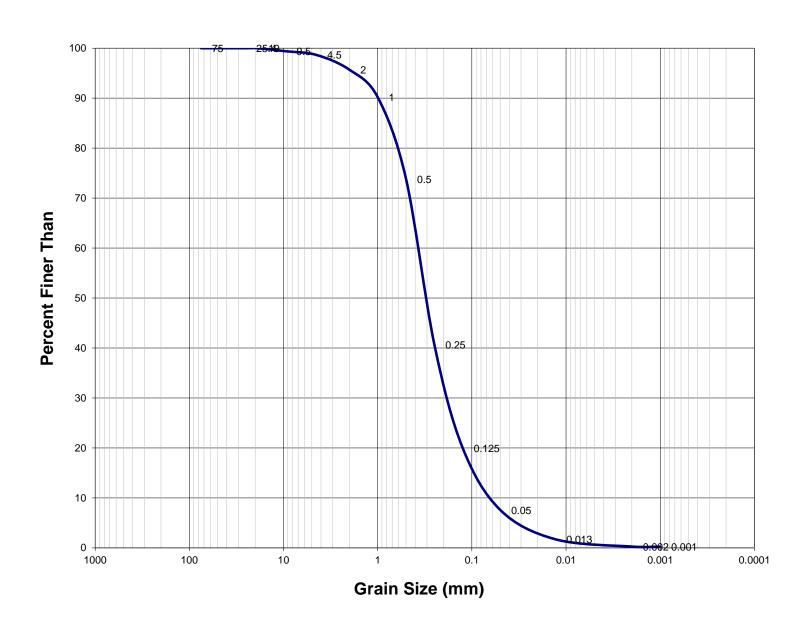
Project:

Sample ID: LOWER GLACIER CK 5

Lab ID: L1941345-5

# **Particle Size Distribution Curve**




| Size Class        | Range (mm)   | Wt. (%) | Size Class      | Range (mm)    | Wt. (%) |
|-------------------|--------------|---------|-----------------|---------------|---------|
| Gravel            | > 75         | 0.00    | Sand, Medium    | 0.425 - 0.25  | 33.77   |
| Gravel            | 75 - 19      | 0.00    | Sand, Fine      | 0.25 - 0.106  | 20.74   |
| Gravel            | 19 - 9.5     | 0.00    | Sand, Very Fine | 0.106 - 0.075 | 1.71    |
| Gravel, Medium    | 9.5 - 4.75   | 0.05    | Silt and Clay   | 0.075 - 0.074 | 0.06    |
| Gravel, Fine      | 4.75 - 2     | 0.86    | Silt and Clay   | 0.074 - 0.005 | 3.10    |
| Sand, Very Coarse | 2 - 0.85     | 10.62   | Silt and Clay   | 0.005 - 0.001 | 0.14    |
| Sand, Coarse      | 0.85 - 0.425 | 28.73   | Clay            | <0.001        | 0.24    |

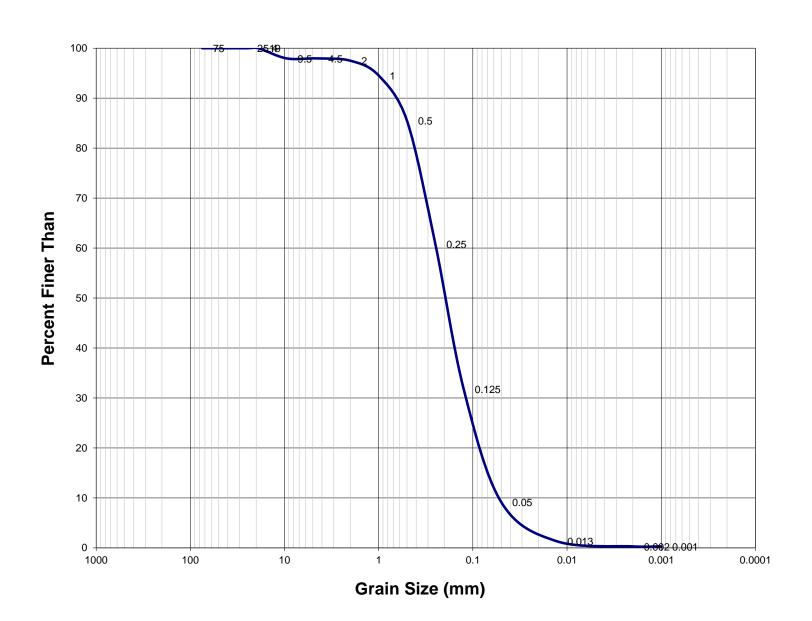
Project:

