# Stock Assessment Study of Chilkat Lake and River Sockeye Salmon, 2017-2020 

by

Shane R. Ransbury
Nicole L. Zeiser
Julie A. Bednarski
Steve C. Heinl
Chase S. Jalbert
and
Sara E. Miller


## Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.


# FISHERY MANUSCRIPT SERIES NO. 21-06 

# STOCK ASSESSMENT STUDY OF CHILKAT LAKE AND RIVER SOCKEYE SALMON, 2017-2020 

by<br>Shane R. Ransbury and Nicole L. Zeiser<br>Alaska Department of Fish and Game, Division of Commercial Fisheries, Haines<br>Julie A. Bednarski<br>Alaska Department of Fish and Game, Division of Commercial Fisheries, Douglas<br>Steven C. Heinl<br>Alaska Department of Fish and Game, Division of Commercial Fisheries, Ketchikan<br>Chase S. Jalbert<br>Alaska Department of Fish and Game, Gene Conservation Laboratory, Anchorage<br>Sara E. Miller<br>Alaska Department of Fish and Game, Division of Commercial Fisheries, Juneau

Alaska Department of Fish and Game
Division of Sport Fish, Research and Technical Services
333 Raspberry Road, Anchorage, Alaska, 99518-1565
December 2021

The Fishery Manuscript Series was established in 1987 by the Division of Sport Fish for the publication of technically-oriented results of several years' work undertaken on a project to address common objectives, provide an overview of work undertaken through multiple projects to address specific research or management goal(s), or new and/or highly technical methods, and became a joint divisional series in 2004 with the Division of Commercial Fisheries. Fishery Manuscripts are intended for fishery and other technical professionals. Fishery Manuscripts are available through the Alaska State Library and on the Internet: http://www.adfg.alaska.gov/sf/publications/ This publication has undergone editorial and peer review.
Product names used in this publication are included for completeness and do not constitute product endorsement. The Alaska Department of Fish and Game does not endorse or recommend any specific company or their products.

Shane R. Ransbury and Nicole L. Zeiser, Alaska Department of Fish and Game, Division of Commercial Fisheries, Mile 1 Haines Highway, Haines, Alaska 99827, USA<br>Julie A. Bednarski<br>Alaska Department of Fish and Game, Division of Commercial Fisheries, 802 Third Street, Douglas, Alaska 99824, USA<br>Steven C. Heinl<br>Alaska Department of Fish and Game, Division of Commercial Fisheries, 2030 Sea Level Drive, Suite 205, Ketchikan Alaska 99901, USA<br>Chase S. Jalbert<br>Alaska Department of Fish and Game, Division of Commercial Fisheries, 333 Raspberry Road, Anchorage, AK 99518<br>Sara E. Miller<br>Alaska Department of Fish and Game, Division of Commercial Fisheries, 1255 W. 8th Street, Juneau, AK 99801

This document should be cited as follows:
Ransbury, S. R., N. L. Zeiser, J. A. Bednarski, S. C. Heinl, C. S. Jalbert, and S. E. Miller. 2021. Stock assessment study of Chilkat Lake and River sockeye salmon, 2017-2020. Alaska Department of Fish and Game, Fishery Manuscript Series No. 21-06, Anchorage.

The Alaska Department of Fish and Game (ADF\&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:
ADF\&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526
U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240
The department's ADA Coordinator can be reached via phone at the following numbers:
(VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078
For information on alternative formats and questions on this publication, please contact:
ADF\&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2375

## TABLE OF CONTENTS

## Page

LIST OF TABLES ..... ii
LIST OF FIGURES ..... iii
LIST OF APPENDICES ..... iv
ABSTRACT ..... 1
INTRODUCTION ..... 1
STUDY SITE ..... 4
OBJECTIVES ..... 5
METHODS ..... 6
Chilkat Lake Escapement Estimation ..... 6
Chilkat Lake Weir. ..... 6
Sockeye Salmon Age, Sex, and Length Composition ..... 7
Chilkat Lake DIDSON ..... 7
Count Expansions ..... 9
Chilkat River Fish Wheels ..... 10
Commercial Harvest Estimate ..... 11
Fishery Sampling ..... 12
Laboratory Analysis ..... 13
Statistical Analysis ..... 13
Chilkat Lake Limnological Assessment ..... 14
Light and Temperature Profiles ..... 14
Secondary Production ..... 15
RESULTS ..... 15
Chilkat Lake Escapement ..... 15
Escapement Age, Sex, and Length Composition ..... 20
Fish Wheel Counts ..... 24
Commercial Harvest Estimate ..... 26
Limnological Assessment ..... 29
Light and Temperature ..... 29
Zooplankton Composition ..... 31
DISCUSSION ..... 36
ACKNOWLEDGEMENTS ..... 41
REFERENCES CITED ..... 42
APPENDICES ..... 47

## LIST OF TABLES

Table Page

1. Weekly escapement of sockeye salmon at the Chilkat Lake weir compared to weekly management targets and biological escapement goal range of 70,000 to 150,000 fish, 2017 ..... 17
2. Weekly escapement of sockeye salmon at the Chilkat Lake weir compared to weekly management targets and biological escapement goal range of 70,000 to 150,000 fish, 2018 ..... 18
3. Weekly escapement of sockeye salmon at the Chilkat Lake weir compared to weekly management targets and biological escapement goal range of 70,000 to 150,000 fish, 2019 ..... 19
4. Weekly escapement of sockeye salmon at the Chilkat Lake weir compared to weekly management targets and biological escapement goal range of 70,000 to 150,000 fish, 2020 ..... 20
5. Age composition of the Chilkat Lake sockeye escapement weighted by statistical week, 2017 ..... 21
6. Average length of Chilkat Lake sockeye salmon by age class and sex, 2017. ..... 21
7. Age composition of the Chilkat Lake sockeye escapement weighted by statistical week, 2018 ..... 22
8. Average length of Chilkat Lake sockeye salmon by age class and sex, 2018. ..... 22
9. Age composition of the Chilkat Lake sockeye escapement weighted by statistical week, 2019 ..... 23
10. Average length of Chilkat Lake sockeye salmon by age class and sex, 2019 ..... 23
11. Age composition of the Chilkat Lake sockeye escapement weighted by statistical week, 2020 ..... 23
12. Average length of Chilkat Lake sockeye salmon by age class and sex, 2020. ..... 24
13. Estimated commercial harvest of Chilkat Lake, Chilkoot Lake, and other sockeye salmon stocks in the District 15 commercial drift gillnet fishery based on MAGMA genetic stock identification analysis, 2017 and 2018 ..... 28
14. Estimated commercial harvest of Chilkat Lake, Chilkoot Lake, and other sockeye salmon stocks in the District 15 commercial drift gillnet fishery based on MAGMA genetic stock identification analysis, 2019 and 2020 ..... 29
15. Euphotic zone depths in Chilkat Lake, 2017-2020. ..... 30
16. Mean density of zooplankton per $\mathrm{m}^{2}$ of lake surface area by sampling date and taxon in Chilkat Lake, 2017-2018 ..... 32
17. Estimated density of zooplankton per $\mathrm{m}^{2}$ of lake surface area by sampling date and taxon in Chilkat Lake, 2019-2020 ..... 33
18. Estimated mean length and biomass of zooplankton by sampling date and taxon in Chilkat Lake, 2017- 2018. ..... 34
19. Estimated mean length and biomass of zooplankton by sampling date and taxon in Chilkat Lake, 2019- 2020. ..... 35

## LIST OF FIGURES

Figure ..... Page

1. Haines Management Area with sections and statistical areas for the District 15 commercial drift gillnet fishery .....  2
2. Chilkat River drainage and locations of Chilkat Lake and limnology sampling stations, the weir site, and fish wheel site ..... 5
3. Daily sockeye salmon counts at the Chilkat Lake weir in 2017 and 2018 compared to the historical average ..... 17
4. Weekly cumulative escapement of sockeye salmon through the Chilkat Lake weir, 2017-2020, and upper and lower bounds of the annual escapement goal range of 70,000-150,000 fish ..... 18
5. Daily sockeye salmon counts at the Chilkat Lake weir in 2019 and 2020 compared to the historical average ..... 19
6. Inseason fish wheel counts compared to expanded Chilkat Lake weir sockeye salmon escapement estimates ..... 25
7. Weekly fish wheel catch compared to the historical average ..... 25
8. Water temperature profiles by date at Chilkat Lake, 2019-2020 ..... 31
9. Annual seasonal mean zooplankton abundance in Chilkat Lake, 1987-2020 ..... 36
10. Estimated total runs of Chilkat Lake sockeye salmon, 1976-2020, and the current biological escapement goal range of $70,000-150,000$ sockeye salmon counted with the DIDSON system at the Chilkat Lake weir site. ..... 37
11. Estimated commercial harvest of Chilkat Lake sockeye salmon, 1976-2020 ..... 38
12. Average annual sockeye salmon mid eye to fork length by sex and ocean age for the major age classes in the Chilkat Lake escapement compared to the 1982-2020 averages ..... 40

