Operational Plan: Stock Assessment Studies of Chilkoot Lake Sockeye Salmon, 2020-2022

by
Nicole L. Zeiser
Steven C. Heinl
Sara E. Miller
and
Chase S. Jalbert

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
gram	g	all commonly accepted		abbreviations	
hectare	ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	$\mathrm{H}_{\text {A }}$
kilogram	kg		AM, PM, etc.	base of natural logarithm	e
kilometer	km	all commonly accepted		catch per unit effort	CPUE
liter	L	professional titles	e.g., Dr., Ph.D.,	coefficient of variation	CV
meter	m		R.N., etc.	common test statistics	(F, t, χ^{2}, etc.)
milliliter	mL	at	@	confidence interval	CI
millimeter	mm	compass directions: east	E	correlation coefficient (multiple)	R
Weights and measures (English)		north	N	correlation coefficient	
cubic feet per second	$\mathrm{ft}^{3} / \mathrm{s}$	south	S	(simple)	r
foot	ft	west	W	covariance	cov
gallon	gal	copyright	©	degree (angular)	-
inch	in	corporate suffixes:		degrees of freedom	df
mile	mi	Company	Co.	expected value	E
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	oz	Incorporated	Inc.	greater than or equal to	\geq
pound	lb	Limited	Ltd.	harvest per unit effort	HPUE
quart	qt	District of Columbia	D.C.	less than	<
yard	yd	et alii (and others)	et al.	less than or equal to	\leq
		et cetera (and so forth)	etc.	logarithm (natural)	1 n
Time and temperature		exempli gratia		logarithm (base 10)	\log
day	d	(for example)	e.g.	logarithm (specify base)	$\log _{2}$, etc.
degrees Celsius	${ }^{\circ} \mathrm{C}$	Federal Information		minute (angular)	
degrees Fahrenheit	${ }^{\circ} \mathrm{F}$	Code	FIC	not significant	NS
degrees kelvin	K	id est (that is)	i.e.	null hypothesis	H_{0}
hour	h	latitude or longitude	lat. or long.	percent	\%
minute	min	monetary symbols		probability	P
second	S	(U.S.) months (tables and	\$, ¢	probability of a type I error (rejection of the null	
Physics and chemistry		figures): first three		hypothesis when true)	α
all atomic symbols		letters	Jan,...,Dec	probability of a type II error	
alternating current	AC	registered trademark		(acceptance of the null	
ampere	A	trademark	тм	hypothesis when false)	β
calorie	cal	United States		second (angular)	"
direct current	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of		standard error	SE
horsepower	hp	America (noun)	USA	variance	
hydrogen ion activity (negative \log of)	pH	U.S.C.	United States Code	population sample	Var var
parts per million	ppm	U.S. state	use two-letter		
parts per thousand	ppt, \%		abbreviations (e.g., AK, WA)		
volts	V				
watts	W				

REGIONAL OPERATIONAL PLAN CF.1J.2020.01

OPERATIONAL PLAN: STOCK ASSESSMENT STUDIES OF CHILKOOT LAKE SOCKEYE SALMON, 2020-2022

by
Nicole L. Zeiser
Alaska Department of Fish and Game, Division of Commercial Fisheries, Haines
Steven C. Heinl
Alaska Department of Fish and Game, Division of Commercial Fisheries, Ketchikan
Sara E. Miller
Alaska Department of Fish and Game, Division of Commercial Fisheries, Juneau
and
Chase S. Jalbert
Alaska Department of Fish and Game, Gene Conservation Laboratory, Anchorage

The Regional Operational Plan Series was established in 2012 to archive and provide public access to operational plans for fisheries projects of the Divisions of Commercial Fisheries and Sport Fish, as per joint-divisional Operational Planning Policy. Documents in this series are planning documents that may contain raw data, preliminary data analyses and results, and describe operational aspects of fisheries projects that may not actually be implemented. All documents in this series are subject to a technical review process and receive varying degrees of regional, divisional, and biometric approval, but do not generally receive editorial review. Results from the implementation of the operational plan described in this series may be subsequently finalized and published in a different department reporting series or in the formal literature. Please contact the author if you have any questions regarding the information provided in this plan. Regional Operational Plans are available on the Internet at: http://www.adfg.alaska.gov/sf/publications/

Nicole L. Zeiser
Alaska Department of Fish and Game, Division of Commercial Fisheries, P.O. Box 330, Haines, AK 99827
Steven C. Heinl
Alaska Department of Fish and Game, Division of Commercial Fisheries, 2030 Sea Level Drive, Suite 205, Ketchikan, AK 99901
Sara E. Miller
Alaska Department of Fish and Game, Division of Commercial Fisheries, 1255 W. $8^{\text {th }}$ Street, Juneau, AK 99801
Chase S. Jalbert
Alaska Department of Fish and Game, Gene Conservation Laboratory, 333 Raspberry Road, Anchorage, AK 99518

This document should be cited as:
Zeiser, N. L., S. C. Heinl, S. E. Miller, and C. S. Jalbert. 2020. Operational Plan: Stock assessment studies of Chilkoot Lake sockeye salmon, 2020-2022. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Operational Plan ROP.CF.1J.2020.01, Douglas.

The Alaska Department of Fish and Game (ADF\&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:
ADF\&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526
U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240
The department's ADA Coordinator can be reached via phone at the following numbers:
(VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078
For information on alternative formats and questions on this publication, please contact:
ADF\&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2375

Signature Page

Project Title:	Operational Plan: Stock Assessment Studies of Chilkoot Lake Sockeye Salmon, 2020-2022
Project leader(s):	Nicole L. Zeiser
Division, Region, and Area	Commercial Fisheries, Region 1, Haines
Project Nomenclature:	FM-137 GF Chilkoot River Weir
Period Covered	$2020-2022$
Field Dates:	1 June to 15 September
Plan Type:	Category II

Approval

Title	Name	Signature	Date
Project leader	Nicole L. Zeiser		$3 / 5 / 2020$
Research Coordinator	Steven C. Heinl		
Biometrician	Sara E. Miller		$3 / 5 / 2020$
Geneticist	Chase S. Jalbert		$3 / 5 / 2020$

TABLE OF CONTENTS

Page
LIST OF TABLES iii
LIST OF FIGURES iii
LIST OF APPENDICES iii
PURPOSE 1
BACKGROUND 1
STUDY SITE 5
OBJECTIVES 6
METHODS 7
Adult Salmon Weir Enumeration 7
Electric Fence Installation 7
Weir Passage Estimates 10
Sockeye Salmon Age, Sex, and Length Composition 10
Commercial Harvest 11
Drift Gillnet Fleet Observations 11
Commercial Sockeye Salmon Harvest Estimates 11
Juvenile Sockeye Salmon Abundance 14
Limnological Assessment 17
Light and Temperature Profiles 17
Zooplankton Sampling 17
DATA COLLECTION 18
Chilkoot River Weir Enumeration 18
Sampling for Age, Sex, and Length 18
Limnological Assessment 18
DATA REDUCTION 18
Weir Counts 18
Age, Sex, Length Data 19
Commercial Harvest Data 19
Limnological Assessment 19
SCHEDULE AND DELIVERABLES 19
Operations 19
Reports. 20
RESPONSIBILITIES 20
REFERENCES CITED 21
APPENDICES 25

LIST OF TABLES

Table Page

1. Chilkoot River weir dates of operation and annual salmon counts by species, 1976-2019 4
2. Weekly and cumulative Chilkoot Lake sockeye salmon escapement targets and total sustainable escapement goal of 38,000-86,000 sockeye salmon. 5
3. Number of fish collected in trawl samples by species and estimated total number of pelagic fish (hydroacoustic targets) and sockeye salmon fry in autumn surveys of Chilkoot Lake, 1987-1991 and 1995-2019. 16
LIST OF FIGURES
Figure Page
4. The Chilkat and Chilkoot River watersheds and District 15 commercial fishing statistical areas in Lynn Canal. 2
5. Map showing Lutak Inlet, Chilkoot Lake, location of the salmon counting weir, and locations of limnology stations within Chilkoot Lake. 6
6. View of Chilkoot River weir from the downstream side, 2013. 8
7. Counting chairs positioned on either side of the counting station at the Chilkoot River weir 8
8. Fish trap, recovery box, and fish sampling trough set-up at the Chilkoot River weir. 9
9. An electric fence is installed on the front face of the Chilkoot River weir to discourage bears from climbing up on the walkway 9
LIST OF APPENDICES
Appendix Page
A. ADF\&G Statistical weeks (sampling periods) and corresponding calendar dates, 2020-2022 26
B. Chilkoot River Weir Daily Count Form. 27
C. Procedures for sampling adult sockeye salmon for age, sex, and length (ASL). 29
D. Measuring adult salmon length. 35
E. Determining the sex of salmon 36
F. Preferred scale sampling area on an adult salmon 37
G. Example of completed ADF\&G adult salmon Age-Length-Sex (ASL) form. 38
H. Example of completed scale cards that correspond to completed ASL form (Appendix G) 39
I. Limnology Sampling Form. 40
J. ADF\&G collection code, location, reporting group, and the number of sockeye salmon used in the genetic baseline for mixed stock analysis in District 15 commercial drift gillnet fishery 42

PURPOSE

The Chilkoot Lake sockeye salmon (Oncorhynchus nerka) run, which spawns near Haines, is one of the largest in Southeast Alaska and contributes substantially to harvests in the District 15 commercial drift gillnet fishery in Lynn Canal. This operational plan outlines objectives, methods, and timelines for conducting sockeye salmon stock assessment designed to (1) estimate annual escapement and harvest, (2) provide information for inseason fishery management, and (3) reconstruct runs and assess stock status. The Chilkoot Lake run is managed for a biological escapement goal of $38,000-86,000$ fish, which is enumerated through a standard picket weir located just downstream of the lake outlet. Weir counts of sockeye salmon are compared to weekly escapement targets to determine inseason run strength. Genetic mixed stock analysis of weekly sockeye salmon harvests in the District 15 commercial drift gillnet fishery provides stock composition estimates that also guide inseason management of the fishery. Biological sampling, along with escapement enumeration and stock-specific harvest data, allows for total run reconstruction required for escapement goal review.

Key words: Chilkoot Lake, Chilkoot River, commercial harvest, escapement, weir, hydroacoustic survey, genetic stock identification, sockeye salmon, Oncorhynchus nerka

BACKGROUND

The Chilkoot and Chilkat river watersheds, located in northern Southeast Alaska near the town of Haines (Figure 1), support two of the largest sockeye salmon (Oncorhynchus nerka) runs in Southeast Alaska. Between 1900 and 1920, the annual commercial harvest of sockeye salmon in northern Southeast Alaska averaged 1.5 million fish, the majority of which were believed to originate from Chilkat and Chilkoot river watersheds (Rich and Ball 1933). Harvests decreased in the early 1920s and remained at relatively low levels thereafter; the average sockeye salmon harvest in northern Southeast Alaska averaged 0.44 million fish between 1980 and 2008, of which an average 89,000 and 93,000 fish originated from Chilkoot and Chilkat lakes, respectively (Eggers et al. 2009). Historically, Chilkoot Lake sockeye salmon were harvested in the large fish trap and purse seine fisheries in Icy and northern Chatham straits as well as in terminal drift gillnet areas of Lynn Canal. Fish traps were eliminated with Alaska statehood in 1959 and Lynn Canal developed into a designated drift gillnet fishing area (District 15) where most of the commercial harvest of Chilkoot Lake sockeye salmon takes place (Figure 1). A smaller portion of the Chilkoot Lake sockeye salmon run is harvested in the commercial purse seine fisheries that target pink salmon (O. gorbuscha) in Icy and northern Chatham straits. Annual contributions to those fisheries are not known and likely vary annually depending on fishing effort and the strength of pink salmon runs. Chilkoot Lake sockeye salmon are also harvested annually in subsistence fisheries in Chilkoot and Lutak inlets, where reported harvests for the period 2010-2019 averaged 3,000 fish per year.

Figure 1.-The Chilkat and Chilkoot River watersheds and District 15 commercial fishing statistical areas in Lynn Canal.

Commercial harvest of Chilkoot Lake sockeye salmon in the District 15 commercial drift gillnet fishery has been estimated from scale pattern analysis and, more recently, genetic stock identification (Bednarski et al. 2017). The Alaska Department of Fish and Game (ADF\&G) initiated a scale pattern analysis program in 1980 to estimate contributions of Chilkat and Chilkoot sockeye salmon based on consistent differences in freshwater scale patterns (Stockley 1950; Bergander 1974; McPherson 1990; McPherson et al. 1992). From 2015 to 2016, scale pattern analysis and genetic stock identification were conducted concurrently to compare harvest estimates using the two methods (Serena Rogers Olive, ADF\&G Fisheries Geneticist, personal communication). Since 2017, harvests of sockeye salmon stocks in the District 15 commercial drift gillnet fishery have been estimated solely through genetic stock identification (Bednarski et al. 2017; Zeiser et al. 2019).