Sample ID: MIDDLE GLACIER CK 1

Lab ID: L1941345-6

# **Particle Size Distribution Curve**




| Size Class        | Range (mm)   | Wt. (%) | Size Class      | Range (mm)    | Wt. (%) |
|-------------------|--------------|---------|-----------------|---------------|---------|
| Gravel            | > 75         | 0.00    | Sand, Medium    | 0.425 - 0.25  | 23.21   |
| Gravel            | 75 - 19      | 0.00    | Sand, Fine      | 0.25 - 0.106  | 23.84   |
| Gravel            | 19 - 9.5     | 0.61    | Sand, Very Fine | 0.106 - 0.075 | 5.12    |
| Gravel, Medium    | 9.5 - 4.75   | 0.69    | Silt and Clay   | 0.075 - 0.074 | 0.17    |
| Gravel, Fine      | 4.75 - 2     | 3.00    | Silt and Clay   | 0.074 - 0.005 | 10.90   |
| Sand, Very Coarse | 2 - 0.85     | 10.41   | Silt and Clay   | 0.005 - 0.001 | 0.53    |
| Sand, Coarse      | 0.85 - 0.425 | 21.39   | Clay            | <0.001        | 0.13    |

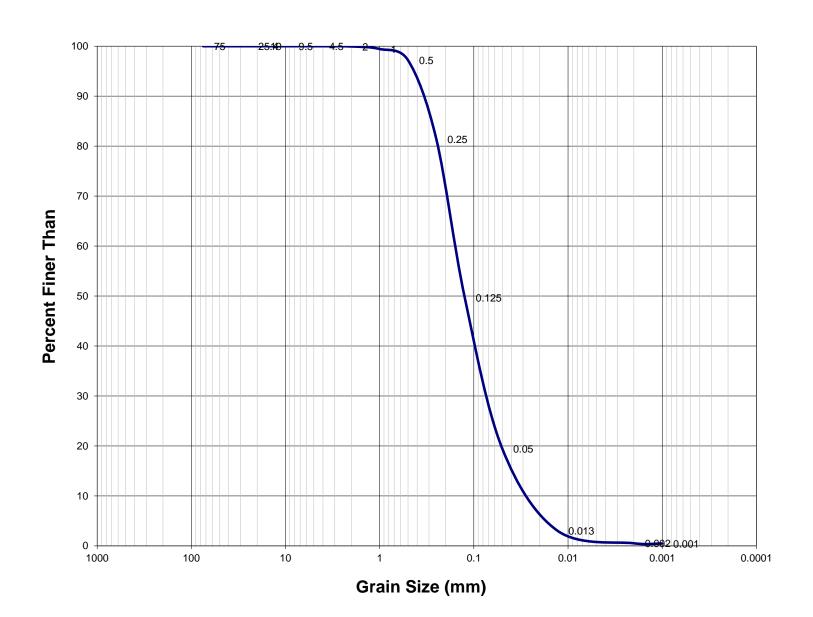
Project:

Sample ID: MIDDLE GLACIER CK 2

Lab ID: L1941345-7

# **Particle Size Distribution Curve**




| Size Class        | Range (mm)   | Wt. (%) | Size Class      | Range (mm)    | Wt. (%) |  |  |
|-------------------|--------------|---------|-----------------|---------------|---------|--|--|
| Gravel            | > 75         | 0.00    | Sand, Medium    | 0.425 - 0.25  | 17.28   |  |  |
| Gravel            | 75 - 19      | 0.00    | Sand, Fine      | 0.25 - 0.106  | 34.75   |  |  |
| Gravel            | 19 - 9.5     | 2.05    | Sand, Very Fine | 0.106 - 0.075 | 9.33    |  |  |
| Gravel, Medium    | 9.5 - 4.75   | 0.00    | Silt and Clay   | 0.075 - 0.074 | 0.30    |  |  |
| Gravel, Fine      | 4.75 - 2     | 0.46    | Silt and Clay   | 0.074 - 0.005 | 15.82   |  |  |
| Sand, Very Coarse | 2 - 0.85     | 5.68    | Silt and Clay   | 0.005 - 0.001 | 0.39    |  |  |
| Sand, Coarse      | 0.85 - 0.425 | 13.75   | Clay            | <0.001        | 0.20    |  |  |