## LIST OF APPENDICES

Appendix Page
A. Estimated Chilkat Lake sockeye salmon escapement, commercial harvest, total run, and commercial harvest rates, 1976-2020. ..... 48
B. ADF\&G statistical weeks, 2017-2020 ..... 50
C. Escapement sampling data analysis. ..... 51
D. Chilkat Lake weir and DIDSON dates of operation, sockeye and coho salmon counts, and counts expanded to account for late installation and early removal of the project, 1971-2020. ..... 52
E. Expanded escapement counts ..... 54
F. Raw and expanded sockeye salmon catch at the Chilkat River fish wheels, 1990-2020. ..... 58
G. Chilkat River fish wheel counts of sockeye salmon by statistical week and year, 1999-2020. ..... 59
H. Water level, water temperature, and water visibility at the Chilkat Lake weir, 2017-2020 ..... 60
I. Daily Chilkat Lake weir counts of salmon, by species, 2017. ..... 64
J. Daily Chilkat Lake weir counts of salmon, by species, 2018. ..... 67
K. Daily Chilkat Lake weir counts of salmon, by species, 2019. ..... 70
L. Daily Chilkat Lake weir counts of salmon, by species, 2020. ..... 73
M. Estimated commercial harvest of Chilkat Lake, Chilkoot Lake, and other sockeye salmon stocks in the District 15 commercial drift gillnet fishery based on scale pattern analysis and genetic stock identification ..... 76
N. District 15 commercial drift gillnet fishery genetic stock composition results by statistical week and reporting group, 2017. ..... 77
O. District 15 commercial drift gillnet fishery genetic stock composition results by statistical week and reporting group, 2018. ..... 78
P. District 15 commercial drift gillnet fishery genetic stock composition results by statistical week and reporting group, 2019. ..... 79
Q. District 15 commercial drift gillnet fishery genetic stock composition results by statistical week and reporting group, 2020. ..... 80
R. Estimated age composition of sockeye salmon harvested in the District 15 commercial drift gillnet fishery by year and reporting group, 2017-2020. ..... 81
S. Historical age composition of the Chilkat Lake sockeye salmon escapement weighted by statistical week, 1982-2020. ..... 84
T. Average lengths of male sockeye salmon in the Chilkat Lake escapement by major age class, 1982- 2020. ..... 88
U. Average lengths of female sockeye salmon in the Chilkat Lake escapement by major age class, 1982- 2020. ..... 89
V. Monthly and seasonal mean euphotic zone depths and water temperatures at Chilkat Lake ..... 90
W. Estimated monthly and seasonal mean zooplankton density and biomass at Chilkat Lake, 1987-2020. ..... 91


#### Abstract

From 2017 to 2020, the Alaska Department of Fish and Game, Division of Commercial Fisheries, conducted stock assessment programs to estimate the escapement and harvest of Chilkat Lake sockeye salmon (Oncorhynchus nerka). Escapement was estimated with a Dual-frequency Identification Sonar (DIDSON) and weir near the outlet of Chilkat Lake, and age, length, and sex data were collected and analyzed each year. Sockeye salmon escapements, based on expanded DIDSON counts, were 88,197 fish in 2017, 108,047 fish in 2018, 136,091 fish in 2019, and 50,746 fish in 2020. Estimated escapements fell within the biological escapement goal range of $70,000-150,000$ sockeye salmon in all but one year (2020). A pair of fish wheels were operated on the Chilkat River to provide inseason information on Chilkat sockeye salmon run strength to assist in management of the District 15 commercial drift gillnet fishery. Genetic stock identification was conducted to determine the stock composition of sockeye salmon harvested annually in the District 15 commercial drift gillnet fishery. Estimated commercial harvests of Chilkat Lake sockeye salmon were 5,698 fish in 2017, 19,235 fish in 2018, 40,935 fish in 2019, and 8,776 fish in 2020. Estimated annual harvest rates (not including subsistence or sport harvests) ranged from $6.1 \%$ (2017) to 23.1\% (2019), and Chilkat Lake sockeye salmon accounted for an estimated $14.3 \%$ (2017) to $23.5 \%$ (2018) of the annual commercial sockeye salmon harvest in District 15 . Zooplankton populations at Chilkat Lake have improved steadily since the late 2000s; historical peaks in the abundance of copepods and cladocerans (particularly Daphnia), the preferred prey of juvenile sockeye salmon, were observed in 2020 and 2019, respectively.


Keywords: Chilkat Lake, Chilkat River mainstem, commercial harvest, DIDSON, District 15 commercial drift gillnet fishery, fish wheel, escapement, expanded counts, zooplankton, Oncorhynchus nerka, genetic stock identification, sockeye salmon, limnology

## INTRODUCTION

The Chilkoot and Chilkat sockeye salmon (Oncorhynchus nerka) runs in northern Southeast Alaska, near the town of Haines, are two of the largest in Southeast Alaska (Figure 1). Between 1900 and 1920, the annual commercial harvest of sockeye salmon in northern Southeast Alaska averaged 1.5 million fish, the majority of which were believed to be Chilkat and Chilkoot sockeye salmon (Rich and Ball 1933). Historically, Chilkat sockeye salmon were harvested in the large fish trap and purse seine fisheries in Icy and northern Chatham Straits as well as in terminal drift gillnet areas of Lynn Canal. Fish traps were eliminated with Alaska statehood in 1959 and Lynn Canal was developed into a designated drift gillnet fishing area (District 15) where most of the commercial harvest of Chilkat sockeye salmon takes place (Figure 1). The annual harvest of sockeye salmon in the District 15 commercial drift gillnet fishery averaged 187,426 fish from 1985 to 2016, of which an average 76,631 fish originated from Chilkat Lake, 88,379 fish originated from Chilkoot Lake, and the remainder were of mixed stock origin. A smaller portion of the Chilkat run is harvested in the commercial purse seine fisheries that target pink salmon (O. gorbuscha) in Icy and northern Chatham Straits (Ingledue 1989; Gilk-Baumer et al. 2015). Annual contributions to those fisheries are not known and probably vary annually depending on fishing effort and the strength of pink salmon runs. Chilkat sockeye salmon are also harvested annually in subsistence fisheries in Chilkat Inlet and the Chilkat River, where reported harvest for the period 1985-2016 averaged approximately 4,324 fish per year (Appendix A).


Figure 1.-Haines Management Area with sections and statistical areas for the District 15 commercial drift gillnet fishery. Early in the 2018-2020 seasons, the fishery was restricted to the black shaded areas in accordance with management actions implemented in the 2018 Chilkat River Chinook salmon action plan (Lum and Fair 2018) and the 2019 Southeast Alaska drift gillnet fishery management plan (Gray et al. 2019) that were designed to reduce commercial harvest of Chilkat River Chinook salmon.

Stock composition of the sockeye salmon harvest in the mixed stock District 15 commercial drift gillnet fishery was estimated using scale pattern analysis through 2016 and genetic stock identification since 2017 (Bednarski et al. 2017). The Alaska Department of Fish and Game (ADF\&G) initiated a scale pattern analysis program in 1980 (McPherson 1990; McPherson et al. 1992) to estimate contributions of Chilkat and Chilkoot sockeye salmon stocks based on consistent differences in freshwater scale patterns (Stockley 1950; Bergander 1974). Accurate scale pattern analysis required highly skilled personnel trained in very specific pattern recognition, which could take years to master, and required intensive field sampling and inseason analysis of a very large number of scale samples (Bednarski et al. 2017), whereas genetic stock identification methods are standardized and used widely throughout the state (Shedd et al. 2016). Multiple blind tests conducted by the Northern Boundary Technical Committee of the Pacific Salmon Commission (years 2003, 2009) and by ADF\&G (Lynn Canal, years 2015-2016) indicated that the 2 methods
offered similar estimates of salmon stock contribution but that the genetic techniques were able to discriminate stocks at a finer resolution in less time compared to scale pattern analysis (Anne Reynolds-Manney, ADF\&G fisheries biologist, unpublished data ${ }^{1}$ ). As a result, stock composition of sockeye salmon harvests in the District 15 commercial drift gillnet fishery have been estimated solely through genetic stock identification since 2017 (Bednarski et al. 2017).

Chilkat Lake sockeye salmon escapements have historically been estimated from expanded visual weir counts from 1967 to 1995 and 1999 to 2007 and Dual-frequency Identification Sonar (DIDSON) counts from 2008 to 2020 (Eggers et al. 2010; Sogge and Bachman 2014; Bednarski et al. 2017). The switch to DIDSON allowed for more accurate counts of sockeye salmon passage. Periodic flooding of the silty Tsirku River into Chilkat Lake (Bergander et al. 1988) required opening the weir, sometimes for extended periods, and increased boat traffic in and out of the lake required frequent lowering of a boat gate in the center of the weir through which fish could pass uncounted (Kelley and Bachman 2000). The DIDSON allowed fish passage to continue to be monitored during periods when fish could otherwise avoid the gaze of an observer seated on the weir. In addition to the direct counts, mark-recapture studies were conducted in conjunction with operation of fish wheels in the lower Chilkat River from 1994 to 2016 to estimate Chilkat Lake and mainstem river sockeye salmon escapements; however, concerns regarding mark-recapture as a reliable measure of abundance lead to elimination of mark-recapture studies in 2017 (Bednarski et al. 2017). Biological data have been collected annually at the Chilkat Lake weir and Chilkat River fish wheels to estimate age, size, and sex composition of sockeye salmon escapements.