Chilkoot Lake sockeye salmon escapements have been counted and sampled annually at an adult counting weir on the Chilkoot River since 1976 (Bachman and Sogge 2006; Bachman et al. 2013 and 2014). Weir counts have ranged from 7,177 (1995) to 140,378 (2019) fish, with an average escapement of nearly 70,000 fish (1976-2019; Table 1). The 2019 weir count was the largest on record. In addition to salmon counts, biological data have been collected annually at the weir to estimate age, size, and sex composition of the sockeye salmon escapement. Basic information about lake productivity and rearing sockeye salmon fry populations has also been collected through limnological and hydroacoustic sampling conducted most years since 1987 (Barto 1996; Riffe 2006; Bachman et al. 2014). Those studies have been used in the past to assess potential sockeye salmon production from the lake (Barto 1996).

The Chilkoot Lake run has been managed for at least five different escapement goals since 1976. Informal goals of $80,000-100,000$ fish (1976-1980) and 60,000-80,000 fish (1981-1989; Bergander et al. 1988) were replaced in 1990 with a biological escapement goal of 50,500-91,500 sockeye salmon (McPherson 1990). The goal was divided into separate goals for early (16,50031,500 fish) and late runs ($34,000-60,000$ fish). In 2006, the escapement goal was rounded to $50,000-90,000$ sockeye salmon and classified as a sustainable escapement goal due to uncertainty in escapement levels based on weir counts (Geiger et al. 2005). Early- and late-run goals were eliminated and replaced with weekly cumulative escapement targets based on historical run timing (Table 2). The current sustainable escapement goal of $38,000-86,000$ sockeye salmon was established in 2009 based on an updated stock-recruit analysis by Eggers et al. (2009). The escapement goal was reviewed in 2017 using Ricker spawner-recruit models in a Bayesian framework to fit data from brood years 1976-2000 (Brenner et al. 2018) and reviewed again in 2019 to incorporate returns from very large parent-year escapements in 2012 and 2014 (Rich Brenner, ADF\&G Fishery Biologist, personal communication). Based on the model results, maximum sustainable yield would be achieved with escapements within the current goal range, so no changes to the current sustainable escapement goal have been recommended. The very large escapement in 2019 will provide additional information about the productivity of this stock once recruits are fully realized in 2025.

The primary purpose of the sockeye salmon stock assessment program is to estimate the escapement and commercial harvest of Chilkoot Lake sockeye salmon. Information provided by this project, in conjunction with stock assessment projects on the adjacent Chilkat River (RheaFournier et al. 2018), is used inseason to manage the District 15 commercial drift gillnet fishery, ensure escapement goals are met, and to maximize and sustain the harvest of sockeye salmon from the two watersheds. Escapement and stock-specific harvest data, along with biological data on age at return, are essential for reconstruction of brood-year returns for use in future escapement goal evaluation.

Table 1.-Chilkoot River weir dates of operation and annual salmon counts by species, 1976-2019.

Year	Dates	Chinook salmon	Sockeye salmon	Coho salmon	Pink salmon	Chum salmon
1976	5/29-11/4	NA	71,291	991	1,250	241
1977	5/28-9/18	NA	97,368	5	5,270	195
1978	6/6-11/8	NA	35,454	1,092	112	382
1979	6/9-11/4	NA	96,122	899	NA	253
1980	6/15-10/4	NA	98,673	628	4,683	719
1981	6/10-10/12	NA	84,047	1,585	34,821	405
1982	6/3-9/14	6	103,038	5	6,665	507
1983	6/4-11/12	0	80,141	1,844	11,237	501
1984	6/3-9/14	0	100,781	321	5,034	732
1985	6/5-10/28	5	69,141	2,202	33,608	1,031
1986	6/4-10/28	6	88,024	1,966	1,249	508
1987	6/4-11/2	3	94,208	576	6,689	431
1988	6/9-11/12	1	81,274	1,476	5,274	450
1989	6/3-10/30	0	54,900	3,998	2,118	223
1990	6/3-10/30	0	76,119	988	10,398	216
1991	6/7-10/8	0	92,375	4,000	2,588	357
1992	6/2-9/26	1	77,601	1,518	7,836	193
1993	6/3-9/30	203	52,080	322	357	240
1994	6/4-9/24	118	37,007	463	22,472	214
1995	6/5-9/10	7	7,177	95	1,243	99
1996	6/6-9/11	19	50,741	86	2,867	305
1997	6/4-9/9	6	44,254	17	26,197	268
1998	6/4-9/13	11	12,335	131	44,001	368
1999	6/2-9/13	29	19,284	11	56,692	713
2000	6/3-9/12	10	43,555	47	23,636	1,050
2001	6/7-9/12	24	76,283	103	32,294	810
2002	6/8-9/11	36	58,361	304	79,639	352
2003	6/6-9/9	12	75,065	15	55,424	498
2004	6/3-9/12	17	77,660	89	107,994	617
2005	6/6-9/12	9	51,178	23	90,486	262
2006	6/5-9/13	1	96,203	158	33,888	257
2007	6/4-9/12	39	72,678	13	61,469	252
2008	6/4-9/12	31	33,117	50	15,105	321
2009	6/3-9/10	12	33,705	11	34,483	171
2010	6/6-9/14	6	71,657	90	30,830	410
2011	6/5-9/5	43	65,915	18	76,244	118
2012	6/3-9/12	47	118,166	139	40,753	494
2013	6/1-9/8	139	46,329	43	8,195	566
2014	5/27-9/9	83	105,713	162	12,457	126
2015	6/2-9/8	22	71,515	11	41,592	185
2016	6/3-9/9	2	86,721	53	8,354	116
2017	6/2-9/6	11	43,098	12	58,664	529
2018	6/3-9/8	31	85,453	95	5,475	225
2019	6/6-9/8	64	140,378	80	17,156	396
Average		28	69,913	608	26,205	393

Table 2.-Weekly and cumulative Chilkoot Lake sockeye salmon escapement targets and total sustainable escapement goal of 38,000-86,000 sockeye salmon.

Statistical week	Average mid-week date	Weekly target		Cumulative weekly target	
		Lower	Upper	Lower	Upper
23	3-Jun	378	856	378	856
24	10-Jun	$1,546$	3,498	$1,924$	$4,354$
25	17-Jun	$2,670$	$6,042$	$4,594$	$10,396$
26	24-Jun	$2,259$	$5,113$	6,853	$15,509$
27	1-Jul	$1,480$	3,350	8,333	$18,859$
28	8-Jul	$1,770$	$4,006$	10,103	$22,865$
29	15-Jul	$3,183$	7,204	$13,286$	30,069
30	22-Jul	$4,403$	$9,963$	17,689	40,032
31	29-Jul	$5,547$	$12,555$	$23,236$	52,587
32	5-Aug	$5,031$	$11,386$	28,267	$63,973$
33	12-Aug	3,298	7,464	31,565	71,437
34	19-Aug	2,806	6,350	34,371	77,787
35	26-Aug	1,904	4,310	36,275	82,097
36	2-Sep	$1,249$	2,826	37,524	84,923
37	9-Sep	476	$1,077$	38,000	$86,000$
Total		38,000	86,000	38,000	86,000

Source: Eggers et al. 2009.

STUDY SITE

Chilkoot Lake (ADF\&G Anadromous Waters Catalogue No. 115-33-10200-0010; 59²1'16" N, $135^{\circ} 35^{\prime} 42^{\prime \prime}$ W) is located at the head of Lutak Inlet, approximately 16 km northeast of the city of Haines, Alaska (Figures 1 and 2). It is glacially turbid, has a surface area of $7.2 \mathrm{~km}^{2}(1,734$ acres), a mean depth of 55 m , a maximum depth of 89 m , and a total volume of $382.4 \times 106 \mathrm{~m}^{3}$. The Chilkoot River originates from glaciers east of the Takshunak Mountains and west of the Ferebee Glacier. The glacial river flows approximately 26 km southeast into Chilkoot Lake, then flows approximately 2 km into Lutak Inlet. Early-run sockeye salmon spawn in small lake and river tributaries and late-run fish spawn in the main channel of the Chilkoot River and along lake beaches where upwelling water occurs (McPherson 1990). Chilkoot Lake is located within the northern temperate rainforest that dominates the Pacific Northwest coast of North America. Although the climate is characterized by cold winters and cool, wet summers, the lake is set in a transitional zone, with warmer and drier summers and cooler winters than the rest of Southeast Alaska. Average precipitation in the study area is approximately $165 \mathrm{~cm} /$ year (Bugliosi 1988). Sitka spruce (Picea sitchensis), western hemlock (Tsuga heterophylla), and Sitka alder (Alnus viridis) dominate the forested watershed.

Drift gillnet fisheries in Lynn Canal occur in the waters of District 15 encompassing Section 15-A (upper Lynn Canal), Section 15-C (lower Lynn Canal), and Section 15-B (Berners Bay) (Figure 1). Historically, sockeye salmon was the primary species targeted from late June through September (McPherson 1990). In recent decades, however, fishing effort has shifted to Section 15C to harvest substantial hatchery summer chum salmon (O. keta) runs to Douglas Island Pink and Chum, Inc. (DIPAC) release sites at Boat Harbor and Amalga Harbor, which have attracted record-
level effort (Bednarski et al. 2016; Gray et al. 2017). The fall fishery is managed to target fall-run chum and coho (O. kisutch) salmon. Following a sharp decline in Chilkat River fall-run chum salmon runs in the early 1990s, management of the fall fishery shifted abruptly from an emphasis on harvesting chum salmon to exploiting abundant coho salmon runs (Shaul et al. 2017).

Figure 2.-Map showing Lutak Inlet, Chilkoot Lake, location of the salmon counting weir, and locations of limnology stations within Chilkoot Lake.

OBJECTIVES

1. Enumerate adult salmon by species through the Chilkoot River weir from approximately 1 June to 10 September.
2. Estimate the age, sex, and length composition of the Chilkoot Lake sockeye salmon escapement such that the estimated proportions are within 5\% of the true value with at least 95% probability.
3. Estimate the weekly stock composition of the sockeye salmon harvest in the District 15 commercial drift gillnet fishery for each of the first 10 statistical weeks of the season, such that the estimates are within 7% of the true value with at least 90% probability.
4. Estimate the seasonal age-specific stock composition of the sockeye salmon harvest in the District 15 commercial drift gillnet fishery for major contributing age classes ($>0.5 \%$; e.g., ages $0.3,1.2,1.3,2.2,2.3$, and other).

Secondary Objectives

1. Estimate the abundance and density of sockeye salmon fry and other pelagic fish species in Chilkoot Lake such that the coefficient of variation is no greater than 15% of the point estimate.
2. Measure water column temperature, record light penetration profiles, and estimate zooplankton species composition, size, density, and biomass in Chilkoot Lake on a monthly basis during the middle of the month, May-September.

METHODS

Adult Salmon Weir Enumeration

The Chilkoot River adult salmon counting weir will be operated from approximately 1 June to 10 September. The weir will be operated through at least 1 September, the mean date when 95% of the sockeye salmon run has passed the weir, based on modeling of historical weir counts. The weir may be operated up to 10 September, depending on inseason assessment of daily counts in relation to the cumulative count for the season, river conditions, and management considerations. The weir is located 1 km downstream from Chilkoot Lake (Figures 2 and 3). The weir is supported by a 110 m long permanent steel structure, anchored with 20 cm steel pilings driven approximately 7 m into the bottom of the Chilkoot River channel. Pickets of black iron pipe are installed into the support structure to form a fence across the river channel. The pickets are 2- to 3-m long, with a 2.5 cm outside diameter, and spaced 3.8 cm apart. The weir will be regularly inspected, and gaps or small openings will be blocked with sandbags or plastic-coated wire mesh to prevent fish from passing undetected. Fish traps, recovery pens, and sampling stations will be installed near mid channel of the weir structure.

In order to minimize handling, most fish will be passed by temporarily removing four pickets at a counting station located between two weir-mounted counting chairs near the center of the weir (Figure 4). Fish will be counted by species as they pass through the opening. To facilitate identification and enumeration of fish, panels of white plywood of varying width will be stacked in front of and below the weir opening to force fish higher in the water column as they pass upstream (Figure 4). Fish will be trapped or caught with a dip net from the face of the weir (upstream side) at the counting station, transferred to the trap, then processed for age, sex, and length sampling (Figure 5). Sampled fish will be released into a $2 \mathrm{~m} \times 2 \mathrm{~m}$ plywood recovery box on the upstream side of the weir to recover from handling. Once recuperated, fish will exit on their own through a large hole in the side of the recovery box.

Stream height and water temperature will be recorded at approximately 6:30 am each day. Stream height (cm) will be measured on a stadia rod, and water temperature $\left({ }^{\circ} \mathrm{C}\right)$ will be measured with a permanently installed thermometer near the east end of the weir.

Electric Fence Installation

An electric fence will be installed mid-July on the face of the weir to moderate and minimize interactions between bears and weir personnel. The fence will be constructed of 91 cm long, 2.5 cm wide polyvinyl chloride (PVC) pipes secured to the top of the weir pickets via an angled PVC fitting and spaced at 3 m intervals from the roadside gate along the entire length of the weir (Figure 6). Chosen pickets are to be approximately 30 cm high above the weir ledge so that the fence is level. Two plastic clips attached to each pipe will support two rows of electric wire strung across
the pipes. The fence will be electrified using 4 DD batteries. Gates in the electric fence will be constructed around the counting station and the weir trap to allow personnel access to the weir while the fence is electrified.