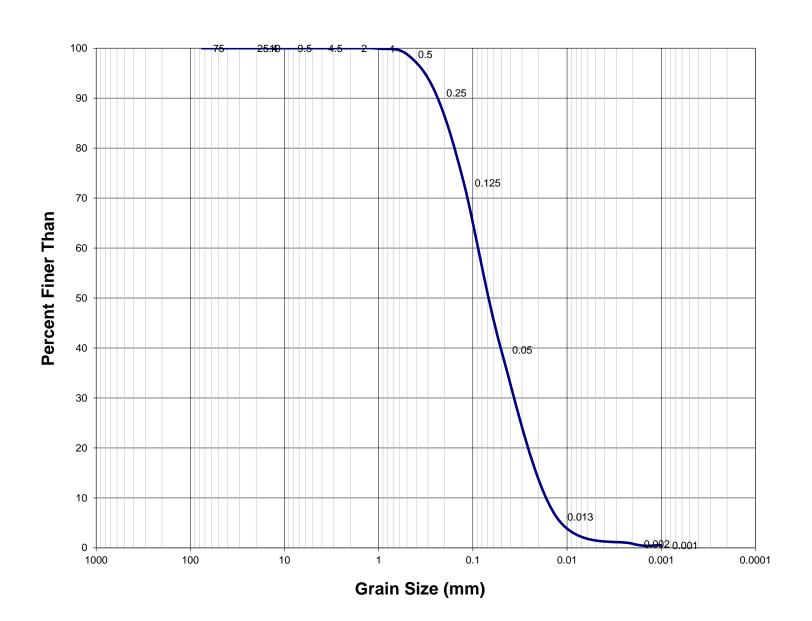
**Project:** 

Sample ID: MIDDLE GLACIER CK 3

Lab ID: L1941345-8

# **Particle Size Distribution Curve**

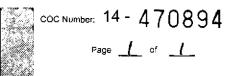



| Size Class        | Range (mm)   | Wt. (%) | Size Class      | Range (mm)    | Wt. (%) |  |  |
|-------------------|--------------|---------|-----------------|---------------|---------|--|--|
| Gravel            | > 75         | 0.00    | Sand, Medium    | 0.425 - 0.25  | 11.07   |  |  |
| Gravel            | 75 - 19      | 0.00    | Sand, Fine      | 0.25 - 0.106  | 39.31   |  |  |
| Gravel            | 19 - 9.5     | 0.00    | Sand, Very Fine | 0.106 - 0.075 | 12.48   |  |  |
| Gravel, Medium    | 9.5 - 4.75   | 0.00    | Silt and Clay   | 0.075 - 0.074 | 0.40    |  |  |
| Gravel, Fine      | 4.75 - 2     | 0.05    | Silt and Clay   | 0.074 - 0.005 | 27.97   |  |  |
| Sand, Very Coarse | 2 - 0.85     | 1.18    | Silt and Clay   | 0.005 - 0.001 | 0.92    |  |  |
| Sand, Coarse      | 0.85 - 0.425 | 6.32    | Clay            | <0.001        | 0.29    |  |  |

**Project:** 

Sample ID: MIDDLE GLACIER CK 4

Lab ID: L1941345-9


# **Particle Size Distribution Curve**



| Size Class        | Range (mm)   | Wt. (%) | Size Class      | Range (mm)    | Wt. (%) |  |  |
|-------------------|--------------|---------|-----------------|---------------|---------|--|--|
| Gravel            | > 75         | 0.00    | Sand, Medium    | 0.425 - 0.25  | 5.37    |  |  |
| Gravel            | 75 - 19      | 0.00    | Sand, Fine      | 0.25 - 0.106  | 26.46   |  |  |
| Gravel            | 19 - 9.5     | 0.00    | Sand, Very Fine | 0.106 - 0.075 | 13.84   |  |  |
| Gravel, Medium    | 9.5 - 4.75   | 0.00    | Silt and Clay   | 0.075 - 0.074 | 0.45    |  |  |
| Gravel, Fine      | 4.75 - 2     | 0.00    | Silt and Clay   | 0.074 - 0.005 | 48.06   |  |  |
| Sand, Very Coarse | 2 - 0.85     | 0.42    | Silt and Clay   | 0.005 - 0.001 | 1.97    |  |  |
| Sand, Coarse      | 0.85 - 0.425 | 3.10    | Clay            | <0.001        | 0.33    |  |  |