The Chilkat River fish wheels are used to provide fishery managers with timelier information on inriver abundance than can be obtained from Chilkat Lake weir counts alone (Kelley and Bachman 2000). It is thought to take sockeye salmon a month to travel between the commercial fishery and the Chilkat Lake weir (McPherson 1990), whereas it took an average of 16 days for radiotagged Chilkat Lake sockeye salmon to travel between the fish wheels and the weir in a study conducted in 2003 and 2004 (Brian Elliott, ADF\&G Fishery Biologist, personal communication, unpublished data). The fish wheels also provide sampling platforms for assessment projects on Chilkat River chum ( $O$. keta), coho ( $O$. kisutch), and Chinook ( O. tshawytscha) salmon.
The Chilkat Lake sockeye salmon run has been managed for at least 5 different escapement goals since 1976. Informal goals of $60,000-70,000$ fish (1976-1980) and 70,000-90,000 fish (1981-1989; Bergander et al. 1988) were replaced in 1990 with a biological escapement goal of $52,000-106,000$ sockeye salmon, based on a stock-recruit analysis by McPherson (1990). Efforts to update the escapement goal were hindered by lake stocking in the 1990s and concerns regarding accuracy of weir counts (Geiger et al. 2005). Geiger et al. (2005) converted the weir-based goal to mark-recapture units and the goal was revised to a sustainable escapement goal of 80,000-200,000 sockeye salmon from 2006 to 2008. In 2009, the Chilkat Lake escapement goal was revised again to a biological escapement goal of $70,000-150,000$ sockeye salmon, based on weir counts converted to mark-recapture units (Eggers et al. 2008, 2010). After the introduction of the DIDSON to the site in 2008, Eggers et al. (2010) further recommended that escapement continue to be assessed using DIDSON counts at the Chilkat Lake weir site. After a comprehensive review of historical stock assessment data (Bednarski et al. 2017), the escapement goal analysis was most recently updated in 2018 using age-structured state-space stock-recruit models to better account

[^0]for multiple overlapping methods of escapement enumeration (mark-recapture, weir counts, DIDSON counts) and missing data (Miller and Heinl 2018; brood years 1976-2012). The resulting parameter estimates from the analysis were very similar to those estimated by Eggers et al. (2010) and, as a result, the current biological escapement goal of $70,000-150,000$ sockeye salmon, counted with the DIDSON system at the Chilkat Lake weir site (Heinl et al. 2017), remained unchanged. Escapement goals have not been established for Chilkat mainstem sockeye salmon populations due to lack of reliable estimates of escapement and historical harvest (Bednarski et al. 2017).

The primary purpose of the Chilkat sockeye salmon stock assessment program was to estimate the escapement and commercial harvest of Chilkat Lake sockeye salmon. Information provided by this project, in conjunction with stock assessment projects on the adjacent Chilkoot River (Zeiser et al. 2019), was used inseason to manage the District 15 commercial drift gillnet fishery to ensure escapement goals were met while maximizing the sustainable harvest of sockeye salmon from the 2 watersheds. Information on age-at-return will be used in reconstruction of brood-year returns and escapement goal evaluations. In addition, limnological surveys of Chilkat Lake were conducted to collect information on zooplankton abundance, light penetration, and water temperature profiles.

## STUDY SITE

Chilkat Lake (ADF\&G Anadromous Waters Catalogue No. 115-32-10250-2067-3001-0010; $59.32577^{\circ} \mathrm{N}, 135.89436^{\circ} \mathrm{W}$ ) is located approximately 27 river miles upstream from the city of Haines, Alaska (Figures 1 and 2). It is a relatively large clear lake with a surface area of $9.8 \times 10^{6}$ $\mathrm{m}^{2}$ (2,432 acres), mean depth of 32.5 m , maximum depth of 57 m , and volume of $319 \times 10^{6} \mathrm{~m}^{3}$. The lake drains through Clear Creek, a 0.5 km long channel where the weir is located, and into the Chilkat River by way of the Tsirku River. Resident fish species include sockeye salmon, coho salmon, Dolly Varden (Salvelinus malma), cutthroat trout (Salmo clarki), Pacific lamprey (Entosphenus tridentatus), threespine stickleback (Gasterosteus aculeatus), sculpin (Cottus sp.), and round whitefish (Prosopium cylindraceum; Johnson and Daigneault 2013). Very small numbers of adult pink and chum salmon have been observed moving through the Chilkat Lake weir, but the spawning location of these fish is unknown. Despite the remoteness of Chilkat Lake, there is moderate to heavy boat traffic, due to the numerous private cabins on the lake ( 50 to 100 cabins). Summer access is limited to jet boats and floatplanes only.

The Chilkat River (ADF\&G Anadromous Waters Catalogue No. 115-32-10250) drains a large watershed stretching from British Columbia, Canada, to the northern end of Lynn Canal, near Haines, Alaska (Figure 2). The watershed is characterized by rugged, highly dissected mountains with steep-gradient streams and braided rivers that flow through glaciated valleys. The watershed encompasses approximately $1,600 \mathrm{~km}^{2}$, and the main river and tributaries comprise approximately 350 km of river channels. Principle tributaries include the Tahkin, Tsirku, Klehini, Kelsall, and Tahini Rivers. Chilkat River discharge rates range from 80 to $20,400 \mathrm{ft}^{3} / \mathrm{s}$ (Bugliosi 1988). The river supports large runs of sockeye, coho, chum, Chinook, and pink salmon. The Chilkat River receives input from several glaciers, and heavy silt loads in the main river impair visual salmon stock assessment methods.


Figure 2.-Chilkat River drainage and locations of Chilkat Lake and limnology sampling stations, the weir site, and fish wheel site.

## OBJECTIVES

## Primary Objectives:

1. Enumerate the sockeye salmon escapement into Chilkat Lake from 20 June to 10 October.
2. Estimate the seasonal age, sex, and length composition of the Chilkat Lake sockeye salmon escapement such that the estimated proportions are within $5 \%$ of the true value with at least 95\% probability.
3. Estimate the weekly stock composition of the sockeye salmon harvest in the District 15 commercial drift gillnet fishery using genetic stock identification, such that the estimates are within $7 \%$ of the true value with at least $90 \%$ probability.
4. Estimate the seasonal age-specific stock composition of the sockeye salmon harvest in the District 15 commercial drift gillnet fishery for major contributing age classes (i.e., those contributing $>0.5 \%$; ages $0.3,1.2,1.3,2.2$, and 2.3 ).
5. Enumerate all adult salmon, by species, captured at the Chilkat River fish wheels.

## Secondary Objectives:

1. Maintain a standardized beach seine sampling schedule during August-October to ensure accurate species apportionment of DIDSON counts between coho and sockeye salmon.
2. Perform periodic, systematic observer comparison of DIDSON counts to increase precision of the DIDSON count. Inseason disagreement between observers of more than $5 \%$ should be flagged for a detailed review.
3. Measure water column temperature, record light penetration profiles, and estimate zooplankton species composition, size, density, and biomass in Chilkat Lake on a monthly basis during the middle of the month, June-October.

## METHODS

## Chilkat Lake Escapement Estimation

A DIDSON (manufactured by Sound Metrics Corporation) was used in conjunction with a picket weir to estimate the Chilkat Lake sockeye salmon escapement and determine if the escapement goal was met. The weir and DIDSON were typically installed and operated annually between statistical week 24 (early June) and statistical week 41 (mid-October). ADF\&G statistical weeks begin on Sunday at 12:01 a.m. and end the following Saturday at midnight and are numbered sequentially starting from the beginning of the calendar year (Appendix B). Data collected at the weir provided information on run timing, run strength, and age composition.

## Chilkat Lake Weir

The Chilkat Lake weir was installed on Clear Creek, approximately 0.4 km downstream of the lake outlet. During 2017-2019, the weir was a semi-removable steel bipod structure approximately 33 m wide. The weir framework consisted of $115-\mathrm{cm}$ steel pipe bipods spaced between 2.4 and 2.7 m driven into the bed of the river and connected together with steel stringers of varying lengths. Steel pipe pickets with 2.5 cm outside diameter were inserted through regularly spaced holes in the stringers and extended to the silty stream bed, forming a fence across the lake outlet. The stringer holes were spaced 3.8 cm apart, and the maximum possible space between each picket was 4.1 cm . A 3.6 m wide boat gate was installed in the center of the weir to allow boat traffic to access the lake during the day but completely block fish passage at night. The boat gate was located at the deepest part of the weir site (roughly 3 m in depth) and operated remotely via an electric hoist/winch. Sandbags and fencing were placed as needed along the upstream side of the weir to ensure the weir was fish tight. The integrity of the weir was verified throughout the season by regular underwater inspections.

In 2020, a new weir was built roughly 40 m downstream from the old weir site. A new boat gate apparatus installed in the weir eliminated the need for scuba divers to install the boat gate each spring. The new weir was essentially an aluminum version of the old weir. It was 37 m wide with 2.4 cm pickets, a 4.1 m wide boat gate, bipods spaced an equal 2.9 m apart, and a maximum depth of 2 m during high water.

Periodic flow reversals, caused when glacial water from the flooding Tsirku River backed into Clear Creek and into Chilkat Lake, required keeping the boat gate open to prevent damage to the gate until the reversal subsided. Flow reversals could last from a few hours to several days. Stream height, water temperature, and water clarity (e.g., excellent, fair, poor) were recorded at approximately 6:30 a.m. each day. Stream height (cm) was measured on a stadia rod, and water temperature ( ${ }^{\circ} \mathrm{C}$ ) was measured with a thermometer installed near the middle of the weir.

## Sockeye Salmon Age, Sex, and Length Composition

The seasonal age composition of the Chilkat Lake sockeye salmon escapement (including jack sockeye salmon; i.e., fish $<350 \mathrm{~mm}$ mid eye to tail fork length) was determined from a minimum sample of 665 fish captured at the weir. This sample size was based on work by Thompson (2002) to estimate proportions of four or more major age classes. A sample of 510 fish would ensure the estimated proportion of each major age class would be within $5 \%$ of the true value with at least $95 \%$ probability. The sample size was increased to 665 fish to ensure the sampling goal would be met, even if age could not be determined from the scales of $30 \%$ of the sampled fish. In addition, 3 scales were sampled from each fish to increase the proportion of readable scales. Up to 10 sockeye salmon were sampled each day for matched scales, sex, and length ( 70 fish/week). This weekly sample was more than sufficient to meet objective criteria, because the total seasonal sample was more than the 665 samples required. This sample also met seasonal requirements for estimating sex composition, with only 385 samples (assuming no data loss) needed to achieve the precision criteria (within $5 \%$ of the true value with $95 \%$ probability; Thompson 2002).