Figure 3.-View of Chilkoot River weir from the downstream side, 2013. (©2013 ADF\&G. Photo by Steven C. Heinl.)

Figure 4.-Counting chairs positioned on either side of the counting station at the Chilkoot River weir (left), and opening at the counting station (right) showing where fish are counted as they swim through the weir; white plywood is stacked at the opening to force fish higher in the water column and make them easier to identify and count. (© 2019 ADF\&G.)

Figure 5.-Fish trap, recovery box, and fish sampling trough set-up at the Chilkoot River weir. (© 2019 ADF\&G.)

Figure 6.-An electric fence is installed on the front face of the Chilkoot River weir to discourage bears from climbing up on the walkway; the fence is strung between PVC pipes affixed to the top of iron pickets spaced at 3 m intervals. (© 2019 ADF \&G.)

Weir Passage Estimates

In some years, brief periods of flooding require removal of pickets to prevent structural damage to the weir, therefore upstream salmon passage must be estimated for days the weir is inoperable. Estimates will be assumed to be zero if passage is likely negligible based on historical or inseason data. Otherwise, estimates for missed passage will be calculated following methods used at the Kogrukluk River weir in western Alaska (Hansen and Blain 2013). If the weir is not in operation for all of one day, an estimate for that day $\left(\hat{n}_{i}\right)$ will be calculated as the average of the number of fish counted on the two days before (n_{b} and n_{b-1}) and the two days after (n_{a} and n_{a+1}) the missing day:

$$
\begin{equation*}
\hat{n}_{i}=\left(\frac{\left(n_{b}+n_{b-1}+n_{a}+n_{a+1}\right)}{4}\right) . \tag{1}
\end{equation*}
$$

If the weir is not in operation for a period of two or more days, passage estimates for the missing days will be calculated using linear interpolation. This method is appropriate for short periods of inoperability when fish passage is reasonably assumed to have a linear relationship with time. Average fish counts from the two days before and two days after the inoperable period will be used to estimate the counts during the period of missed passage. The estimated fish count (\hat{n}) on day (i) of the inoperable period, where D is the total number of inoperable days, will be estimated as:

$$
\begin{equation*}
\hat{n}_{i}=\left(\frac{n_{b}+n_{b-1}}{2}\right)+i\left(\frac{\left(n_{a}+n_{a+1}\right)-\left(n_{b}+n_{b-1}\right)}{2(D+1)}\right) . \tag{2}
\end{equation*}
$$

Sockeye Salmon Age, Sex, and LengTh Composition

The seasonal age composition of the Chilkoot Lake sockeye salmon escapement (including jack sockeye salmon) will be determined from a minimum sample of 665 fish captured at the weir. This sample size was based on work by Thompson (2002) to estimate proportions of four or more major age classes. A sample of 510 fish is needed to ensure the estimated proportion of each major age class will be within 5% of the true value with at least 95% probability. The sample size was increased to 665 fish to ensure the sampling goal will be met, even if age cannot be determined from 30% of sampled fish. In addition, 3 scales will be sampled from each fish to increase the proportion of readable scales.
Up to 10 sockeye salmon (70 fish/week) will be sampled for matched scales, sex, and length each day during the morning shift, after the fish are transferred to the trap. This weekly sample will be more than sufficient to meet objective criteria, since the total seasonal sample will likely be more than the 665 samples required. This sample will also meet seasonal sex and length composition requirements, as only 385 samples (assuming no data loss) are needed to achieve the precision criteria (within 5\% of the true value 95% of the time) for estimating sex composition (Thompson 2002).
Scale samples will be analyzed at the ADF\&G Region 1 Scale Aging Laboratory in Douglas, Alaska. Scale impressions will be made in cellulose acetate and prepared for analysis as described by Clutter and Whitesel (1956). Scales will be examined under moderate ($70 \times$) magnification to determine age. Age classes will be designated by the European aging system where freshwater and saltwater years are separated by a period (e.g., 1.3 denotes a fish with one freshwater and three ocean years; Koo 1962). Age, length, and sex data will be entered into the Region 1 fisheries
database by Douglas staff. The weekly age distribution, the seasonal age distribution weighted by week, and the mean length by age and sex weighted by week will be calculated using standard sampling summary statistics (Cochran 1977).

Commercial Harvest

The District 15 commercial drift gillnet fishery season typically begins at 1200 noon on the third Sunday of June. Openings are then conducted weekly starting at 1200 noon on Sunday. Each week typically begins with a 48-hour opening, with the possibility of an extension depending on fishery performance. Commercial harvest data for District 15 will be obtained through the ADF\&G OceanAK data system. Harvests will be summarized by statistical weeks, which begin on Sunday at 1201 and end the following Saturday at midnight. Statistical weeks are numbered sequentially starting from the beginning of the calendar year (Appendix A).

Drift Gillnet Fleet Observations

Information gathered on the fishing grounds from the District 15 commercial drift gillnet fleet is used to estimate the number of fishing vessels, catch per unit effort (CPUE), and total harvest of all salmon species to be reported in weekly advisory announcements. The Area Management Biologist and one other Commercial Fisheries staff from the Haines office will conduct a survey of the District 15 commercial drift gillnet fleet each Monday during the season to interview fishermen and tender operators to collect information on harvest and effort. The sampling goal is to collect catch data from at least 20% of the participating drift gillnet fleet each opening.
The survey will start from Portage Cove harbor, in Haines, and cover the entire fishing grounds of District 15, which encompasses Sections 15-A and 15-C. A total boat count will be made, and individual drift gillnet vessel skippers will be interviewed in each of the open subdistricts. The number of interviews conducted in each subdistrict will be proportional to the amount of observed effort, with a goal of interviewing a total of 10 to 15 individual boats in the entire district. Tenders encountered while interviewing fishing vessels will be boarded, and E-ticket tender logs will be printed and retained with a goal of obtaining 3 to 5 tender logs for the entire district. After 24 hours of fishing, each tender log will typically include the catch of 5 to 15 boats. Information from tender logs and individual vessel interviews should provide enough data to meet our goal of sampling 20% of the fleet.

The CPUE, defined as the number of fish caught per boat per day (24 hours), will be determined by averaging catch data from individual fishermen interviews and tender logs. The CPUE will then be multiplied by the total number of boats to estimate the total harvest during the first day of the opening. Harvest estimates and cumulative escapement counts at the fish weirs will be compared to historical trends and weekly escapement targets to determine if an extension is warranted for each opening. The CPUE and estimated total harvest will be reported in weekly advisory announcements distributed each Thursday afternoon.

Commercial Sockeye Salmon Harvest Estimates

Inseason stock composition of the sockeye salmon harvest in the District 15 commercial drift gillnet fishery will be estimated through genetic stock identification. Sockeye salmon will be identified in seven reporting groups: Chilkat Lake, Chilkat mainstem, Chilkoot Lake, Juneau Mainland, Snettisham, Taku River/Stikine mainstem, and Other (Appendix J). Laboratory analysis, including quality control, will be performed by the ADF\&G Gene Conservation Laboratory following methods outlined in Dann et al. (2012). Stock composition will be estimated
inseason for each statistical week using a Bayesian mixed stock analysis (MSA) approach as implemented in the R package rubias (Moran and Anderson 2019), which will compare fishery samples against the genetic baseline described in Rogers Olive et al. (2018). Postseason, samples will be reanalyzed with age composition data from the harvest using an MSA model that incorporates ages from matched scale samples to provide age-specific stock composition estimates for all major contributing age classes ($>0.5 \%$).

Fishery Sampling

Matched sockeye salmon scale and genetic tissue samples will be collected from District 15 commercial drift gillnet fishery landings by ADF\&G port sampling personnel at fish processing facilities in Excursion Inlet and Juneau (Buettner et al. 2017). Sampling will be stratified by statistical week and sampling effort will span the first 10 weeks of the fishery, as approximately 94% of the sockeye salmon harvest occurs during that period (2010-2019 average). The target sample size for each statistical week is set at a minimum of 200 and a maximum of 300 paired tissues and scales. According to sample theory, under the worst-case scenario (stocks contributing equal proportions) a sample of this size should provide weekly estimates of relative proportions within 7% of the true value 90% of the time (Thompson 1987).

Sampling protocols will ensure that weekly samples will be as representative of harvests as possible to account for fluctuations in harvest and effort over the course of a weekly fishery. Deliveries with harvests mixed from more than one gear type or fishing district will not be sampled, no more than 40 samples will be collected from a single vessel delivery, no more than 200 samples will be collected from a single tender delivery, samples will be collected without regard to size or sex of fish, and, whenever possible, samples will be systematically collected from the entire hold as it is offloaded to ensure they are representative of the entire delivery.
Sockeye salmon harvested in the District 15 commercial drift gillnet fishery will be sampled regardless of the harvest type. In the past, sockeye salmon harvested in the Boat Harbor terminal harvest area (THA; statistical area 115-11) were not sampled, including sockeye salmon on tenders with fish mixed from traditional and terminal harvest fisheries. The Boat Harbor THA is designated to harvest hatchery chum salmon released inside Boat Harbor; however, the THA encompasses a portion of lower Lynn Canal (Figure 1) through which mixed stocks of sockeye salmon must migrate, and sockeye salmon are harvested incidentally in the fishery. Over the 10 years 2008-2017, an average 21% (range: $12-36 \%$) of sockeye salmon harvested in lower Lynn Canal (statistical areas 115-10 and 115-11) were harvested in the Boat Harbor THA. Since 2018, all sockeye salmon samples have been identified as harvest code 11 (traditional fishery). Future stock composition analyses will need to include the entire sockeye salmon harvest in Lynn Canal, harvest codes 11 and 12 (terminal hatchery harvest) combined, for years prior to 2018.

A 2.5 cm piece of the pelvic fin will be removed from each sampled fish and placed on a Whatman filter paper card for dry preservation. Matched scale, length, and sex data will also be collected from each sampled fish. Metadata for each sample, including matched age information, will be recorded. Tissue samples will be shipped on a weekly basis to the Region 1 Scale Aging Laboratory in Douglas, along with matching scale samples and associated data for inventory. Tissue samples will then be shipped to the ADF\&G Gene Conservation Laboratory in Anchorage for analysis. Scale samples will be inventoried and prepared for postseason analysis as outlined in the Sockeye Salmon Age, Sex, and Length Composition section.

Laboratory Analysis

Genomic DNA will be extracted from tissue samples using a NucleoSpin® ${ }^{\circledR} 96$ Tissue Kit by Macherey-Nagel (Düren, Germany). A multiplexed preamplification PCR of 48 screened single nucleotide polymorphism (SNP) markers will be used to increase the concentration of template DNA. Samples will be genotyped for 48 screened SNP markers using two sets of Fluidigm® 192.24 Dynamic Array ${ }^{\text {TM }}$ Integrated Fluidic Circuits, which systematically combine up to 24 assays and 192 samples into 4,608 parallel reactions (https://www.fluidigm.com). The Dynamic Arrays will be read on a Fluidigm ${ }^{\circledR}$ EP1 ${ }^{\text {TM }}$ System after amplification and scored using Fluidigm® ${ }^{\circledR}$ SNP Genotyping Analysis software. If necessary, SNPs may be rescreened on a QuantStudio ${ }^{\mathrm{TM}} 12 \mathrm{~K}$ Flex Real-Time PCR System (Life Technologies) as a backup method for assaying genotypes. Genotypes will be imported and archived in the Gene Conservation Laboratory Oracle database, LOKI.

A quality control analysis (QC) will be conducted postseason to identify laboratory errors and to measure the background discrepancy rate of the genotyping process. The QC analyses will be performed by staff not involved in the original genotyping, and the methods are described in detail in Dann et al. (2012). Briefly, the method will consist of re-extracting 8% of project fish and genotyping them for the same SNPs assayed in the original genotyping process. Discrepancy rates will be calculated as the number of conflicting genotypes, divided by the total number of genotypes compared. These rates will describe the difference between original project data and QC data for all SNPs and can identify extraction, assay plate, and genotyping errors. Assuming that discrepancies among analyses are due equally to errors during the original genotyping and during QC, error rates in the original genotyping will be estimated as half the rate of discrepancies. If there are many discrepancies, a duplicate check will be performed to determine if the QC fish are a better match to any other project fish. A QC fish matching other project fish would indicate that fish were swapped during the extraction process. This information will be used to identify which, and how many, fish should be re-extracted.

Statistical Analysis

Genotypes in the LOKI database will be imported into the statistical program R for analysis (R Core Team 2019). Prior to statistical analysis, three statistical quality control analyses will be performed to ensure high-quality data: 1) individuals missing $>20 \%$ of their genotype data (markers) will be identified and removed from analyses as this is indicative of low quality DNA (80% rule; Dann et al. 2012); 2) duplicate individuals will be identified and removed; and 3) non-sockeye salmon will be identified and removed.