### Chain of Custody (COC) / Analytical Request Form



| www.alsqlobal.com  Canada 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Toll Free: 1 800 6                                | 68 9878                                                       | L1                                    | 941345-C0                                        | DFC                                                                               |                                                                |               |                                         |              |                 |                      |                |                 |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|---------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------|---------------|-----------------------------------------|--------------|-----------------|----------------------|----------------|-----------------|----------------------|
| Report To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Report Forms                                      |                                                               |                                       |                                                  |                                                                                   |                                                                | . /           | Below (Ru                               | ish Turna    | round Time      | (TAT) is not         | available fo   | r all tests)    |                      |
| Company: ADFE & Habitat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Select Report Format: PDF PDF EXCEL EDD (DIGITAL) |                                                               |                                       |                                                  | R Regular (Standard TAT If received by 3pm)                                       |                                                                |               |                                         |              |                 |                      |                |                 |                      |
| Contact: Kate Kanouse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quality Control (                                 | Quality Control (QC) Report with Report Yes No                |                                       |                                                  |                                                                                   | P Priority (2-4 business days if received by 3pm)              |               |                                         |              |                 |                      |                |                 |                      |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Criteria on F                                     | Report - provide details bed                                  |                                       |                                                  | E Emergency (1-2 business days if received by 3pm)                                |                                                                |               |                                         |              |                 |                      |                |                 |                      |
| POBOX 110024 2008A Juneau, ALG9811-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Select Distributi                                 | on: 🛂 E                                                       | MAIL MAIL                             |                                                  | E2 Same day or weekend emergency if received by 10am – contact ALS for surcharge, |                                                                |               |                                         |              |                 |                      |                |                 |                      |
| (907) 445-4290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Email 1 or Fax<br>Email 2                         | Katc. Kanou                                                   | ve@alask                              | a.00Y                                            | Specify Date Required for E2,E or P:                                              |                                                                |               |                                         |              |                 |                      |                |                 |                      |
| Invoice To Same as Report To Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Email 2                                           | allegra@co                                                    |                                       | LOSTUS COM                                       |                                                                                   |                                                                |               |                                         |              |                 |                      |                | <del>~~</del> T |                      |
| Copy of Invoice with Report Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Select Invoice D                                  |                                                               |                                       |                                                  | Indicate Filtored (F), Preserved (P) or Filtored and Preserved (F/P) below        |                                                                |               |                                         |              |                 |                      |                |                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                               |                                       | _                                                | +-                                                                                |                                                                | -             | +                                       | +            |                 |                      | +              | <del></del>     |                      |
| Company: Constantine Metal Resources Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Email 2                                           | allegra@cons                                                  | <u>astantinem</u>                     | etais.com                                        | -                                                                                 |                                                                |               |                                         |              |                 |                      |                | 1               |                      |
| Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | Oil and Gas Require                                           |                                       |                                                  | ┫ ╽                                                                               |                                                                |               |                                         |              |                 |                      |                | i               | iers                 |
| ALS Quote #: Q(02329)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Approver ID:                                      |                                                               | Cost Center:                          | 76, 41                                           | 1 ]                                                                               |                                                                |               | ١.                                      |              |                 |                      |                | 1               | ntair                |
| Job#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GL Account:                                       |                                                               | Routing Code:                         |                                                  | 1                                                                                 | 1 2                                                            | or OI         | UDK                                     | رإ           |                 |                      |                | i l             | Number of Containers |
| PO/AFE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Activity Code:                                    |                                                               |                                       |                                                  | 1                                                                                 | f1                                                             | er of         | , " " " " " " " " " " " " " " " " " " " | T            |                 |                      |                | i l             | <u> </u>             |
| LSD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location:                                         |                                                               |                                       |                                                  | 1                                                                                 |                                                                | -             |                                         |              |                 |                      | ]              | 1               | l g                  |
| ALS Lab Work Order # ((lab use only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALS Contact:                                      |                                                               | Sampler:                              |                                                  | 1                                                                                 |                                                                |               |                                         |              | :               |                      |                |                 | Z                    |
| ALS Sample # Sample Identification and/or Coordinates (tab use only) (This description will appear on the report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | Date<br>(dd-mmm-yy)                                           | Time<br>(hh::mm)                      | Sample Type                                      | 1                                                                                 |                                                                |               |                                         |              |                 |                      |                |                 | !                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 6917                                                          |                                       | coil                                             | 1                                                                                 | +                                                              | -             |                                         |              |                 |                      | +              |                 | <del></del>          |