Fish were captured for sampling with a beach seine on the downstream side of the weir structure. If fish were present, sampling usually began at 6:00 a.m., early enough for sampling to be completed prior to the start of daily boat traffic on Clear Creek. All sampled fish were measured from mid eye to tail fork, and the sex was determined from examination of external dimorphic sexual maturation characteristics such as snout and kype development, belly shape, and shape of vent opening. Three scales were collected from the "preferred area" of each sampled fish (i.e., the left side of the fish, 2 scale rows above the lateral line on the diagonal from the posterior insertion of the dorsal fin to the anterior insertion of the anal fin; INPFC 1963). Sampled fish were then marked with a left operculum punch to prevent resampling. All captured coho salmon were counted, and those counts were used for species apportionment of the DIDSON counts (see below). After sampling, the boat gate was opened, and fish were allowed to travel upstream.
Scale samples were analyzed at the ADF\&G Region I Scale Aging Laboratory in Douglas, Alaska. Scale impressions were made in cellulose acetate and prepared for analysis as described by Clutter and Whitesel (1956). Scales were examined under moderate ( $70 \times$ ) magnification to determine age. Age classes were designated by the European aging system where freshwater and saltwater years were separated by a period (e.g., age 1.3 denoted a fish with 1 freshwater and 3 ocean years; Koo 1962). Age, length, and sex data were entered into the Region I Commercial Fisheries Database by Douglas staff. The weekly age distribution, the seasonal age distribution weighted by week, and the mean length by age and sex weighted by week were calculated using standard sampling summary statistics from Cochran (1977; Appendix C).

## Chilkat Lake DIDSON

The DIDSON system was used to enumerate fish as they passed through the boat gate opening in the weir and was deployed just upstream of the weir approximately $3-5 \mathrm{~m}$ from the left bank of the river. The DIDSON transducer was attached to an aluminum pod and oriented perpendicular
to the current. The wide axis of the beam was oriented horizontally and positioned close to the river bottom to maximize residence time of targets in the beam. The DIDSON was operated at 1.8 MHz (high frequency 96 beams) with a viewing angle of $29^{\circ} \times 14^{\circ}$. A 30 m cable was used to transmit power and data between the DIDSON and a "topside box" located inside the camp cabin, and an Ethernet cable was used to route data to a laptop computer. Playback of files to enumerate fish was controlled on the laptop computer running the latest version of DIDSON software. A small gasoline-powered generator, in later years supplemented by a small photovoltaic system (Zeiser et al. 2020a), provided power for all equipment. Daily visual inspections were conducted to confirm proper placement and orientation of the transducer to accommodate varying water levels.

The DIDSON was operated 24 hours a day for the first 5 days with the boat gate closed at night. If any fish were observed passing through the weir at night while the gate was closed, the opening was found and patched as soon as possible. This process was extended past the first 5 days if fish continued to be observed passing through the weir when the gate was closed. Acoustic sampling then began each morning around 6:00 a.m. and continued until 10:00 p.m., when the boat gate was closed for the night. Closing the gate at 10:00 p.m. allowed fish to build up behind the weir, where they could be easily sampled in the morning. In the rare event that a boat required passage through the weir between 10:00 p.m. and 6:00 a.m., the period of time the gate was open was limited as much as possible, but some fish may have passed without being counted. If the boat gate remained open after 10:00 p.m. due to a flow reversal or a mechanical issue with the gate, the DIDSON was operated 24 hours a day until the boat gate could be closed. Periodically throughout the season, the DIDSON was run 24 hours a day to confirm the weir was fish-tight. If a breach in the weir was discovered, the weir was patched to rectify the problem.
The DIDSON was set to record data onto the hard drive in 60 -minute increments, creating a separate date- and time-stamped file for each recording period. The weir crew identified and tallied fish traces from the playback of recorded files. All fish determined to be salmon were counted. Although it was possible to count salmon at the same time new files were being recorded, during normal operation the files were viewed sometime after the initial recording, often the next day. Viewing a file later allowed for the recording to be sped up, increasing efficiency. Files were viewed at speeds below 60 frames per second to prevent the computer from dropping frames during review, thus decreasing the likelihood of missing fish. Files could be initially screened with the playback speed set at 60 frames per second to facilitate quicker viewing when there were long periods without any observed fish passage. When a moving object was observed, part of the recording could be replayed backwards and forwards at a lower speed to evaluate the nature of the object (relative size, swimming pattern, etc.). Technicians familiarized themselves with behaviors typical of various fish species through intensive observation. Fish that displayed feeding or milling behavior known to be associated with cutthroat trout or whitefish were not counted. Fish that exhibited the size and behavior identified with salmon (directional migration, no milling) were assumed to be salmon and were counted manually with tally counters. In the beginning of the season, all salmon were assumed to be sockeye salmon.

## DIDSON Observer Training

The use of the DIDSON to count fish has limitations that need to be accounted for during operations or addressed preseason, including species apportionment (see below), shadowing effects, and observer bias from species nondetection or misclassification (e.g., cutthroat trout and whitefish identification versus salmon species) (Keefer et al. 2017). Observer fatigue or
interruptions in viewing can also bias observations between operators (Cronkite et al. 2006). Acoustic shadowing effects can be a problem when fish are present in high densities-fish nearer to the DIDSON mask or "shadow" fish passing farther away-which leads to undercounting. In studies conducted elsewhere, problems associated with shadowing occurred when fish densities were greater than 1,000 fish an hour (Holmes et al. 2006; Maxwell and Gove 2007; Westerman and Willette 2012). Hourly fish counts at Chilkat Lake have usually been well below 1,000 fish. Event nondetection bias or perception bias occurs in field observation studies when animals are visible but not observed and typically results in underestimates of abundance (Nichols et al. 2000). Misclassification biases occur when species are misidentified, also inducing bias in abundance estimates (Conn et al. 2013). These biases can be reduced by training observers in the preseason and by routinely conducting inseason observer comparisons to maintain quality control and ensure accuracy. Early and inseason observer training has not been consistently performed at Chilkat Lake since recommended by Bednarski et al. (2017) but continues to be important for accurate DIDSON counts.

## DIDSON Species Apportionment

The DIDSON cannot be used to identify salmon to species when 2 or more species of similar size and shape are present (Martignac et al. 2015). Although on some river systems apportionment of sonar counts by species requires separate, intensive net or fish wheel sampling programs (Bromaghin 2005; Lozori and McIntosh 2014), species identification at the Chilkat Lake weir involved only 2 species (coho and sockeye salmon) and was not an issue until coho salmon started arriving in late August or early September. Historically, pink and chum salmon were also counted at the weir; however, historical counts of these species were extremely low (the 1981-2007 average annual weir count was 10 chum salmon and 1 pink salmon). It was assumed that abundance of these 2 species was negligible, and species apportionment was based only on the ratio of coho and sockeye salmon.

Species apportionment started on the first day a coho salmon was observed at the weir or captured in morning beach seine sampling events in conjunction with sockeye salmon scale sampling (Zeiser et al. 2020a). Thereafter, a standardized beach seine sampling schedule was maintained through the end of the season to ensure accurate species apportionment. The crew strived to sample at least 68 fish (coho and sockeye salmon in combination) captured in beach seine sets each morning. The sample of 68 fish was sufficient to estimate the proportion of each species within $10 \%$ of the true value with $90 \%$ probability, with the assumption that the proportion sampled in morning beach seine sets was representative of the proportion of coho and sockeye salmon present throughout the day. The number of fish captured by species was recorded for each beach seine set conducted. To avoid duplicate counting, all captured fish were marked with a hole punch on the upper left operculum. If at least 68 fish were sampled, the proportion of coho and sockeye salmon was applied to that day's DIDSON counts. If, however, fewer than 68 fish were sampled on day $X$, the total sample on that day was added to samples from previous days until the combined total equaled at least 68 fish. The apportionment from the combined total was then applied to the DIDSON counts on day $X$ (Zeiser et al. 2020a).

## Count Expansions

In 2018, the DIDSON was inoperable for brief periods of time that allowed fish to move upstream past the weir uncounted. Fish passage was assumed to be zero if it was likely to be negligible based
on inseason data. Otherwise, estimates for missed passage were calculated using a method similar to the one described in Zeiser et al. (2019).

In some years, weir and DIDSON operations did not encompass the entire sockeye salmon run, because the project was started later and/or ended earlier than average due to budget constraints, flooding, low water, or other problems. Linear regression methods were used to expand counts in years with shortened seasons to account for the missing escapement counts (Appendices D and E).

## Chilkat River Fish Wheels

During 2017-2020, 2 three-basket-configured fish wheels were operated in the lower Chilkat River between miles 7.5 and 10 on the Haines Highway, where the main flow was constrained primarily to the eastern side of the floodplain (Figure 2). Dates of operation have varied depending on the focus of the project, but since 1997 the fish wheels have typically been operated from statistical week 24 (about mid-June) to statistical week 41 (about early October; Appendix F) and between miles 7 and 10 on the Haines Highway.