Stock composition for each stratum will be estimated using the R package rubias (Moran and Anderson 2019). A single Markov Chain Monte Carlo (MCMC) chain with starting values equal among all populations will form the posterior distribution that describes the stock composition of each stratum. Summary statistics will be tabulated from these distributions to describe stock compositions. Stock composition estimates of commercial harvest will be applied to observed harvest (obtained from fish ticket data) to quantify stock-specific harvests within each week. Postseason, age-specific stock composition for all major contributing age classes ($>5 \%$) will be estimated seasonally through a mark- and age-enhanced genetic mixed-stock analysis (MAGMA) model, which is an extension of the Pella-Masuda genetic stock identification model (Pella and Masuda 2001) that incorporates paired scale-age data. Total season estimates will be provided, by age group, using MAGMA. This method requires two sets of parameters: 1) a vector of stock compositions summing to one weighted by harvest per stratum; and 2) a matrix of age composition,
with a row for each stock summing to one and a column for each age class. This information will be "completed" iteratively by stochastically assigning each fish to a population, then estimating the stock proportions based on summaries of assignment from each iteration. In this process, all available information (i.e., age and genotype) will be used to assign individuals to stock of origin.
To initialize the algorithm, all wild fish are given a stock assignment stochastically. The initialized algorithm will then proceed in the following steps:

1) Summarize all age data by assigned stock;
2) Estimate the stock proportions and age composition from previous summaries (accounting for sampling error);
3) Stochastically assign each fish with genotypes and ages to a stock of origin based on the product of its genotypic frequency, age frequency, and stock proportion for each population;
4) Stochastically assign each fish without genotypes (only those samples that were aged) to a stock of origin based on the product of its age frequency and stock proportion for each population; and
5) Repeat steps 1-4 while updating and recording the estimates of the stock proportions and age compositions with each iteration.

This algorithm will be run for 40,000 repetitions, and the first 20,000 repetitions will be discarded to eliminate the effect of the initial state. Five MCMC chains will be run and checked for convergence among chains using the Gelman-Rubin convergence diagnostic. The point estimates and credible intervals for stock-specific age compositions will be summary statistics of the output.

Juvenile Sockeye Salmon Abundance

Hydroacoustic and mid-water trawl methods will be used to estimate abundance of small pelagic fish in Chilkoot Lake. To control year-to-year variation in estimates, acoustic surveys will be conducted annually along the same 12 transects (two from each of six sampling sections of the lake) that were randomly chosen in 2002 as permanent transects (Riffe 2006). Hydroacoustic surveys will be conducted annually in either late October or early November. Hydroacoustic sampling will be conducted after sunset, and all transects will be sampled on the same night. A Biosonics DT- X^{TM} scientific echosounder ($430 \mathrm{kHz}, 7.3^{\circ}$ split-beam transducer) with Biosonics Visual Acquisition © version 5.0 software will be used to collect data. Ping rate will be set at 5 pings sec^{-1} and pulse width at 0.3 ms . Surveys will be conducted at a constant boat speed of about $2.0 \mathrm{~m} \mathrm{sec}^{-1}$. A target strength of -40 dB to -70 dB will be used to represent fish within the size range of juvenile sockeye salmon and other small pelagic fish.

Fish-target density $\hat{M}_{i j}\left(\right.$ targets $\left./ \mathrm{m}^{2}\right)$ in section i across transect j will be estimated using Biosonics Visual Analyzer © version 4.1 software, using echo integration methods (MacLennan and Simmonds 1992). Methods for calculating fish population estimates are similar to DeCino (2001) and DeCino and Willette (2014) and adapted from Burczynski and Johnson (1986). The population estimate of each transect j in a section i will be estimated as:

$$
\begin{equation*}
\widehat{N}_{i j}=a_{i} \widehat{M}_{i j}, \tag{3}
\end{equation*}
$$

where a_{i} represents the surface area $\left(\mathrm{m}^{2}\right)$ of the lake in section i. Using transects as the sampling unit (Burczynski and Johnson 1986), fish abundance $\left(\widehat{N}_{l}\right)$ across each section will be estimated from the mean abundance of the replicate transects j in section i,

$$
\begin{equation*}
\widehat{N}_{i}=J^{-1} \sum_{j=1}^{J} N_{i j}, \tag{4}
\end{equation*}
$$

with variance

$$
\begin{equation*}
v\left(\widehat{N}_{i}\right)=\sum_{j=1}^{J}\left(\widehat{N}_{i j}-\widehat{N}_{i}\right)^{2}(J-1)^{-1} J^{-1} \tag{5}
\end{equation*}
$$

The sum of the six section estimates $\left(\widehat{N}_{l}\right)$ will provide an estimate of total targets for the entire lake (\widehat{N}). Note that target density will be expressed as average targets per unit of lake surface area a_{i}, not per unit of volume. Because the estimate of total targets in each section is essentially independent (neglecting any movement of fry from one section to the other during surveys), the sample variance of the estimate of the total targets in the entire lake $v(\widehat{N})$ will be estimated by summing the sample variances $v\left(\widehat{N}_{i}\right)$ across all six sections. Sampling error for the estimate of total targets for the entire lake will be measured and reported with the coefficient of variation (Sokal and Rohlf 1981). The CV of population estimates was 15% or less in 13 of 16 years from 2004 to 2019 (Table 3).
Estimates of total targets will be partitioned into species categories based on the proportion of each species captured in mid water trawls. A $2 \mathrm{~m} \times 2 \mathrm{~m}$ elongated trawl net will be used to capture pelagic fish and estimate species composition (Riffe 2006). Four to six nighttime trawls will be conducted at various depths, ranging from near surface to 15 m . Trawl depths and duration will be determined from observations of fish densities and distributions throughout the lake during the hydroacoustic survey. Fish will be counted by species and released.

Mid-water trawls surveys were not conducted from 2015 to 2018, because sockeye salmon fry accounted for the vast majority of fish captured (median $=99 \% ; n=26$ years; Table 3; Bednarski et al. 2016). In addition, species apportionment may be biased if the relative catchability of each species is not the same. Threespine stickleback (Gasterosteus aculeatus) are more susceptible to capture than sockeye salmon fry (Enzenhofer and Hume 1989; Bednarski and Heinl 2010) and larger fish (e.g., age-1 sockeye salmon fry) can more easily avoid the trawl net (Hyatt et al. 2005). Although caution is required in interpreting sampling results, mid-water trawling will be conducted at Chilkoot Lake to maintain sampling effort consistent with prior years and to confirm that the vast majority of small pelagic fish in the lake are sockeye salmon fry.

Table 3. Number of fish collected in trawl samples by species and estimated total number of pelagic fish (hydroacoustic targets) and sockeye salmon fry in autumn surveys of Chilkoot Lake, 1987-1991 and 19952019. (Data updated from previous reports.)

Year	Trawl catch					Hydroacoustic estimate		
	Total fish	Sockeye salmon	Stickle- back	Other	Percent sockeye	Estimated targets	CV	Estimated sockeye salmon
1987	194	141	41	12	73\%	1,344,951	ND	977,516
1988	85	83	0	2	98\%	3,066,118	ND	2,993,974
1989	209	208	1	0	100\%	874,794	ND	870,608
1990	240	238	0	2	99\%	607,892	ND	602,826
1991	47	38	9	0	81\%	475,404	ND	384,369
---	---	---	---	---	---	---	---	---
1995	775	708	52	15	91\%	260,797	ND	238,250
1996	174	173	0	1	99\%	418,152	ND	415,749
1997	117	116	0	1	99\%	637,628	ND	632,178
1998	526	523	0	3	99\%	1,309,711	ND	1,302,241
1999	263	248	11	4	94\%	400,307	ND	377,476
2000	15	14	0	1	93\%	1,380,950	ND	1,288,887
2001	61	29	23	9	48\%	1,351,068	ND	642,311
2002	289	288	0	1	100\%	1,389,712	4\%	1,384,903
2003	139	138	1	0	99\%	1,384,754	ND	1,384,754
2004	199	187	4	8	94\%	1,059,963	10\%	996,200
2005	25	25	0	0	100\%	247,283	22\%	247,283
2006	80	80	0	0	100\%	356,957	17\%	356,957
2007	48	48	0	0	100\%	99,781	6\%	99,781
2008	534	531	1	2	99\%	1,020,388	14\%	1,014,655
2009	60	60	0	0	100\%	832,991	14\%	832,991
2010	379	379	0	0	100\%	741,537	5\%	741,537
2011	82	82	0	0	100\%	651,847	24\%	651,847
2012	142	142	0	0	100\%	752,212	13\%	752,212
2013	131	131	0	0	100\%	642,256	6\%	642,256
2014	551	546	0	5	99\%	1,160,985	8\%	1,150,450
2015	ND	ND	ND	ND	ND	1,148,335	7\%	1,148,335
2016	ND	ND	ND	ND	ND	1,294,334	4\%	1,294,334
2017	ND	ND	ND	ND	ND	491,901	5\%	491,901
2018	ND	ND	ND	ND	ND	919,761	11\%	919,761
2019	107	107	0	0	100\%	719,165	8\%	719,165

Limnological Assessment

Basic limnological data, including zooplankton, light, and temperature sampling, will be collected monthly between May and October. Sampling will be conducted as close as possible to the $15^{\text {th }}$ day of each month. Since 2008, all limnological sampling has been conducted at stations 1A $\left(59^{\circ} 21.88^{\prime} \mathrm{N}, 135^{\circ} 36.64^{\prime} \mathrm{W}\right)$ and $2 \mathrm{~A}\left(59^{\circ} 20.81^{\prime} \mathrm{N}, 135^{\circ} 35.79^{\prime} \mathrm{W}\right)$ (Figure 2), which will be marked by anchored buoys placed in the lake (Bachman et al. 2014). The anchored buoys will be deployed and removed each season due to the lake freezing. The stations are marked with GPS coordinates and are located at the beginning of the season using a GPS/InReach navigational device.

Light and Temperature Profiles

Light penetration measurements will be used to estimate the euphotic zone depth (EZD) of the lake, which is defined as the depth at which light (photosynthetically available radiation at 400700 nm) is attenuated to 1% of the intensity just below the lake surface (Schindler 1971). Photometric illuminance will be recorded as lumens per square meter $\left(\mathrm{lm} / \mathrm{m}^{2}\right)$ at $0.5-\mathrm{m}$ intervals, from just below the lake surface to the depth at which ambient light level equals 1% of the subsurface recording. The natural log of the ratio of light intensity I just below the surface $\left(I_{0}\right)$ to light intensity at depth Z, or $\ln \left(I_{0} / I_{Z}\right)$, will be calculated for each depth. The vertical light extinction coefficient $\left(K_{d}\right)$, the rate $\left(\mathrm{m}^{-1}\right)$ at which light dims with increasing depth, will be estimated as the slope of the regression of $\ln \left(I_{0} / I z\right)$ versus depth, and EZD will be calculated as $4.6502 / K_{d}$ (Kirk 1994; Edmundson et al. 2000). Only the measurements recorded from 5 cm below the surface to just below 1% of the subsurface light level will be used in the calculations, as use of data at depths below 1% of the initial subsurface measurement will skew the estimate of EZD.

Light profiles will be collected at each station using an ILT 1400 International Light Technologies Photometer. A Protomatic light meter that measures illumination in foot candles or a secchi disk may be used as a backup. If the Protomatic light meter is used, the recording of the light intensity will include the value of the meter multiplier (e.g., 10,000x, 1,000x, 100x). If the ILT 1400 is used, this area of the Limnology Sampling Form should be used to record whether each reading is in lumens per square meter $\left(\mathrm{lm} / \mathrm{m}^{2}\right)$ or kilolumens per square meter $\left(\mathrm{klm} / \mathrm{m}^{2}\right)$.
Temperature $\left({ }^{\circ} \mathrm{C}\right)$ will be measured with a Yellow Springs Instruments Model 58 meter. Temperature will be recorded at $1-\mathrm{m}$ intervals from the lake surface to a depth of 20 meters, and at $5-\mathrm{m}$ intervals from 20 meters to a depth of 50 meters. Temperature readings will be recorded in the "Meter" column of the Limnology Sampling Form.

Zooplankton Sampling

Zooplankton samples will be collected at each sampling station using a 0.5 m diameter, $153 \mu \mathrm{~m}$ mesh conical net. Vertical zooplankton tows will be pulled from a depth of 50 m to the surface at a constant speed of $0.5 \mathrm{~m} \mathrm{sec}^{-1}$. Once the top of the net has cleared the surface, the rest of the net will be pulled slowly out of the water and rinsed from the outside with lake water to wash organisms into the screened sampling container at the cod end of the net. All specimens in the sampling container will be carefully rinsed with clean tap water into a 500 ml sampling bottle and preserved in buffered 10% formalin. Bottle labels will include the lake name, date, name of the samplers, station \#, depth, and preservative type.