| Lower Chacier Ck 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | 4 (2)                                                         | 1400                                  | 5011                                             | <del>  </del>                                                                     | 1                                                              |               |                                         |              |                 |                      | <del> </del> - |                 | _  3                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | + - (                                                         | · · · · · · · · · · · · · · · · · · · | <del>  </del>                                    | <del>     </del>                                                                  | <del> </del>                                                   | -             |                                         | <del> </del> | <del>}</del> -  | -                    | <del></del>    | -               | 3                    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ··                                                | <del>  </del>                                                 |                                       | <del>  </del>                                    | <del>  </del>                                                                     | + +                                                            | -             |                                         |              |                 |                      | <del>  </del>  | $\vdash$        | 3                    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | <del>                                     </del>              |                                       | <del>                                     </del> | <del>  - -</del> -                                                                |                                                                |               |                                         | ļ            | -               |                      |                |                 | 3_                   |
| V 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | <u> </u>                                                      |                                       |                                                  | <del>  </del>                                                                     |                                                                |               |                                         | <u> </u>     |                 |                      |                |                 | 3_                   |
| Middle Glacier Cx 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | Le 9 14                                                       | 1200_                                 | 80i)                                             | <del>    </del>                                                                   | 1-1                                                            |               |                                         | <u> </u>     |                 |                      |                |                 | 3                    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 1                                                             | 1                                     | 11                                               |                                                                                   |                                                                |               | <u> </u>                                |              |                 | _                    |                |                 | 3                    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                               | 1                                     | 1 _1_                                            |                                                                                   | 1 1                                                            |               | _                                       |              |                 |                      |                |                 | 3                    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                 |                                                               | l .                                   |                                                  |                                                                                   |                                                                |               |                                         |              |                 |                      |                |                 | 3_                   |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | V                                                             | V                                     | V                                                |                                                                                   |                                                                |               |                                         |              |                 |                      |                |                 | 3                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{}$                                     |                                                               |                                       |                                                  | 1                                                                                 |                                                                |               |                                         |              |                 |                      |                |                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                       |                                                               |                                       |                                                  |                                                                                   |                                                                | $\overline{}$ |                                         |              | 1               | _                    |                |                 | 7                    |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                                                               |                                       |                                                  | 1800 00 dec                                                                       | - Car Ca 868                                                   | SAMPLE        | CONDIT                                  | ION AS       | RECE            | VED (lab u           | se only)       | , <del></del>   |                      |
| Britishing violet (2-v) campion (cheff asc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ial instructions / Spe                            | Instructions / Specify Criteria to add on report (client Use) |                                       |                                                  |                                                                                   |                                                                |               |                                         | SIF O        | servatio        | ons Y€               | 95             | No              |                      |
| Are samples taken from a Regulated DW System?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                 |                                                               |                                       |                                                  |                                                                                   | loe packs Yes 🚺 No 🔲 Custody seal Intact Yes 🔲 No 🔲            |               |                                         |              |                 |                      |                |                 |                      |
| r Yes ΓN₀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                               |                                       |                                                  | Cooling Init                                                                      |                                                                | 4             |                                         |              |                 |                      |                |                 |                      |
| Are samples for human drinking water use?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                               |                                       |                                                  |                                                                                   | S O SINITIAL COOLER TEMPERATURES C FINAL COOLER TEMPERATURES C |               |                                         |              |                 |                      | 4              |                 |                      |
| T Yes F No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                               |                                       |                                                  |                                                                                   | <u> </u>                                                       |               |                                         | <u> </u>     |                 |                      | <del></del>    |                 | <u>5°C</u>           |
| SHIPMENT RELEASE (client use)  Released by:   Date: Time: Rece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INITIAL                                           | SHIPMENT RECEPT                                               | TION (lab use only                    | ) : : :                                          | Received I                                                                        | ov.                                                            | FINAL         | SHIPME                                  |              | CEPTIO<br>Date: | N (iab use<br>ITi    | only)          | <u></u>         |                      |
| Released by:  Ate Kanova Date:  [ Date:   Time: Rece   1.500   Rec | ZHF                                               |                                                               | 12/2017                               | 13:30                                            | TVECEIVEG I                                                                       | ~J·                                                            | - /           | chy                                     |              |                 | we 14                | ŗ.e.           | 4:15            | MM                   |
| REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | WHIT                                                          | E - LABORATORY                        |                                                  | W - CLIENT C                                                                      | OPY                                                            |               | -                                       |              |                 | 4-0326+ v09 Front/04 |                |                 |                      |