The best operating locations were determined at the beginning of each season based on river conditions. The fish wheels were launched from the Haines Highway and, depending on location, lowered into the river with a crane, tractor, excavator, or front loader, then drifted downstream or pushed upstream with jet boats to the pre-determined site. The fish wheels were anchored to the highway guardrail with 0.95 cm steel cable and a 2.7 cm diameter polyethylene rope bridle, and held out from and parallel to the shoreline with an adjustable boom log system (Kelley and Bachman 2000). An average river depth of at least 1.5 m was required for the aluminum fish wheels to maintain revolution speeds adequate to capture migrating salmon (approximately 1.5-4 rpm; Bachman and McGregor 2001). Seasonal changes in water flow (particularly from late August through early October, when water levels subsided) required minor changes in fishing location in order to maintain adequate rotation speed; e.g., fish wheels were moved farther from shore into faster current or to a nearby ( $<1.5$ kilometer) alternate location.
The fish wheel design (used since 1997) consisted of 2 aluminum pontoons, measuring approximately 12 m (length) $\times 6 \mathrm{~m}$ (width) and filled with closed-cell Styrofoam for flotation. The pontoons supported a 6 m wide structure consisting of an adjustable height axle, 3 catch baskets, wooden slides, and enclosed fabric chutes, along with 2 live boxes per wheel to hold captured fish. A plywood deck spanning the full width between the pontoons provided a fish sampling area. The aluminum baskets were 3.1 m (width) $\times 3.7 \mathrm{~m}($ depth $)$, covered with nylon seine mesh $(5.1 \times 5.1$ cm openings), and bolted to a metal axle that spins in a pillow-block bearing assembly. The 3 catch baskets were rotated about the axle by the force of the water current and were adjusted vertically in the water column by moving the axle up or down within tower support channels. Migrating salmon were captured in the rotating baskets as they swam under the structure. V-shaped, foampadded wooden slides were bolted to the rib midsection of each basket to direct fish through fabric chutes into the lidded aluminum live boxes bolted to the sides of the pontoons. The live boxes were perforated to allow constant flow of fresh river water (Zeiser et al. 2020b).

The fish wheels were operated 24 hours a day throughout the season, including during sampling periods. The fishing "day" started at 4:00 p.m. and ended the following day at 3:59 p.m. Live boxes were inspected a minimum of twice each day, once early in the morning and again in the afternoon, with the end of the fishing day corresponding to the end of the last fish wheel inspection. The first fish wheel inspection of the day was expected to be longer because it encompassed a longer fishing period and sockeye salmon tend to migrate more at night (Bentley et al. 2014). Fish were removed
with a dip net and counted by species. The fish wheels were checked more often during periods of peak fish movement. All fish were counted by species, and sex and length data were collected daily from the first $10(2020)$ or $20(2017-2019)$ sockeye salmon counted out of the live boxes (Zeiser et al. 2020b). The length of each sampled fish was measured from mid eye to tail fork to the nearest 5 mm and identified to sex. Data recorded on standard optical scan forms included the date, sex, length, and condition of each fish. Other information recorded daily included water temperature $\left({ }^{\circ} \mathrm{C}\right)$, fish wheel rotation speed (rpm), and fish wheel start and stop times. River water level (cm) was measured at an established staff gauge located near milepost 8.5 on the Haines Highway. If river conditions made it difficult to navigate to the river gauge, water levels were retrieved from USGS gage site \#15056500 at the Wells Bridge on the Chilkat River, near Klukwan (data available at https://waterdata.usgs.gov/nwis/uv?site_no=15056500).

The total hours fished by each fish wheel was recorded each day. When a fish wheel was stopped for any reason, the total catch of all fish wheels was expanded to compensate for the reduction in fishing effort using

$$
\begin{equation*}
C_{a}=\frac{24 N_{w}\left(\sum c_{i}\right)}{\sum E_{i}} \tag{1}
\end{equation*}
$$

where $C_{a}$ was the effort-adjusted catch for both fish wheels, $N_{w}$ was the number of fish wheels used, $c_{i}$ was the sockeye salmon catch of fish wheel $i$, and $E_{i}$ was the effort of fish wheel $i$ in hours. Although the effort-adjustment provided better estimates of sockeye salmon escapement than raw catch, equation 1 assumed that both fish wheels would have caught the same number of fish in a given 24 hour period, which is known to be false.

## Commercial Harvest Estimate

Stock composition of the sockeye salmon harvest in the District 15 commercial drift gillnet fishery was estimated annually through genetic stock identification. Laboratory analysis, including quality control, was performed by the ADF\&G Gene Conservation Laboratory following methods outlined in Dann et al. (2012). Sockeye salmon were identified to 7 reporting groups: Chilkat Lake, Chilkat mainstem, Chilkoot Lake, Juneau Mainland, Snettisham, Taku River/Stikine mainstem, and Other (Zeiser et al. 2019); however, reporting groups were reduced to Chilkat Lake, Chilkoot Lake, and Other for postseason reporting. Stock composition was estimated for each statistical week using a Bayesian mixed stock analysis approach as implemented in the R package rubias ${ }^{2}$ (Moran and Anderson 2019), which compared fishery samples against the genetic baseline described in Rogers Olive et al. (2018). Postseason, samples were reanalyzed with age composition data from the harvest using Mark and Age-enhanced Genetic Mixture Analysis (MAGMA), an extension of the Pella-Masuda genetic stock identification model (Pella and Masuda 2001) that incorporates ages from matched scale samples to provide age-specific stock composition estimates for all major contributing age classes (i.e., those contributing $>0.5 \%$ ). MAGMA was used to analyze stock composition in the first 10 statistical weeks of the sockeye salmon fishery. The stock proportions in the last sampled statistical week were used to estimate contribution for the final weeks of the fishery, generally statistical weeks 35-40, which accounted for an average $8 \%$ (range $3-15 \%$ ) of the sockeye salmon harvest during 2017-2020.

[^1]The District 15 commercial drift gillnet fishery opens by regulation at 12:00 noon on the third Sunday of June. Each week typically begins with a 48 hour opening, with the possibility of an extension depending on fishery performance. Commercial harvest data for District 15, stratified by statistical week, were obtained through the ADF\&G Region I Commercial Fisheries Database.

## Fishery Sampling

Matched sockeye salmon scale and tissue samples were collected from District 15 commercial drift gillnet fishery landings by ADF\&G port sampling personnel at fish processing facilities in Excursion Inlet, Juneau, and Petersburg (Buettner et al. 2017). Sampling was stratified by statistical week, and sampling effort spanned the first 10 weeks of the fishery. In 2017, sampling goals were set at 600 fish per week ( 300 at Excursion Inlet and 300 at Juneau; Buettner et al. 2017). In 2018 through 2020, sampling goals were set at 150 fish each from Juneau and Excursion Inlet, and 100 fish from Petersburg. If Excursion Inlet or Juneau were short of samples in a given week, more were collected at Petersburg. The target sample size for each statistical week was set at a minimum of 200 and a maximum of 300 paired tissues and scales. According to sample theory, under the worst-case scenario (stocks contributing equal proportions) a minimum sample of 200 fish should provide weekly estimates of relative stock composition proportions within $7 \%$ of the true value $90 \%$ of the time (Thompson 1987).
Starting in 2018, sockeye salmon harvested in the District 15 commercial drift gillnet fishery were sampled regardless of the harvest type and all samples were recorded as traditional harvest (harvest code 11). Previously, sockeye salmon harvested in the Boat Harbor terminal harvest area (THA; statistical area 115-11) were not sampled, including sockeye salmon on tenders with fish mixed from traditional and terminal harvest (harvest code 12) fisheries. The Boat Harbor THA is designated to harvest hatchery chum salmon released inside Boat Harbor; however, the THA encompasses a portion of lower Lynn Canal (Figure 1) through which mixed stocks of sockeye salmon must migrate, and sockeye salmon are harvested incidentally in the fishery. There are no hatchery sockeye salmon released inside Boat Harbor or anywhere else in District 15. Over the 10 years 2008-2017, an average $21 \%$ (range: $12-36 \%$ ) of sockeye salmon harvested in lower Lynn Canal (statistical areas 115-10 and 115-11) were harvested in the Boat Harbor THA. Since 2018, all sockeye salmon samples have been identified as harvest code 11 (traditional fishery).

Sampling protocols were designed to ensure that samples were as representative of harvests as much as possible to account for fluctuations in harvest and effort over the course of a weekly fishery. Deliveries with harvests mixed from more than one gear type or fishing district were not sampled, no more than 40 samples were collected from a single delivery, no more than 200 samples were collected from a single tender delivery, samples were collected without regard to size or sex of fish, and, whenever possible, samples were systematically collected from the entire hold as it was offloaded to ensure they were representative of the entire delivery. A 2.5 cm piece of the pelvic fin was removed from each sampled fish and placed on a Whatman filter paper card for dry preservation. Matched scale, length, and sex data were also collected from each sampled fish as described above for escapement samples. Tissue samples were shipped on a weekly basis to the Region I Scale Aging Laboratory in Douglas, along with matching scale samples and associated data for inventory. Tissue samples were then shipped to the ADF\&G Gene Conservation Laboratory in Anchorage for analysis. Scale samples were analyzed at the ADF\&G Region I Scale Aging Laboratory in Douglas.

## Laboratory Analysis

Genomic DNA was extracted from tissue samples using a NucleoSpin 96 Tissue Kit by MachereyNagel (Düren, Germany). A multiplexed preamplification polymerase chain reaction (PCR) of 48 screened single nucleotide polymorphism (SNP) markers was used to increase the concentration of template DNA. Samples were genotyped for 48 screened SNP markers using 2 sets of Fluidigm 192.24 Dynamic Array Integrated Fluidic Circuits, which systematically combined up to 24 assays and 192 samples into 4,608 parallel reactions (https://www.fluidigm.com). The Dynamic Arrays were read on a Fluidigm EP1 System after amplification and scored using Fluidigm SNP Genotyping Analysis software. If necessary, SNPs were rescreened on a QuantStudio 12K Flex Real-Time PCR System (Life Technologies) as a backup method for assaying genotypes. Genotypes were imported and archived in the Gene Conservation Laboratory Oracle database, LOKI.