DATA COLLECTION

Chilkoot River Weir Enumeration

Weir personnel will record the number of fish passed through the counting opening in the weir on the Chilkoot Weir Daily Counting Form (Appendix B). Each counting period will be approximately three hours in length, or until fish have stopped passing through the weir, and the start and stop time for each counting period will be recorded on the form. The first daily counting period (the "morning count") will start immediately after the temperature and water level are recorded at 0630 . Counts of each species will be recorded on hand tally counters. At the end of the day, counts for each time period will be summarized and the total recorded in the "Daily Summary" box on this form.

As a service to commercial fishermen, as well as the general public, the weir crew will maintain updated daily and cumulative counts of sockeye salmon on a sign posted downriver from the weir. The sign will be visible from the road and posted before the no stopping or standing zone begins. These counts will be updated daily.

A summary of daily information will be communicated via satellite or cellular phone to the Haines Management office at approximately 0900 each morning. Information communicated during this call will include the sockeye salmon count from the enumeration period conducted earlier that morning.

SAMPLING FOR AGE, SEX, AND LENGTH

Sockeye salmon will be the only species sampled. Procedures for sampling and recording data are outlined in detail in Appendices C through I. All fish sampled for scales will be measured (mm) from mid eye to tail fork (Appendix D), and the sex will be determined from examination of external dimorphic sexual maturation characteristics such as snout and kype development, belly shape, and shape of vent opening (Appendix E). Three scales will be collected from the "preferred area" of each sampled fish (i.e., the left side of the fish, two scale rows above the lateral line on the diagonal from the posterior insertion of the dorsal fin to the anterior insertion of the anal fin; INPFC 1963; Appendix F) and placed on a scale card (Appendices F and H). Corresponding data (sex and length) will be recorded on (ASL) optical scan forms (Appendix G).

LIMNOLOGICAL ASSESSMENT

Zooplankton samples will be rinsed into clearly labeled 500 ml plastic bottles. The labeling will include the lake name, date, name of the samplers, station, depth, and preservative. The samples and associated forms (Appendix I) will be delivered to the Haines office of ADF\&G Commercial Fisheries for seasonal storage, then shipped to the ADF\&G Kodiak Limnology Laboratory for analysis at the end of the season.

DATA REDUCTION

Weir Counts

Weir counts will be entered daily (or as timely as possible) into the ADF\&G database at the Haines ADF\&G office using the Zander data entry application on the ADF\&G OceanAK website. Data to be entered include the water temperature $\left({ }^{\circ} \mathrm{C}\right)$, stream height (mm), brief comments, and fish numbers by count type, maturity, and species.

It is important that a count of 0 be entered for any species/maturity type that might reasonably be expected to be present if none are counted on a given day. Sockeye salmon, for example, should be expected on any given day the weir is operated; thus, enter $\mathbf{0}$ for all days when no fish are counted through the weir when the gate is open. Conversely, there is no need to enter a count of 0 coho salmon until at least 1 coho salmon has been counted at the weir, after which counts of 0 should be entered for all days when none are counted. If counts for missing days must be interpolated due to high water events or other problems (see Passage Estimates), those counts will be entered as "Calculated Values".

To ensure accuracy, entered data should be checked against the raw data each time they are entered into the database. Once the project is completed, daily weir counts for the entire season should be downloaded from OceanAK and double-checked again to ensure they are accurate and complete (e.g., there should be no counts of "jack" pink salmon).

Age, SEX, LENGTH DATA

Completed ASL forms and scale cards will be delivered to the Haines ADF\&G office on a weekly basis and reviewed for accuracy and completeness. Scale samples and ASL forms will be sent to the Douglas office each Monday morning for review, analysis, and archiving.

Commercial Harvest Data

Information collected on the fishing grounds by Haines staff will be reported on field sheets that separate each observation by subdistrict. These data will be entered into an Excel spreadsheet to track opening estimates through the drift gillnet season. Estimated CPUE, total harvest, and effort will be reported by the Haines manager in weekly advisory announcements.

The ADF\&G Gene Conservation Laboratory will provide inseason, weekly stock composition estimates to the Haines Office, including a running summary of the current season and stock composition estimates from the 2015-2019 seasons for comparison. There will be a total of 10 inseason reports spanning statistical weeks 25-34. Postseason, age-specific stock composition for all major contributing age classes ($>5 \%$) will be estimated seasonally.

LIMNOLOGICAL ASSESSMENT

Zooplankton samples and associated forms will be delivered to the Haines ADF\&G Commercial Fisheries office for seasonal storage. At the end of the season, all samples will be shipped to the ADF\&G Kodiak Limnology Laboratory for analysis (Hopkins 2017). Monthly results will be averaged between the two sampling stations, and seasonal estimates will be calculated as the average of the monthly values, mid-May to mid-September.

SCHEDULE AND DELIVERABLES

Operations

Field sampling activities are scheduled as follows:

1. Chilkoot River weir
2. Chilkoot Lake limnology
3. Chilkoot Lake hydroacoustic/mid-water trawl surveys

1 June-10 September
Mid-month, May-September
Late-October

REPORTS

Results of this study will be presented in the annual fishery management plans for the Lynn Canal drift gillnet fishery (Fishery Management Report) in April of each year and a biannual report summarizing the results of this project (Fishery Data Series Report).

RESPONSIBILITIES

Nicole Zeiser, Fishery Biologist III, Area Management Biologist, Principal Investigator. Sets up all major aspects of project, including planning, budget, sample design, permits, equipment, hiring, training, and evaluating personnel. Supervises overall project; edits, analyzes, and reports data; oversees major repairs; expedites major purchases. Reviews schedules and writes the operational plan and project reports; and serves as lead biologist for the project.

Shane Ransbury, Fishery Biologist I. Responsible for overseeing fish weir operations and directing the projects in the absence of Zeiser. Assists with the supervision of overall project; edits, analyzes, and reports data; trains the crew in safety and project procedures; creates crew schedules; assists with fieldwork; arranges logistics with field crew; and serves as project expeditor. Completes limnological assessments and fry production assessments. Assists with writing and reviewing the operational plan and ensures that it is followed appropriately. Resolves personnel or administrative issues related to this project and writes crew evaluations.

Fish and Wildlife Technician III. Responsible for the day to day safe operation and maintenance of the fish weir, and the training and direction of the crew member in all aspects of the project including fish weir maintenance, fish handling, the collection and recording of data, and adherence to the operational plan and Department policies.
Fish and Wildlife Technician II. Assist in all aspects of fish weir operations. Assists in the limnological sampling.
Faith Lorentz, Program Technician. Coordinates communication with Chilkoot weir crew, updates master spreadsheet with daily weir counts, provides administrative assistance, tracks project budgets, and provides other assistance as necessary.
Steven C. Heinl, Regional Research Coordinator. Assists with project operational planning and approves sampling design; reviews and assists with data analysis and final project report.
Sara Miller, Biometrician III. Assists with sampling design, project operational planning, and data analysis.
Kyle Shedd, ADF\&G Fisheries Geneticist II, Gene Conservation Laboratory: will oversee genetic project management and train Chase Jalbert to run the in-season genetic stock identification analyses with rubias and the post-season age-specific MAGMA model.

Chase Jalbert, ADF\&G Fisheries Geneticist I, Gene Conservation Laboratory: will perform genetic stock identification analyses, provide weekly commercial harvest stock composition estimates to fishery managers in-season, and run the post-season MAGMA model to provide age-specific stock composition estimates.

REFERENCES CITED

Bachman, R. L., and M. M. Sogge. 2006. Chilkoot River weir results 1999-2003. Alaska Department of Fish and Game, Fishery Data Series Report No. 06-30, Anchorage.

Bachman, R. L., J. A. Bednarski, and S. C. Heinl. 2013. Escapement and harvest of Chilkoot River sockeye salmon, 2004-2006. Alaska Department of Fish and Game, Fishery Data Series No. 13-52, Anchorage.

Bachman, R. L., J. A. Bednarski, and S. C. Heinl. 2014. Escapement and harvest of Chilkoot River sockeye salmon, 2007-2012. Alaska Department of Fish and Game, Fishery Data Series No. 14-07, Anchorage.
Barto, D. L. 1996. Summary of limnological and fisheries investigations of Chilkat and Chilkoot lakes, 1987-1991. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 5J9607, Juneau.

Bednarski, J., and S. C. Heinl. 2010. Hetta Lake subsistence sockeye salmon project: 2009 annual and final report. Alaska Department of Fish and Game, Fishery Data Series No. 10-61, Anchorage.
Bednarski, J. A., M. Sogge, and S. C. Heinl. 2016. Stock assessment study of Chilkoot Lake sockeye salmon, 20132015. Alaska Department of Fish and Game, Fishery Data Series No. 16-29, Anchorage.

Bednarski, J. A., M. M. Sogge, S. E. Miller, and S. C. Heinl. 2017. A comprehensive review of Chilkat Lake and River sockeye salmon stock assessment studies. Alaska Department of Fish and Game, Fishery Manuscript Series No. 17-06, Anchorage.

Bergander, F. 1974. Southeastern Alaska sockeye salmon optimum escapement studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Anadromous Fish Conservation Act, Completion report for period July 1, 1971 to June 30, 1974, AFC-40, Juneau.

Bergander, F. E., S. A. McPherson, and J. P. Koenings. 1988. Southeast Alaska sockeye salmon studies, 1987-1988. Technical Report for the period July 1, 1987, to June 30, 1988. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J88-44, Juneau.

Brenner, R. E., S. E. Miller, S. C. Heinl, X. Zhang, J. A. Bednarski, M. M. Sogge, and S. J. Fleischman. 2018. Sockeye salmon stock status and escapement goals for Chilkoot Lake in Southeast Alaska. Alaska Department of Fish and Game, Fishery Data Series No. 18-01, Anchorage.

Buettner, A. R., A. M. Reynolds, and J. R. Rice. 2017. Operational Plan: Southeast Alaska and Yakutat salmon commercial port sampling 2016-2019. Alaska Department of Fish and Game, Regional Operational Plan ROP.CF.1J.17-01, Douglas.

Bugliosi, E. F. 1988. Hydrologic reconnaissance of the Chilkat River basin. U.S. Geological Survey, Water-Resources Investigations Report 88-4023, Anchorage.
Burczynski, J. J., and R. L. Johnson. 1986. Application of dual-beam acoustic survey techniques to limnetic populations of juvenile sockeye salmon (Oncorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sciences, 43:1776-1788.

Clutter, R., and L. Whitsel. 1956. Collection and interpretation of sockeye salmon scales. Bull. Int. Pac. Salmon Fish. Comm., No. 9.
Cochran, W. 1977. Sampling techniques. 3rd ed. John Wiley and Sons, Inc., New York.
Dann, T. H., C. Habicht, S. D. Rogers Olive, H. L. Liller, E. K. C. Fox, J. R. Jasper, A. R. Munro, M. J. Witteveen, T. T. Baker, K. G. Howard, E. C. Volk, and W. D. Templin. 2012. Stock composition of sockeye salmon harvests in fisheries of the Western Alaska Salmon Stock Identification Program (WASSIP), 2006-2008. Alaska Department of Fish and Game, Special Publication No. 12-22, Anchorage.

REFERENCES CITED (Continued)

DeCino, R. D. 2001. Juvenile sockeye salmon population estimates in Skilak and Kenai lakes, Alaska, by use of splitbeam hydroacoustic techniques in September 2000. Alaska Department of Fish and Game. Regional Information Report No. 2A01-3, Anchorage.

DeCino, R. D., and T. M. Willette. 2014. Susitna drainage lakes pelagic fish estimates, using split-beam hydroacoustic and midwater trawl sampling techniques, 2005-2008. Alaska Department of Fish and Game, Fishery Data Series No. 14-47, Anchorage.
Edmundson, J. A., V. P. Litchfield, G. L. Todd, J. M. Edmundson, and L. Brannian. 2000. Central Region limnology 2000 annual report of progress. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 2A00-27, Anchorage.

Eggers, D. M., X. Zhang, R. L. Bachman, and M. M. Sogge. 2009. Sockeye salmon stock status and escapement goals for Chilkoot Lake in Southeast Alaska. Alaska Department of Fish and Game, Fishery Data Series No. 09-63, Anchorage.
Enzenhofer, H. J., and J. M. Hume. 1989. Simple closing midwater trawl for small boats. North American Journal of Fisheries Management 9:372-377.
Geiger, H. J., R. L. Bachman, S. C. Heinl, K. Jensen, T. A. Johnson, A. Piston, and R. Riffe. 2005. Sockeye salmon stock status and escapement goals in Southeast Alaska [in] Der Hovanisian, J. A. and H. J. Geiger, editors. Stock status and escapement goals for salmon stocks in Southeast Alaska 2005. Alaska Department of Fish and Game, Special Publication No. 05-22, Anchorage.
Gray, D., E. Coonradt, D. Harris, S. Conrad, J. Bednarski, A. Piston, M. Sogge, S. Walker, and T. Thynes. 2017. Annual management report of the 2016 Southeast Alaska commercial purse seine and drift gillnet fisheries. Alaska Department of Fish and Game, Fishery Management Report No 17-35, Anchorage.

Hansen, T. R., and B. J. Blain. 2013. Kogrukluk River salmon studies, 2011. Alaska Department of Fish and Game, Fishery Data Series No. 13-13, Anchorage.