A quality control analysis (QC) was conducted postseason to identify laboratory errors and to measure the background discrepancy rate of the genotyping process. The QC analyses were performed by staff not involved in the original genotyping as described in detail by Dann et al. (2012). Briefly, the method consisted of re-extracting $8 \%$ of project fish and genotyping them for the same SNPs assayed in the original genotyping process. Discrepancy rates were calculated as the number of conflicting genotypes, divided by the total number of genotypes compared. These rates describe the difference between original project data and QC data for all SNPs and can identify extraction, assay plate, and genotyping errors. Assuming that discrepancies among analyses are due equally to errors during the original genotyping and during QC, error rates in the original genotyping were estimated as half the rate of discrepancies. If there were many discrepancies, a duplicate check was performed to determine if the QC fish were a better match to any other project fish. A QC fish matching other project fish would indicate that fish were swapped during the extraction process. This information was used to identify which, and how many, fish should be re-extracted.

## Statistical Analysis

Genotypes in the LOKI database were imported into R for analysis. Prior to statistical analysis, 3 quality assurance analyses were performed to ensure high-quality data: 1) individuals missing $>20 \%$ of their genotype data (markers) were identified and removed from analyses because this is indicative of low-quality DNA ( $80 \%$ rule; Dann et al. 2012); 2) duplicate individuals were identified and removed; and 3) non-sockeye salmon (e.g., chum salmon) were identified and removed.

Inseason, stock composition for each stratum was estimated using the R package rubias. Markov Chain Monte Carlo (MCMC) methods, using a single chain with starting values equal among all populations, formed the posterior distribution that described the stock composition of each stratum. Summary statistics were tabulated from these distributions to describe stock compositions. Stock composition estimates of commercial harvest were applied to observed harvest (obtained from fish ticket data) to quantify stock-specific harvests within each week.
Postseason, age-specific stock composition for all major contributing age classes ( $>5 \%$ ) was estimated seasonally through a MAGMA model. Weekly and seasonal estimates were provided, by age group, using MAGMA. This method required two sets of parameters: 1) a vector of stock compositions summing to one, weighted by harvest per stratum; and 2) a matrix of age composition, with a row for each stock summing to 1 and a column for each age class. This
information was "completed" iteratively by stochastically assigning each fish to a population, then estimating the stock proportions based on summaries of assignment from each iteration. In this process, all available information (i.e., age and genotype) was used to assign individuals to stock of origin.
To initialize the MAGMA algorithm, all fish with unknown origin or age were stochastically assigned to a population or age group, and then proportions for populations and age groups were estimated in the following steps:

1) All age data were summarized by assigned and observed populations for both wild and hatchery individuals;
2) Population and age composition were estimated from previous summaries (accounting for sampling error);
3) Each wild fish with genotypes was stochastically assigned to a wild population of origin based on the product of its genotypic frequency, age frequency, and population proportion;
4) Each wild fish without genotypes was stochastically assigned to a population of origin based on the product of its age frequency and population proportion; and
5) Steps 1-4 were repeated while updating the estimates of the stock proportions and age compositions with each iteration.

The MAGMA algorithm was run for 40,000 repetitions, and the first 20,000 repetitions were discarded to eliminate the effect of the initial state. Five MCMC chains were run and checked for convergence among chains using the Gelman-Rubin convergence diagnostic (Gelman and Rubin 1992; Brooks and Gelman 1998). The point estimates and credible intervals for stock-specific age compositions were summary statistics of the output.

## Chilkat Lake Limnological Assessment

Basic limnological data, including zooplankton, light, and temperature sampling, were collected monthly between June and October. All light and temperature data were collected at 2 primary stations marked by anchored buoys in the lake (station 1 A at $59.3420^{\circ} \mathrm{N}, 135.9131^{\circ} \mathrm{W}$; station 2 A at $59.3263^{\circ} \mathrm{N}, 135.8961^{\circ} \mathrm{W}$; Figure 2).

## Light and Temperature Profiles

Light penetration measurements were used to estimate the euphotic zone depth of the lake, which is defined as the depth at which light (photosynthetically available radiation at $400-700 \mathrm{~nm}$ ) is attenuated to $1 \%$ of the intensity just below the lake surface (Schindler 1971). Photometric illuminance was recorded as lumens per square meter $\left(\mathrm{lm} / \mathrm{m}^{2}\right)$ at 0.5 m intervals, from just below the lake surface to the depth at which ambient light level equaled $1 \%$ of the subsurface recording, using a Protomatic electronic light meter or ILT 1400 International Light Technologies Photometer. Measurements of underwater light intensity were used to determine vertical light extinction coefficients and algal compensation depths. The natural $\log (\ln )$ of the ratio of light intensity $(I)$ just below the surface $\left(I_{0}\right)$ to light intensity at depth $z$, or $\ln \left(I_{0} / I_{z}\right)$, was calculated for each depth. The vertical light extinction coefficient $\left(K_{d}\right)$, the rate $\left(\mathrm{m}^{-1}\right)$ at which light dims with increasing depth, was estimated as the slope of regression of $\ln \left(I_{0} / I_{z}\right)$ versus depth, and euphotic zone depth was calculated as $4.6502 / K_{d}$ (Kirk 1994; Edmundson et al. 2000). Only the measurements recorded from 5 cm below the surface to just below $1 \%$ of the subsurface light level were used in calculations, because use of data at depths below $1 \%$ of the initial subsurface measurement will skew the estimate of euphotic zone depth. During July and August in 2019, a

Secchi disk was used to estimate the euphotic zone depth using the equation euphotic zone depth $=3.7489\left(Z_{s d}{ }^{0.7506}\right)$, where $Z_{s d}$ was the depth the Secchi disk disappeared (Luhtala and Tolvanen 2013). Temperature ( ${ }^{\circ} \mathrm{C}$ ) was measured with a Yellow Springs Instruments (YSI) Model 57 meter. Measurements were made at 1 m intervals from the surface to a depth of 20 m and then continued in 5 m intervals to a depth of 50 m .

## Secondary Production

Zooplankton samples were collected at each sampling station using a 0.5 m diameter, $153 \mu \mathrm{~m}$ mesh conical net. Vertical zooplankton tows were pulled from a depth of 50 m to the surface at a constant speed of $0.5 \mathrm{~m} / \mathrm{sec}$. Once the top of the net cleared the surface, the rest of the net was pulled slowly out of the water and rinsed from the outside with lake water to wash organisms into the screened sampling container at the cod end of the net. All specimens in the sampling container were carefully rinsed with tap water into a 500 ml sampling bottle and preserved in buffered $10 \%$ formalin. Samples were analyzed at the ADF\&G Kodiak Limnology Lab using methods detailed in the ADF\&G Limnology Field and Laboratory Manual (Koenings et al. 1987). Results were averaged between stations by month and season.

## RESULTS

## CHILKAT LAKE ESCAPEMENT

## Species Apportionment

Species apportionment of Chilkat Lake DIDSON counts started on the first day a coho salmon was observed at the weir or captured in morning beach seine sampling events in conjunction with sockeye salmon scale sampling. This occurred as early as 16 August in 2018 and as late as 27 August in 2020. During the 2018-2020 sampling seasons, a minimum sample size of 68 total fish (over one or multiple days of seining) and a standardized beach seine sampling schedule was consistently maintained during August-October. The daily sampling ratio (number of sockeye salmon to number of coho salmon captured) over one or multiple days was applied to calculate species apportionment of DIDSON counts between coho and sockeye salmon in years 2018 through 2020 (Appendices I through L).

In 2017, however, beach seining sampling effort was inconsistent and species apportionment had to be estimated using the 10-year (2007-2016) average proportion of coho salmon, by week, starting on 10 September (Appendix I). Although the 10 -year average does not capture the yearspecific species ratio between coho and sockeye salmon, it provided the best approximation of the general trend in species apportionment at the Chilkat Lake weir.

## Escapement Counts

## 2017

In 2017, 88,197 sockeye and 1,819 coho salmon were enumerated through the weir between 15 June and 10 October (statistical weeks 24-41; Table 1; Figure 3; Appendices D and I). Weekly sockeye salmon escapements were within the weekly escapement goal targets in statistical week 28 and from statistical week 30 on. Escapements built steadily through statistical week 33 before diminishing into statistical week 36. A surge in statistical week 37 propelled the total sockeye salmon escapement over the lower bound of the biological escapement goal range (Table 1; Figure 4).

## 2018

In 2018, 108,047 sockeye and 3,678 coho salmon were enumerated through the weir between 10 June and 12 October (statistical weeks 24-41; Table 2; Figure 3; Appendices D and J). The DIDSON was not operable for much of 11-13 July and for several hours on both 31 July and 16 August. No interpolation was made for fish passage during 11-13 July because a flow reversal occurred during those days and the boat gate was kept closed; thus, it was assumed that sockeye salmon passage would have been negligible. Interpolated counts for missing hours on 31 July and 16 August totaled 1,349 sockeye salmon ( $1.2 \%$ of the total escapement). Weekly sockeye salmon escapements were slightly below the weekly escapement goal targets during statistical weeks 24-29. In statistical week 30, escapements fell within the weekly escapement goal target range for the first time, but escapements did not rise much above the lower escapement goal target until around statistical week 33. The total sockeye salmon escapement was in the middle of the biological escapement goal range (Table 2; Figure 4).

## 2019

In $2019,134,958$ sockeye and 6,020 coho salmon were enumerated through the weir between 10 June and 9 October (statistical weeks 24-41; Table 3; Figure 5; Appendices D and K). Weekly sockeye salmon escapements were below weekly escapement goal targets during statistical weeks 25-27. However, the weekly escapement goal targets were met in weeks 28-29, and the upper target boundaries were exceeded in weeks 30-39. The total sockeye salmon count was expanded to 136,091 fish ( $<1 \%$ of the total weir count) to account for removing the weir one day prior to the target end date of 10 October (Appendix D). The total sockeye salmon escapement was slightly below the upper bound of the biological escapement goal range (Table 3; Figure 4).

## 2020

In $2020,50,746$ sockeye and 3,862 coho salmon were enumerated through the weir between 18 June and 11 October (statistical weeks 25-42; Table 4; Figure 5; Appendices D and L). Weekly sockeye salmon escapements were below the weekly escapement goal targets for the entire season, and the total sockeye salmon escapement missed the lower bound of the biological escapement goal by 19,254 fish (Table 4; Figure 4). The total sockeye salmon escapement was the lowest since 2007 and the 12th lowest since records began in 1971 (Appendix D).


Figure 3.-Daily sockeye salmon counts (raw counts) at the Chilkat Lake weir in 2017 and 2018 compared to the historical average (1967-2016).

Table 1.-Weekly escapement of sockeye salmon at the Chilkat Lake weir compared to weekly management targets and biological escapement goal range of 70,000 to 150,000 fish, 2017.

|  | Escapement |  |  | Escapement goal |  |
| :---: | ---: | ---: | :--- | :---: | :---: |
| Statistical <br> week | Weekly | Cumulative |  | Cumulative <br> lower bound | Cumulative <br> upper bound |
| 24 | 106 | 106 |  | 169 | 362 |
| 25 | 865 | 971 |  | 1,947 | 4,171 |
| 26 | 2,654 | 3,625 |  | 4,919 | 10,541 |
| 27 | 3,035 | 6,660 |  | 8,540 | 18,300 |
| 28 | 5,210 | 11,870 |  | 11,844 | 25,379 |
| 29 | 4,269 | 16,139 |  | 16,161 | 34,631 |
| 30 | 6,960 | 23,099 |  | 19,298 | 41,353 |
| 31 | 5,871 | 28,970 |  | 22,546 | 48,314 |
| 32 | 5,960 | 34,930 |  | 26,138 | 56,010 |
| 33 | 10,555 | 45,485 |  | 29,038 | 62,224 |
| 34 | 5,679 | 51,164 |  | 33,083 | 70,892 |
| 35 | 3,298 | 54,462 |  | 39,106 | 83,799 |
| 36 | 1,916 | 56,378 |  | 45,408 | 97,303 |
| 37 | 19,022 | 75,400 |  | 49,274 | 105,588 |
| 38 | 6,647 | 82,047 |  | 53,568 | 114,789 |
| 39 | 2,819 | 84,866 |  | 62,086 | 133,041 |
| 40 | 1,824 | 86,690 |  | 66,642 | 142,804 |
| 41 | 1,507 | 88,197 |  | 70,000 | 150,000 |



Figure 4.-Weekly cumulative escapement of sockeye salmon through the Chilkat Lake weir, 2017-2020, and upper and lower bounds of the annual escapement goal range of 70,000-150,000 fish.

Table 2.-Weekly escapement of sockeye salmon at the Chilkat Lake weir compared to weekly management targets and biological escapement goal range of 70,000 to 150,000 fish, 2018.

|  | Escapement |  |  | Escapement goal |  |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Statistical <br> week | Weekly | Cumulative |  | Cumulative <br> lower bound | Cumulative <br> upper bound |
| 24 | 58 | 58 |  | 89 | 190 |
| 25 | 39 | 97 |  | 1,301 | 2,788 |
| 26 | 462 | 559 |  | 4,231 | 9,066 |
| 27 | 3,566 | 4,125 |  | 8,101 | 17,359 |
| 28 | 2,006 | 6,131 |  | 11,381 | 24,388 |
| 29 | 8,490 | 14,621 |  | 15,552 | 33,326 |
| 30 | 4,237 | 18,858 |  | 18,802 | 40,290 |
| 31 | 3,952 | 22,810 |  | 21,804 | 46,723 |
| 32 | 3,835 | 26,645 |  | 25,840 | 55,371 |
| 33 | 7,927 | 34,572 |  | 28,673 | 61,442 |
| 34 | 6,174 | 40,746 |  | 32,560 | 69,772 |
| 35 | 8,513 | 49,259 |  | 37,684 | 80,752 |
| 36 | 16,117 | 65,376 |  | 44,845 | 96,096 |
| 37 | 8,494 | 73,870 |  | 48,775 | 104,517 |
| 38 | 14,374 | 88,244 |  | 52,655 | 112,832 |
| 39 | 1,238 | 99,482 |  | 59,823 | 128,193 |
| 40 | 6,143 | 105,625 |  | 65,952 | 141,325 |
| 41 | 2,422 | 108,047 |  | 70,000 | 150,000 |



Figure 5.-Daily sockeye salmon counts (raw counts) at the Chilkat Lake weir in 2019 and 2020 compared to the historical average (1967-2016).

Table 3.-Weekly escapement of sockeye salmon at the Chilkat Lake weir compared to weekly management targets and biological escapement goal range of 70,000 to 150,000 fish, 2019.

|  | Escapement |  |  | Escapement goal |  |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Statistical <br> week | Weekly | Cumulative |  | Cumulative <br> lower bound | Cumulative <br> upper bound |
| 24 | 167 | 167 |  | 41 | 87 |
| 25 | 239 | 406 |  | 1,135 | 2,432 |
| 26 | 696 | 1,102 |  | 3,818 | 8,182 |
| 27 | 1,358 | 2,460 |  | 7,791 | 16,696 |
| 28 | 10,081 | 12,541 |  | 10,866 | 23,284 |
| 29 | 12,579 | 25,120 |  | 15,069 | 32,290 |
| 30 | 14,676 | 39,796 |  | 18,297 | 39,209 |
| 31 | 15,196 | 54,992 |  | 21,368 | 45,789 |
| 32 | 7,742 | 62,734 |  | 25,430 | 54,493 |
| 33 | 17,376 | 80,110 |  | 28,212 | 60,454 |
| 34 | 17,110 | 97,220 |  | 31,966 | 68,498 |
| 35 | 8,458 | 105,678 |  | 36,545 | 78,310 |
| 36 | 7,973 | 113,651 |  | 44,095 | 94,490 |
| 37 | 3,597 | 117,248 |  | 48,120 | 103,114 |
| 38 | 1,614 | 118,862 |  | 51,961 | 111,346 |
| 39 | 8,230 | 127,092 |  | 58,577 | 125,522 |
| 40 | 7,429 | 134,521 |  | 65,505 | 140,367 |
| $41^{\text {a }}$ | 1,570 | 136,091 |  | 70,000 | 150,000 |

a In 2019, the weir was removed early (after 9 October), so expansions were done to account for this early removal in statistical week 41. Based on the expansion, 1,133 fish were added to the weir count on 10 October.

Table 4.-Weekly escapement of sockeye salmon at the Chilkat Lake weir compared to weekly management targets and biological escapement goal range of 70,000 to 150,000 fish, 2020.

|  | Escapement |  |  | Escapement goal |  |
| :---: | ---: | ---: | :--- | ---: | :---: |
| Statistical <br> week | Weekly | Cumulative |  | Cumulative <br> lower bound | Cumulative <br> upper bound |
| 24 | 0 | 0 |  | 25 | 53 |
| 25 | 27 | 27 |  | 976 | 2,091 |
| 26 | 365 | 392 |  | 3,507 | 7,516 |
| 27 | 1,241 | 1,633 |  | 7,153 | 15,327 |
| 28 | 1,721 | 3,354 |  | 10,415 | 22,319 |
| 29 | 3,793 | 7,147 |  | 14,401 | 30,858 |
| 30 | 1,673 | 8,820 |  | 17,973 | 38,514 |
| 31 | 4,126 | 12,946 |  | 21,039 | 45,084 |
| 32 | 3,866 | 16,812 |  | 24,813 | 53,172 |
| 33 | 4,925 | 21,737 |  | 27,798 | 59,568 |
| 34 | 5,342 | 27,079 |  | 31,373 | 67,227 |
| 35 | 2,571 | 29,650 |  | 35,494 | 76,059 |
| 36 | 2,276 | 31,926 |  | 43,222 | 92,618 |
| 37 | 5,029 | 36,955 |  | 47,528 | 101,845 |
| 38 | 7,168 | 44,123 |  | 51,466 | 110,284 |
| 39 | 4,551 | 48,674 |  | 57,316 | 122,820 |
| 40 | 908 | 49,582 |  | 65,281 | 139,888 |
| 41 | 726 | 50,308 |  | 67,774 | 145,230 |
| 42 | 438 | 50,746 |  | 70,000 | 150,000 |

## Escapement Age, Sex, and Length Composition

## 2017

In 2017, the Chilkat Lake sockeye salmon escapement was composed primarily of age-1.3 (51.3\%), age-2.2 (16.2\%), and age-2.3 (29.3\%) fish (Table 5; Appendices R and S). The remainder of the escapement ( $3.2 \%$ ) was composed of age- 0.3 , age-1.1, age-1.2, age-1.4, and age-2.1 fish. The mean length of age-1.3 fish was 591 mm for males and 570 mm for females, mean length of age- 2.2 fish was 541 for males and 527 for females, and mean length of age- 2.3 fish was 586 mm for males and 572 mm for females (Table 6; Appendices $T$ and $U$ ).