Hopkins, A. M. 2017. Kodiak Island Limnology Laboratory analysis operational plan, 2017-2019. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Operational Plan ROP.CF.4K.2017.14, Kodiak.
Hyatt, K. D., C. Ramcharan, D. J. McQueen, and K. L. Cooper. 2005. Trophic triangles and competition among vertebrate (Oncorhynchus nerka, Gasterosteus aculeatus) and macroinvertebrate (Neomysis mercedis) planktivores in Mureil Lake, British Columbia, Canada. Ecoscience 12:11-26.
INPFC (International North Pacific Fisheries Commission). 1963. Annual report 1961. Vancouver, British Columbia.
Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, England.
Koo, T. S. Y. 1962. Age designation in salmon [In] Studies of Alaska red salmon. University of Washington Press, Seattle.

MacLennan, D. N., and E. J. Simmonds. 1992. Fisheries Acoustics. Van Nostrand-Reinhold, New York.
McPherson, S. A. 1990. An in-season management system for sockeye salmon returns to Lynn Canal, southeast Alaska. M. S. Thesis, University of Alaska, Fairbanks.
McPherson, S. A., F. E. Bergander, M. A. Olsen, and R. R. Riffe. 1992. Contribution, exploitation, and migratory timing of Lynn Canal sockeye salmon runs in 1988 based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report No. 92-21, Juneau.

Moran, B. M., and E. C. Anderson. 2019. Bayesian inference from the conditional genetic stock identification model. Canadian Journal of Fisheries and Aquatic Sciences 76:551-560.
Pella, J., and M. Masuda. 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fishery Bulletin 99:151-167.
R Development Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

REFERENCES CITED (Continued)

Rhea-Fournier, W. J., S. C. Heinl, S. E. Miller, J. A. Bednarski, and K. R. Shedd. 2018. Operational plan: stock assessment studies of Chilkat River adult salmon, 2018. Alaska Department of Fish and Game, Regional Operational Plan ROP.CF.1J.2018.06, Douglas.

Rich, W. H., and E. M. Ball. 1933. Statistical review of the Alaska salmon fisheries. Part IV: Southeastern Alaska. Bulletin of the Bureau of Fisheries, Vol. XLVII (47), No. 13: 437-673.

Riffe, R. R. 2006. Summary of limnological and fishery investigation of Chilkoot Lake, 2001-2004. Alaska Department of Fish and Game, Fishery Data Series No. 06-17, Anchorage.
Rogers Olive, S. D., E. K. C. Fox, and Sara E. Gilk-Baumer. 2018. Genetic baseline for mixed stock analyses of sockeye salmon harvested in Southeast Alaska for Pacific Salmon Treaty applications, 2018. Alaska Department of Fish and Game, Fishery Manuscript No. 18-03, Anchorage.

Schwarz, C. J., and C. G. Taylor. 1998. Use of the stratified-Petersen estimator in fisheries management: estimating the number of pink salmon (Oncorhynchus gorbuscha) spawners in the Fraser River. Canadian Journal of Fisheries and Aquatic Sciences 55:281-296.
Shaul, L. D., K. F. Crabtree, and M. Kemp. 2017. Berners River Coho Salmon Studies, 1972-2014. Alaska Department of Fish and Game, Fishery Manuscript Series No. 17-08, Anchorage.

Sokal, R. R., and F. J. Rohlf. 1981. Biometry, $2^{\text {nd }}$ edition. W. H. Freeman and Company, New York.
Stockley, C. 1950. The sockeye salmon of Chilkat and Chilkoot inlets. Fisheries Research Institute Paper No 286, University of Washington, Seattle.
Thompson, S. K. 1987. Sample size for estimating multinomial proportions. The American Statistician 41:1:62-46.
Thompson, S. K. 2002. Sampling, 2nd ed. John Wiley and Sons, Inc., New York.
Zeiser, N. L., S. C. Heinl, S. E. Miller, and K. R. Shedd. 2019. Operational Plan: Stock assessment studies of Chilkoot Lake sockeye salmon, 2019. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Operational Plan ROP.CF.1J.2019.07, Douglas.

APPENDICES

Appendix A.-ADF\&G Statistical weeks (sampling periods) and corresponding calendar dates, 20202022.

$\begin{aligned} & \text { Statistical } \\ & \text { Week } \\ & \hline \end{aligned}$	2020		2021		2022	
	$\begin{gathered} \text { Beginning } \\ \text { Date } \\ \hline \end{gathered}$	Ending Date	$\begin{gathered} \text { Beginning } \\ \text { Date } \\ \hline \end{gathered}$	Ending Date	$\begin{gathered} \text { Beginning } \\ \text { Date } \\ \hline \end{gathered}$	Ending Date
23	31-May	6-Jun	30-May	5-Jun	29-May	4-Jun
24	7-Jun	13-Jun	6-Jun	12-Jun	5-Jun	11-Jun
25	14-Jun	20-Jun	13-Jun	19-Jun	12-Jun	18-Jun
26	21-Jun	27-Jun	20-Jun	26-Jun	19-Jun	25-Jun
27	28-Jun	4-Jul	27-Jun	3-Jul	26-Jun	2-Jul
28	5-Jul	11-Jul	4-Jul	10-Jul	3-Jul	9-Jul
29	12-Jul	18-Jul	11-Jul	17-Jul	10-Jul	16-Jul
30	19-Jul	25-Jul	18-Jul	24-Jul	17-Jul	23-Jul
31	26-Jul	1-Aug	25-Jul	31-Jul	24-Jul	30-Jul
32	2-Aug	8-Aug	1-Aug	7-Aug	31-Jul	6-Aug
33	9-Aug	15-Aug	8-Aug	14-Aug	7-Aug	13-Aug
34	16-Aug	22-Aug	15-Aug	21-Aug	14-Aug	20-Aug
35	23-Aug	29-Aug	22-Aug	28-Aug	21-Aug	27-Aug

Note: A new statistical week always begins on a Sunday.

Appendix B.-Chilkoot River Weir Daily Count Form.

Chilkoot River Salmon Weir Daily Counting Form

Date: \qquad Sampler: \qquad
Water Level (mm): \qquad Water Visibility: \qquad
Water Temp. (C): \qquad Weather: \qquad

	SOCKEYE		CHINOOK		СОНО		PINK		CHUM	
Time Period:	Period Count	Daily Cum.								
Open:										
Closed:										
Open:										
Closed:										
Open:										
closed:										
Open:										
Closed:										
Open:										
Closed:										
Daily Cumulative:										
Previous Day's Cum:										
Total Cumulative:										

Comments (holes in weir, predation, etc.):

Appendix B.-Page 2 of 2.

PROCEDURE FOR FILLING OUT A DAILY COUNTING FORM (Appendix B):

- Begin a new counting form each day and record the date.
- A counting/sampling day begins at 00:01 hours and ends at 23:59 hours. Record times in military format (e.g., 3:00 p.m. $=15: 00$ hours).
- Each day copy the season total cumulative for each species over from the previous day's sheet and enter them into the appropriate fields marked "Previous Day's Cum" at the bottom of the form.
- After each count, record the times when the fish pass gate was opened and closed in the "Time Period" column. If no fish were counted when gate was opened, note times and indicate 0 fish under each column.
- After each count, add the count from that time period (under "Daily Counts") to the running daily cumulative column (under "Cum. Daily") for each species.
- At the end of each day, the last daily cumulative number recorded for each species should be the same number recorded in the "Daily Total" row at the bottom of the sheet. The "Daily Total" is then added to the "Previous Days Cum" to equal the "Total Cumulative" count for the season.
- Record water level and temperature once a day at $06: 30$, and record water visibility each time you count fish.
- Record notes such as predation, holes in the weir, etc., into the "comments" section.
- Double-check all calculations before reporting numbers to the Yakutat ADF\&G office staff at the 09:00 daily radio check.
- Don't forget to add any sockeye salmon that were sampled for ASL data to your daily total count.

Appendix C.-Procedures for sampling adult sockeye salmon for age, sex, and length (ASL).

ESCAPEMENT SAMPLING FOR SCALES

The following is a detailed explanation on how to collect salmon scale samples. If you have any questions, ask your co-worker or supervisor for clarification. Scales must be readable and properly organized to be useful, so follow proper technique when sampling.
For sampling you will need:

- Clipboard with ADF\&G Adult Salmon Age-Sex-Length Form (ASL) forms.
- Pencils (No. 2).
- Pre-labeled scale cards.
- Wax paper inserts.
- Forceps (tweezers).
- Plastic scale card holders (optional).
- Measuring tape/measuring board or measuring trough.
- Dip net.
- Gloves.

SCALE CARDS

A scale card (also called a gum card) is a gum-backed sheet for mounting individual scales collected from a fish. Each card has 40 positions, numbered 1 through 40 . Scale samples are placed on the cards in sequential order but working down in columns instead of rows because you will take more than one scale from each fish.
It is important to keep scale cards dry at all times. A wet scale card is useless, as the scales will fall off and prevent a readable impression from being taken. If the scale card does get wet (really wet), the scales should be remounted onto a new scale card and great care should be taken to keep each scale in its original position. The completed scale card should be allowed to dry completely before storing. All scale cards should be stored with a sheet of wax paper placed between them to keep the cards from sticking to each other, and the cards should be kept in a moisture-proof container or pressed between paper towels while drying.

SCALE SAMPLING PROCEDURES

Pluck the scale from the "preferred area" of the fish using forceps (tweezers). The preferred scales are located on the left side of the fish, two scale rows above the lateral line on the diagonal from the posterior insertion of the dorsal fin to the anterior origin of the anal fin (Appendix F). If the preferred scales are missing, reabsorbed, or obviously deformed, try the preferred area on the right side of the fish or sample a different fish. Do not sample scales outside of the preferred area.
After plucking scales from the fish, take time to clean the scale and make sure the scales are mounted correctly on the scale card. Remove all slime, grit, and as much skin (silver color) as possible from them by wiping the under surface (the side adhering to the fish) on the back of your hand or between fingers. Moisten cleaned scales and mount them on the appropriate number on the scale card. Mount scales with the anterior end (the end of the scale pointing toward the fish's head when plucked) pointed toward the top of the scale card (Appendix F).

Avoid collecting scales that are regenerated, torn, or misshapen. Patches of regenerated scales are often visible on the fish as a scar or patch of irregularly shaped scales. Regenerated scales have

Appendix C.-Page 2 of 6.
irregular patterns and often have a clear or blank area visible in the middle of the scale, all of which makes them useless for determining the fish's age.

It is essential that scales be cleaned before they are mounted on the scale card. If all the silvercolored skin, slime, and dirt are not removed, the scale will not adhere well to the card. In addition, slime and dirt on the scales or on the gum card will obscure the scale and render it useless for determining the fish's age (which is the purpose of the entire sampling process).

It is very important to not turn the scale over when mounting it on the gum card. The ridged or sculptured side of the scale should always face up, as it does on the outer surface of the fish. The age of the fish is determined from the pattern of these ridges on the outer surface of the scale. The underside of the scale, the side facing the fish's body, is perfectly smooth and thus not useful for determining age. Scales that are accidentally placed upside down (inverted) on the scale card can often be spotted later, because the edges of the scale will start to pull away from the card as they dry. The ridges can easily be detected by lightly scratching the surface of the scale with a fingernail or tweezers.
It is very important that all scales be mounted on the scale card pointed in exactly the same direction. The anterior portion of the scale (the end of the scale that points toward the fish's head) should be oriented toward the top of the card. Uniform orientation makes it much easier to view and age the scales at the ADF\&G aging laboratory. If the scales are pointing in different directions, they will have to be remounted at the lab, so it is essential to mount them correctly at the time they are collected.

SOCKEYE SCALE SAMPLING

When sampling sockeye salmon, you will take THREE SCALES from each fish. For the first sockeye salmon sampled, mount the three scales over scale-card boxes 1, 11, and 21 (working down in a column instead of across rows). Scales from the second fish sampled will be placed on scale-card boxes 2, 12, and 22. Repeat for the remainder of the fish sampled (See Appendices F and H). You will sample 10 fish every day so the scale card will be filled up daily and you will use a new one during each new sampling event. The same ASL form will be used each day until it is full. Sockeye salmon ASL forms will have 4 scale cards associated with them if 40 fish are sampled. On the ASL form, simply write the new sampling date on the line in the right margin of the form that corresponds to the fish number (Appendix G). It is important that scale card number and information match the information entered on the corresponding optical scan (ASL) form. Remember to always start a new scale card and new corresponding ASL form at the beginning of each statistical week (Appendix A).

FILLING OUT A SCALE CARD (example shown in Appendix H)

Species:

Write name of species out completely, as shown on the reverse side of the ASL form (i.e., sockeye). Do not abbreviate.

Appendix C.- Page 3 of 6.

Card No:

Scale cards are numbered sequentially beginning with " 001 " and continue through the entire season. Each species will have its own card numbering series. Do not repeat or omit scale card numbers.

Locality:

Write out the name of the system being sampled (i.e., Chilkoot River weir).

Stat. Code:

Write the 3-digit district (115), then the 2-digit subdistrict (33), then the 3-digit stream number (020) (i.e., 115-33-020 for Chilkoot River).

Sampling date:

Record the date when fish were sampled. This should match the date on the corresponding ASL form.

Gear:

Write out completely (i.e., weir trap). Do not abbreviate.

Collector(s):

Record the last name of the persons sampling and their respective jobs. The fish wrestler (W), the data recorder (R), and the scale plucker (P); e.g., Heinl (W), Zeiser (P, R).

Remarks:

Record any pertinent information (i.e., for sockeye salmon you would record: 3 scales/fish, \# of fish sampled, and corresponding ASL \#).

COMPLETING THE OPTICAL SCAN FORMS (example shown in Appendix G)

Salmon from many systems throughout the state are sampled for age, sex, and length annually by field crews. To be useful, data must be recorded neatly and accurately on the optical scan forms. Complete each section on the left side of the optical scan form using a No. 2 pencil and darken the corresponding ovals as shown in the figures. It is imperative that you darken the oval completely and neatly. Make every effort to darken the entire oval because the optical scanner that reads and records the data from the optical scan forms often misses partially filled or lightly filled ovals but avoid pressing so hard as to indent the paper. Do not stack forms when filling them out and label only one form at a time to avoid "the carbon paper effect" and resulting stray marks. It is essential that the forms are reviewed at the end of each day to ensure that all data are filled in and appropriately marked.

ASL Header Section:

Description: SPECIES/ DIST., SUB-DIST, OR STREAM/ GEAR/ PORT OR ESCAPEMENT SYSTEM/ WEEK.

Write the description information in the header of the ASL above the appropriate sections, following the examples shown in Appendix G; for the Chilkoot River weir this will be Sockeye/ Dist. 115-33-020/weir/Chilkoot River Escapement /Week 26).

Appendix C.- Page 4 of 6.
Continue filling out the entries along the left side of the optical scan (ASL) form (Appendix G) as described below:

Description:

Write out the name of the species, District, sub-district system and the type of sampling being done, and statistical week

Card:

CARD:	0	0	1	2	3	4	5	6	7	8
9		1	2	3	4	5	6	7	8	9
		0	1	2	3	4	5	6	7	8

Scale cards are numbered sequentially throughout the season starting with 001 or continuing where previously left off. A separate numbering sequence will be used for each species, gear, fishery, and harvest code so be sure you are using the correct scale card number. Since four scales per fish are sampled for Chinook, each Chinook ASL can have up to four scale cards. The first scale card of the sequence for each ASL form should be recorded and appropriate blocks filled in, while the other associated scale cards should be written in where the ASL form states "CARD \#" between each 10 -row section.

Species:

The code numbers for each species are listed on the reverse side of the ASL form.

SPECIES: 2	1	2	3	4	5	

Sockeye $=2$

Day, Month, Year:

An ASL form can only include one day's samples. Use appropriate blocks for the date the fish were sampled.

DAY: 2	0	1	2	3						
	0	1	2	3	4	5	6	7	8	9
MONTH:	0	1								
	0	1	2	3	4	5	6	7	8	9
YEAR:	0	1	2	3	4	5	6	7	8	9
	0	0	2	3	4	5	6	7	8	9

District:

DISTRICT:	0	1	2	3	4	5	6	7	8	9
	0	1	2	3	4	5	6	7	8	9
	0	1	2	3	4	5	6	7	8	9

Sub-District:

SUB- DISTRICT:	33	0	1	2	3	4	5	6	7	8
	9									
	0	1	2	3	4	5	6	7	8	9

```
Appendix C.-Page 5 of 6.
```


Stream:

STREAM:	0	1	2	3	4	5	6	7	8	9
	0	1	2	3	4	5	6	7	8	9
	0	1	2	3	4	5	6	7	8	9

Port: Leave Blank

Statistical Week:

List the statistical week in which you are sampling. Refer to the statistical week calendar found in Appendix A for this number.

STAT. WEEK	26	0	1	2	3	4	5	6	7	8	9
		0	1	2	3	4	5	6	7	8	9

Project:

The project code for escapement sampling at a weir site is 3 . Refer to the reverse side of the ASL form to see codes.

PROJECT: 3	1	2	3	4	5	6	7	8	9

Gear:

The gear code is $14=$ Weir. Refer to the reverse side of the ASL form to see codes.

GEAR:	0	1	2	3	4	5	6	7	8	9
	0	1	2	3	4	5	6	7	8	9

Length Type:

Use length type 2 (mid eye to fork of tail).

LENGTH TYPE: 2	0	1	2	3	4	5	6	7	8	9

Number of Cards:

Mark 1, 2, 3, or 4 as appropriate, for number of scale cards used when sampling sockeye salmon.
\square

\# CARDS: 4	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	

User Code Definitions: Leave blank.

Sex Column:

Fill in the appropriate M (male) or F (female) block for each sockeye salmon sampled. Do the same for sampling Chinook salmon.

$\#$	SEX	
$\mathbf{1}$	M	F
2	M	F
3	M	F

Appendix C.--Page 6 of 6.

Length Columns:

Measure fish from mid eye to fork of tail (MEF) to the nearest $5 \mathbf{~ m m}$ (Appendix D). Mark (1) in the "T" column for fish $>999 \mathrm{~mm}$ in MEF length.

T	100S										LENGTH										1's									
1	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
1	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
1	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9

SOME REMINDERS

- It is extremely important to keep the optical scan forms flat, dry, and clean. Fish slime and water curling will cause the optical scanning reader machine to reject the entire optical scan form. If unnecessary pencil marks, dark spots, etc. are visible, they need to be erased or the machine will misinterpret the mark. It is essential to fill in all information and darken the circles completely.
- Record length by blackening the appropriate column circles on the optical scan form. Column 3 on the optical scan form is used for fish over 999 millimeters long. Measure all salmon to the nearest 5 millimeters.
- Optical scan forms should be carefully reviewed and edited before submitting to the immediate supervisor. This is extremely important and cannot be emphasized enough. Recheck header information and make sure all information is filled in. Card numbers should not be repeated. Crew leaders should take time to ensure that the circles are being blackened correctly; if the circles are not darkened properly or are sloppily marked the optical scanner will record the information incorrectly or miss it entirely. Keep marks within each circle and completely fill them. Do not mark outside the circles.
- Transfer important comments from scale cards to optical scan forms. After pressing scales, the cards are seldom referred to again, and important remarks can be lost. Write any necessary comments in the top margin (not on the left side) or on the reverse side of the optical scan form. If no room is available on the optical scan form to completely explain the remarks, use a separate piece of paper.
- If the optical scan forms get terribly wrinkled or blotched, they should be copied to a new form before submitting to the area office. The optical scanning machine is extremely sensitive to wrinkles and blotches and will misread or reject the sheets.
- Look down the form from 2 angles after the data have been recorded to pick up any glaring mistakes. A common error, for instance, is placing both the 1 and 9 of a 419 mm fish in the 10 's column with nothing in the 1 's column.
- It is important for post-season editing that all information is provided on every ASL form and scale card. Include such information as who wrestled the fish, plucked the scale, and filled out the forms. It is the responsibility of the crew leader to make sure all information is entered correctly. The project leader will also double-check the forms before sending the data to Juneau.

Appendix D.-Measuring adult salmon length.
The snout of a salmon changes as the fish approaches sexual maturity, therefore changing the length of the fish. As a result, length measurements are made from the middle of the eye to the fork of the tail. The length is always rounded and recorded to the nearest 5 millimeters ($\mathbf{m m}$). Examples of rounded lengths are: $561-562 \mathrm{~mm}$ rounded to $560 \mathrm{~mm}, 563-567 \mathrm{~mm}$ rounded to 565 mm , and 568-569 mm rounded to 570 mm .

A fish measuring trough is used at the Chilkoot River weir site. The procedure for measuring mideye to fork of tail length is as follows:

1. Place the salmon flat, right side down, in the measuring trough. If you are the one wrestling the salmon, orient the salmon with its head on your right, the tail in your left hand, and the salmon's dorsal surface (back) towards you. This puts the salmon in the correct orientation for the plucker (P) and recorder (R) to remove the preferred scale from the fish's left side if the plucker is standing on the other side of the measuring trough.
2. Line the eye of the salmon up with the end of the measuring tape, then hold the salmon's head with your right hand. Gently sliding your thumb into the salmon's mouth and grasping the lower jaw works well for larger fish.
3. Flatten and spread the tail against the board with your left hand. Read the mid eye to fork of tail length to the nearest 5 millimeters and record the length on the ASL form.

Appendix E.-Determining the sex of salmon.
External sexing of salmon can be difficult, depending on the species and sexual maturity of the fish, and requires practice and attention to detail in order to be accurate. Sex determination requires examination of a combination of characteristics: 1) the head of the fish, for the development of a long snout and kype in males (shown in the photo below); 2) the vent, on the underside of the fish, for the presence of an ovipositor in females; and 3) the belly, which becomes rounder and fuller in females as their eggs develop.

1) Male sockeye and Chinook salmon may have longer snout than females and develop more of a hooked top jaw/nose and hooked kype (lower jaw) as they mature, as illustrated by the fish on the right. Female salmon tend to have a rounder, shorter nose/face and lack the hooked top jaw, as illustrated by the fish on the left.

(© 2019 ADF\&G)
2) Examining the fish's vent is another helpful procedure to determine male or female salmon.

(© 2019 ADF\&G)

Appendix F.-Preferred scale sampling area on an adult salmon.

Clean, moisten and mount scale on the scale card directly over the appropriate scale number. The side of the scale facing up on the scale card is the same as the side facing up when it is attached to the fish. This outward facing side is referred to as the "sculptured" side of the scale. The ridges on this sculptured side can be felt with fingernail or forceps. When placing the scale on the scale card, place in one uniform direction. ANTERIOR SIDE POINTING UP, SCULPTURED SIDE FACING OUT.

Appendix G.--Example of completed ADF\&G adult salmon Age-Length-Sex (ASL) form.

Appendix H.-Example of completed scale cards that correspond to completed ASL form (Appendix G).

Appendix I.-Limnology Sampling Form.

-continued-

Appendix I.--Page 2 of 2.

Appendix J.-ADF\&G collection code, location, reporting group, and the number of sockeye salmon used in the genetic baseline for mixed stock analysis in District 15 commercial drift gillnet fishery.

ADF\&G collection code	Location	Reporting Group	n
SCKAT07E	Chilkat Lake07 Early	Chilkat Lake	95
SCKAT07L	Chilkat Lake07 Late	Chilkat Lake	95
SCKAT13	Chilkat Lake13	Chilkat Lake	189
SBEARFL07	Bear Flats - Chilkat	Chilkat Mainstem	95
SMULE03.SMULE07	Mule Meadows - Chilkat	Chilkat Mainstem	190
SMOSQ07	Mosquito Lake - Chilkat	Chilkat Mainstem	95
SCHIK03	Chilkoot River	Chilkoot	159
SCHILBC07	Chilkoot Lake - Bear Creek	Chilkoot	233
SCHILB07	Chilkoot Lake - beaches	Chilkoot	251
SLACE13	Lace River	Juneau Mainland	63
SBERN03.SBERN13	Berners Bay	Juneau Mainland	165
SANTGILK13	Antler-Gilkey River	Juneau Mainland	53
SWIND03.SWIND07	Windfall Lake	Juneau Mainland	142
SSTEE03	Steep Creek	Juneau Mainland	91
SAUKE13baseline.SLAKECR14	Lake Creek (Auke Creek Weir)	Juneau Mainland	318
SKUTH06	Kuthai Lake	Taku River/Stikine Mainstem	171
SKSLK10.SKSLK11	King Salmon Lake	Taku River/Stikine Mainstem	214
SLTRA90.SLTRA06	Little Trapper Lake	Taku River/Stikine Mainstem	237
SLTAT11	Little Tatsamenie11	Taku River/Stikine Mainstem	59
STATS05.STATS06	Tatsamenie Lake	Taku River/Stikine Mainstem	288
SHACK08 SNAHL03.SNAHL07.	Hackett River	Taku River/Stikine Mainstem	52
SNAHL12	Nahlin River	Taku River/Stikine Mainstem	179
STAKU07	Taku River Taku Mainstem -	Taku River/Stikine Mainstem	95
STAKWA09	Takwahoni/Sinwa	Taku River/Stikine Mainstem	67
SSUSTA08.SSHUST09 STUCH08.SCHUNK09.STUSK08.SBEARSL09.	Shustahini Slough	Taku River/Stikine Mainstem	185
STUSKS08.STUSKS09 SYELLB08.SYELLB10.	Tuskwa/Chunk Slough	Taku River/Stikine Mainstem	356
SYELLB11 STULS07.STULS08.	Yellow Bluff Slough	Taku River/Stikine Mainstem	81
STULS09	Tulsequah River	Taku River/Stikine Mainstem	156
SFISHCR09.SFISHCR10	Fish Creek	Taku River/Stikine Mainstem	160
SYEHR07.SYEHR09	Yehring Creek	Taku River/Stikine Mainstem	171
SCHUT08	Chutine River	Taku River/Stikine Mainstem	94
SCHUTL09.SCHUT11 SFOWL07.SFOWL08.SFOWL09.SANDY07.	Chutine Lake	Taku River/Stikine Mainstem	224
SANDY09	Andy Smith slough	Taku River/Stikine Mainstem	54
SPORCU07.SPORCU11	Porcupine	Taku River/Stikine Mainstem	74
SDEVIL07.SDEVIL08	Devil's Elbow0708	Taku River/Stikine Mainstem	148

-continued-

Appendix J.-Page 2 of 7.

ADF\&G collection code	Location	Reporting Group	n
SDEVIL09	Devil's Elbow09	Taku River/Stikine Mainstem	53
SSCUD07.SSCUD08.SSCUD09	Scud River	Taku River/Stikine Mainstem	192
SISKU85.SISKU86.SISKU02.SISKU06. SISKU08.SISKU09			
	Iskut River	Taku River/Stikine Mainstem	153
SISKU07	Iskut River (Craigson Slough)	Taku River/Stikine Mainstem	42
SCRAIG06.SCRAIG07.SCRAIG08	Craig River-CAN	Taku River/Stikine Mainstem	38
SBRON08.SBRON09	Bronson Slough	Taku River/Stikine Mainstem	78
SSHAKS06.SSHAKES07.SSHAKS09	Shakes Slough	Taku River/Stikine Mainstem	67
SCHRI11.SCHRI12	Christina Lake	Taku River/Stikine Mainstem	70
SCRES03	Crescent Lake	Snettisham	194
SSPEE03	Speel Lake	Snettisham	95
SSNET06.SSPEE07	Snettisham Hatchery0607	Snettisham	190
SSPEE13	Snettisham Hatchery 13	Snettisham	146
SVIVID93	Vivid Lake	Other	48
SSECLK14.SSECLKIN14	Seclusion Lake	Other	117
SNBERG91	North Berg Bay Inlet91	Other	53
SNBERG92	North Berg Bay Inlet92	Other	100
SBART13	Bartlett River	Other	69
SNEVA08	Neva Lake08	Other	94
SNEVA09.SNEVA13	Neva Lake0913	Other	255
SHOKTAI04	Hoktaheen - main inlet	Other	47
SHOKTAO04	Hoktaheen - outlet	Other	49
SHOKTAM14	Hoktaheen - marine waters	Other	47
SKLAG09	Klag Bay Stream	Other	200
SFORD04	Ford Arm Lake	Other	207
SFORD13	Ford Arm Creek	Other	199
SREDOUBT13	Redoubt Lake	Other	200
SSALML07.SSALML08	Salmon Lake	Other	185
SNECKER91.SNECKER93	Benzeman Lake	Other	95
SFALL03.SFALL10	Falls Lake	Other	190
SREDB93	Redfish Lake	Other	94
SKUTL03	Kutlaku03	Other	95
SKUTL12	Kutlaku12	Other	78
SKUTL13	Kutlaku13	Other	50
SPAVLOF12.SPAVLOFR13	Pavlof River	Other	174
SKOOK07.SKOOK10L.SKOOK12L	Kook Lake Late	Other	194
SKOOK12E.SKOOK13	Kook Lake early	Other	148

-continued-

Appendix J.-Page 3 of 7.

ADF\&G collection code	Location	Reporting Group	n
SSITK03.SSITK11.			
SSITK12	Sitkoh Lake	Other	351
SLEVA12	Lake Eva	Other	115
SHASSEL12.SHASSELR13	Hasselborg Lake	Other	209
SKANA07.SKANA10.SKANAL13	Kanalku Lake	Other	319
SBAIN10	Bainbridge Lake	Other	95
SCOGH91.SCOG92HL.SCOG92ES.SCOGH10	Coghill Lake	Other	378
SESHAR08.SESHA91	Eshamy Creek	Other	185
SMAIN91	Main Bay	Other	96
SMINE91.SMINE09	Miners Lake	Other	191
SEYAM07	Eyak Lake - Middle Arm	Other	95
SEYASB07	Eyak Lake - South beaches	Other	87
SEYAK10	Eyak Lake - Hatchery Creek	Other	95
SMEND08.SMEND09	Mendeltna Creek	Other	188
SSWEDE08	Swede Lake	Other	95
SFISHC08	East Fork Gulkana River	Other	95
SGULK08EF	Gulkana River - East Fork	Other	75
SPAXSO09	Paxson Lake	Other	75
SMENT08	Mentasta Lake	Other	95
STANA05	Tanada Creek	Other	94
STANAO09	Tanada Lake - lower outlet	Other	95
STANAS09	Tanada Lake - shore	Other	93
SKLUT08	Klutina River	Other	95
SKLUTI08.SKLUTI09	Klutina Lake	Other	95
SBEARH08	Bear Hole - Klutina	Other	94
SBANA08	Banana Lake - Klutina	Other	80
SSANN05.SSTACR08	St. Anne Creek	Other	186
SMAHL08	Mahlo River	Other	94
STONSL09	Tonsina Lake	Other	94
SLONGLK05	Long Lake	Other	95
STEBA08	Tebay River	Other	93
SSTEAM08	Steamboat Lake - Bremner	Other	95
SSALMC08	Salmon Creek - Bremner	Other	93
SCLEAR07	Clear Creek	Other	87
SMCKI07	McKinley Lake07	Other	95
SMCKI08	McKinley Lake08	Other	95
SMCKI91	McKinley Lake91	Other	95
SMCKSC07	McKinley Lake - Salmon Creek	Other	93
SMART07.SMART08	Martin Lake	Other	187

Appendix J.-Page 4 of 7.

ADF\&G collection code	Location	Reporting Group	n
SMARTR08	Martin River Slough	Other	95
STOKUN08.STOKUN09	Tokun Lake	Other	189
SBERI91	Bering Lake	Other	95
SKUSH07.SKUSH08	Kushtaka Lake	Other	189
SSITU07	Mountain Stream	Other	159
SSITU13	Situk Lake	Other	190
SOSITU07	Old Situk River	Other	163
SLOST03B	Lost/Tahwah Rivers	Other	93
SAHRN07	Ahrnklin River	Other	90
SDANG09	Dangerous River	Other	95
SAKWE09	Akwe River	Other	95
SEAST03B	East Alsek River	Other	94
SDATLAS12	Datlasaka Creek	Other	95
SGOATC07.SGOATC12	Goat Creek	Other	56
SBORD07.SBORD08	Border Slough0708	Other	71
SBORD09.SBORD11	Border Slough0911	Other	70
STWEED07	Tweedsmuir07	Other	48
STWEED09	Tweedsmuir09	Other	46
SVERNR09.SVERNR10	Vern Ritchie	Other	114
SNESK07	Neskataheen Lake	Other	195
SKLUK06	Klukshu River06	Other	95
SKLUK07	Klukshu River07	Other	94
SKUDW09.SKUDW10.SKUDW11	Kudwat Creek	Other	100
SBRIDGE11.SBRIDGE12	Tatshenshini - Bridge/Silver	Other	105
SSTINKY11	Tatshenshini - Stinky Creek	Other	40
SUTATS03	Upper Tatshenshini	Other	95
SLTATS01.SLTATS03	Little Tatshenshini Lake	Other	65
SKWAT11	Kwatini River	Other	65
SBLAN07	Blanchard River07	Other	89
SBLAN09	Blanchard River09	Other	62
SLTAH90	Tahltan Lake90	Other	95
STAHL06	Tahltan Lake06	Other	196
SPETL04	Petersburg Lake	Other	95
SKAHS03	Kah Sheets Lake	Other	96
SMILLC07E	Mill Creek Weir Early	Other	94
SMILLC07L	Mill Creek Weir Late	Other	95
SKUNK03	Kunk Lake	Other	96
STHOM04.STHOM14	Thoms Lake	Other	93
SREDBL04	Red Bay Lake	Other	95

Appendix J.-Page 5 of 7.

ADF\&G collection code	Location	Reporting Group	n
SSALM04.SSALM07	Salmon Bay Lake	Other	170
SSHIP03	Shipley Lake	Other	94
SSARK00.SSARF05	Sarkar Lakes	Other	91
SHATC03.SHATC07	Hatchery Creek	Other	142
SLUCK04	Luck Lake	Other	94
SBIGLK10.SBIGLA14	Big Lake	Other	161
SMCDO01.SMCDO03.SMCDO07.SMCDO13	McDonald Lake	Other	369
SKART92.SMCGI03.SMCGI04.SMCGI16	Karta River	Other	472
SGENE07	Unuk River07	Other	95
SGENE08	Unuk River08	Other	69
SHELM05	Helm Lake	Other	94
SHECK04.SHECK07	Heckman Lake	Other	189
SMAHO03.SMAHO07	Mahoney Creek	Other	154
SKEGA04	Kegan Lake	Other	95
SFILLM05	Fillmore Lake	Other	52
STHRE04.STHRE10	Klawock - Three Mile	Other	181
SINCK03.SINCK08.SHALF08	Klawock - Inlet Creek	Other	212
SHETT03.SHETT08.SHETT09L	Hetta Lake	Other	281
SHETT09M	Hetta Creek - middle run	Other	95
SHETT10E	Hetta Creek - early run	Other	95
SEEK04.SEEK07	Eek Creek	Other	50
SKLAK04	Klakas Lake	Other	95
SBAR04	Essowah Lake	Other	95
SHSMI92.SHUGH13	Hugh Smith	Other	155
SHUGH04	HS - Buschmann	Other	151
SCOBB07	HS - Cobb Creek	Other	99
SKWIN01.SKWIN12U	Kwinageese	Other	76
SBOWS01	Bowser Lake	Other	94
SBONN01.SBONN12	Bonney Creek	Other	164
SDAMD01	Damdochax Creek	Other	93
SMERI01.SMEZIB06	Meziadin Lake	Other	186
SHANNA06	Hanna Creek	Other	93
STINT06	Tintina Creek	Other	94
SGING97	Gingit Creek	Other	94
SALAS87.SALAS06	Alastair Lake	Other	118
SLAKEL06	Lakelelse Lake	Other	93
SSUST01	Sustut River	Other	79
SSALIX87.SSALIX88	Salix Bear	Other	94

-continued-

Appendix J.-Page 6 of 7.

ADF\&G collection code	Location	Reporting Group	n
SMOTA87	Motase Lake	Other	47
SSLAM06	Slamgeesh River	Other	95
SUBAB06	Babine River	Other	95
SFMILE06	Four Mile Creek	Other	85
SPINK94.SPINK06	Pinkut Creek	Other	187
SGRIZ87	Grizzly Creek	Other	76
SPIER06	Pierre Creek	Other	95
SFULT06	Fulton River	Other	95
SMORR07	Morrison	Other	92
SLTAH94	Lower Tahlo River	Other	78
STAHLO07	Tahlo Creek	Other	95
SMCDON02.SMCDON06	McDonell Lake (Zymoetz River)	Other	131
SKALUM06	Kitsumkalum Lake06	Other	56
SKALUM12	Kitsumkalum Lake12	Other	94
SKITW12	Kitwanga River	Other	92
SSTECR01	Stephens Creek	Other	95
SNANG06	Nangeese River	Other	40
SKISP02	Kispiox River	Other	53
SSWANLK06	Swan Lake	Other	93
SNANI88.SNANI07	Nanika River	Other	114
SKYNO97	Trembleur - Kynock	Other	94
STACH01	Tachie River	Other	94
SSTEL07	Stellako River	Other	94
SFRAS96	Fraser Lake	Other	85
SMITCH01	Mitchell River	Other	94
SLHOR01.SUHOR01.SHORSE07	Horsefly River	Other	274
SNAHAT02	Nahatlatch River	Other	92
SCULT02	Cultus Lake	Other	91
SCHILW04	Chilliwack Lake	Other	90
SCHILK01	Chilko Lake	Other	87
SRAFT01	Raft River	Other	84
SLADA02.SADAM07	Adams River	Other	187
SMSHU02	Middle Shuswap River	Other	91
SSCOT00	Scotch River	Other	91
SGATES09	Gates Creek	Other	90
SBIRK07	Birkenhead River	Other	90
SWEAV01	Weaver Creek	Other	89
SHARR07	Harrison River	Other	95
SNTHOM05	North Thompson	Other	95

[^0]
Appendix J.-Page 7 of 7.

ADF\&G collection code	Location	Reporting Group	\boldsymbol{n}
SNADE95	Naden River	Other	95
SYAKO93	QCI - Yakoun Lake	Other	70
SKITIM10	Kitimat River	Other	93
SBLOOM05	Bloomfield Lake	Other	94
STANK03	Tankeeah River03	Other	47
STANK05	Tankeeah River05	Other	47
SAMBA04	Central Coast - Amback Creek	Other	91
SKITL06	Kitlope Lake	Other	95
SGCENLK02	Great Central Lake	Other	95
SQUAT03	Vancouver Island - Quatse River	Other	95
SOKAN02	Okanagan River	Other	95
SLAKE97	Lake Pleasant	Other	89
SISSA96	Issaquah Creek	Other	82
SWENA98	Lake Wenatchee	Other	95

[^0]: -continued-