Table 5.-Age composition of the Chilkat Lake sockeye escapement weighted by statistical week, 2017.

| Age <br> class | Brood <br> year | Estimated <br> escapement | SE <br> escapement | Percent of <br> escapement | SE <br> percent | Sample <br> size |
| :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 0.3 | 2013 | 314 | 179 | $0.4 \%$ | $0.2 \%$ | 3 |
| 1.1 | 2014 | 137 | 137 | $0.2 \%$ | $0.2 \%$ | 1 |
| 1.2 | 2013 | 1,766 | 443 | $2.0 \%$ | $0.5 \%$ | 16 |
| 1.3 | 2012 | 45,260 | 2,176 | $51.3 \%$ | $2.5 \%$ | 371 |
| 1.4 | 2011 | 460 | 232 | $0.5 \%$ | $0.3 \%$ | 4 |
| 2.1 | 2013 | 137 | 137 | $0.2 \%$ | $0.2 \%$ | 1 |
| 2.2 | 2012 | 14,315 | 2,829 | $16.2 \%$ | $3.2 \%$ | 49 |
| 2.3 | 2011 | 25,808 | 3,076 | $29.3 \%$ | $3.5 \%$ | 94 |
| Total |  | 88,197 |  |  |  | 539 |

Table 6.-Average length (mid eye to tail fork) of Chilkat Lake sockeye salmon by age class and sex, 2017.

| Age <br> class | Brood year | Male |  |  | Female |  |  | Total |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sample size | Mean length | SE | Sample size | Mean length | SE | Sample size | Mean length | SE |
| 0.3 | 2013 | 1 | 460 | 0.0 | 2 | 538 | 12.5 | 3 | 512 | 26.8 |
| 1.1 | 2014 | - | - | - | 1 | 360 | 0.0 | 1 | 360 | 0.0 |
| 1.2 | 2013 | 9 | 529 | 9.0 | 7 | 520 | 12.0 | 16 | 525 | 7.1 |
| 1.3 | 2012 | 210 | 591 | 1.7 | 158 | 570 | 1.6 | 368 | 582 | 1.3 |
| 1.4 | 2011 | 2 | 575 | 35.0 | 2 | 570 | 0.0 | 4 | 573 | 14.4 |
| 2.1 | 2013 | - | - | - | 1 | 330 | 0.0 | 1 | 330 | 0.0 |
| 2.2 | 2012 | 17 | 541 | 6.3 | 32 | 527 | 4.4 | 49 | 532 | 3.7 |
| 2.3 | 2011 | 40 | 586 | 4.6 | 54 | 572 | 3.6 | 94 | 578 | 2.9 |

## 2018

In 2018, the Chilkat Lake sockeye salmon escapement was composed primarily of age- 2.2 (42.2\%), age-1.3 (28.7\%), and age-2.3 (22.0\%) fish (Table 7; Appendices R and S). The remainder of the escapement (7.1\%) was composed of age-0.3, age-1.1, age-1.2, age-1.4, age-2.1, age-2.4, and age- 3.3 fish. The mean length of age- 1.3 fish was 581 mm for males and 572 mm for females, mean length of age- 2.2 fish was 536 mm for males and 521 mm for females, and mean length of age-2.3 fish was 592 mm for males and 576 mm for females (Table 8; Appendices T and U ).

Table 7.-Age composition of the Chilkat Lake sockeye escapement weighted by statistical week, 2018.

| Age class | Brood year | Estimated escapement | SE escapement | Percent of escapement | $\begin{array}{r} \text { SE } \\ \text { percent } \end{array}$ | Sample size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.3 | 2014 | 222 | 146 | 0.2\% | 0.1\% | 3 |
| 1.1 | 2015 | 312 | 180 | 0.3\% | 0.2\% | 3 |
| 1.2 | 2014 | 3,787 | 858 | 3.5\% | 0.8\% | 32 |
| 1.3 | 2013 | 31,015 | 2,156 | 28.7\% | 2.0\% | 236 |
| 1.4 | 2012 | 304 | 183 | 0.3\% | 0.2\% | 3 |
| 2.1 | 2014 | 2,197 | 1,014 | 2.0\% | 0.9\% | 9 |
| 2.2 | 2013 | 45,621 | 2,919 | 42.2\% | 2.7\% | 136 |
| 2.3 | 2012 | 23,736 | 2,646 | 22.0\% | 2.4\% | 119 |
| 2.4 | 2011 | 625 | 624 | 0.6\% | 0.6\% | 1 |
| 3.3 | 2011 | 229 | 228 | 0.2\% | 0.2\% | 1 |
| Total |  | 108,047 |  |  |  | 543 |

Table 8.-Average length (mid eye to tail fork) of Chilkat Lake sockeye salmon by age class and sex, 2018.

| Age <br> class | Brood year | Male |  |  | Female |  |  | Total |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sample size | Mean <br> length | SE | Sample size | Mean <br> length | SE | Sample size | Mean <br> length | SE |
| 0.3 | 2014 | 2 | 573 | 17.5 | 1 | 510 | 0.0 | 3 | 512 | 23.2 |
| 1.1 | 2015 | 3 | 358 | 6.7 | - | - | - | 3 | 358 | 6.7 |
| 1.2 | 2014 | 26 | 484 | 6.4 | 6 | 514 | 9.5 | 32 | 490 | 5.8 |
| 1.3 | 2013 | 110 | 581 | 2.8 | 125 | 572 | 2.0 | 235 | 576 | 1.7 |
| 1.4 | 2012 | 2 | 618 | 7.5 | 1 | 560 | 0.0 | 3 | 598 | 19.6 |
| 2.1 | 2014 | 8 | 383 | 5.1 | 1 | 405 | 0.0 | 9 | 386 | 5.1 |
| 2.2 | 2013 | 56 | 536 | 4.8 | 82 | 521 | 2.4 | 138 | 527 | 2.4 |
| 2.3 | 2012 | 72 | 592 | 3.4 | 49 | 576 | 3.4 | 121 | 585 | 2.5 |
| 2.4 | 2011 | 1 | 580 | 0.0 | - | - | - | 1 | 580 | 0.0 |
| 3.3 | 2011 | - | - | - | 1 | 560 | 0.0 | 1 | 560 | 0.0 |

## 2019

In 2019, the Chilkat Lake sockeye salmon escapement was composed primarily of age- 1.3 (65.5\%), age-2.2 (14.6\%), and age-2.3 (18.6\%) fish (Table 9; Appendices R and S). The remainder of the escapement ( $1.2 \%$ ) was composed of age- 0.2 , age- 0.3 , age- 1.2 , and age- 2.1 fish. The mean length of age- 1.3 fish was 571 mm for males and 551 mm for females, mean length of age- 2.2 fish was 504 for males and 508 for females, and mean length of age- 2.3 fish was 566 mm for males and 547 mm for females (Table 10; Appendices T and U).

Table 9.-Age composition of the Chilkat Lake sockeye escapement weighted by statistical week, 2019.

| Age <br> class | Brood <br> year | Estimated <br> escapement | SE <br> escapement | Percent of <br> escapement | SE <br> percent | Sample <br> size |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| 0.2 | 2016 | 33 | 32 | $0.0 \%$ | $0.0 \%$ | 1 |
| 0.3 | 2015 | 98 | 55 | $0.1 \%$ | $0.0 \%$ | 3 |
| 1.2 | 2015 | 1,171 | 485 | $0.9 \%$ | $0.4 \%$ | 10 |
| 1.3 | 2014 | 89,199 | 1,869 | $65.5 \%$ | $1.4 \%$ | 482 |
| 2.1 | 2015 | 327 | 171 | $0.2 \%$ | $0.1 \%$ | 4 |
| 2.2 | 2014 | 19,918 | 1,588 | $14.6 \%$ | $1.2 \%$ | 142 |
| 2.3 | 2013 | 25,345 | 1,642 | $18.6 \%$ | $1.2 \%$ | 175 |
| Total |  | 136,091 |  |  |  | 817 |

Table 10.-Average length (mid eye to tail fork) of Chilkat Lake sockeye salmon by age class and sex, 2019.

| Age <br> class | Brood year | Male |  |  | Female |  |  | Total |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sample | Mean length | SE | Sample size | Mean length | SE | Sample size | Mean length | SE |
| 0.2 | 2016 | 1 | 480 | 0.0 | - | - | - | 1 | 480 | 0.0 |
| 0.3 | 2015 | 3 | 572 | 12.0 | - | - | - | 3 | 572 | 12.0 |
| 1.2 | 2015 | 4 | 503 | 28.2 | 6 | 483 | 14.1 | 10 | 491 | 13.5 |
| 1.3 | 2014 | 218 | 571 | 1.9 | 256 | 551 | 1.5 | 474 | 560 | 1.3 |
| 2.1 | 2015 | 4 | 368 | 10.5 | - | - | - | 4 | 368 | 10.5 |
| 2.2 | 2014 | 54 | 504 | 5.6 | 87 | 508 | 3.0 | 141 | 507 | 2.8 |
| 2.3 | 2013 | 91 | 566 | 3.0 | 84 | 547 | 2.6 | 175 | 557 | 2.1 |

## 2020

In 2020, the Chilkat Lake sockeye salmon escapement was composed primarily of age- 2.2 (34.7\%), age-1.3 (27.0\%), and age-2.3 (28.3\%) fish (Table 11; Appendices R and S). The remainder of the escapement $(9.9 \%)$ was composed of age-0.3, age- 0.4 , age-1.1, age-1.2, age-1.4, and age-2.1 fish. The mean length of age- 1.3 fish was 559 mm for males and 545 mm for females, mean length of age- 2.2 fish was 496 mm for males and 497 mm for females, and mean length of age-2.3 fish was 568 mm for males and 550 mm for females (Table 12; Appendices T and U).

Table 11.-Age composition of the Chilkat Lake sockeye escapement weighted by statistical week, 2020.

| Age <br> class | Brood <br> year | Estimated <br> escapement | SE <br> escapement | Percent of <br> escapement | SE <br> percent | Sample <br> size |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| 0.3 | 2016 | 633 | 186 | $1.2 \%$ | $0.4 \%$ | 11 |
| 0.4 | 2015 | 63 | 62 | $0.1 \%$ | $0.1 \%$ | 1 |
| 1.1 | 2017 | 809 | 381 | $1.6 \%$ | $0.7 \%$ | 9 |
| 1.2 | 2016 | 2,224 | 524 | $4.4 \%$ | $1.0 \%$ | 26 |
| 1.3 | 2015 | 13,722 | 1,327 | $27.0 \%$ | $2.6 \%$ | 169 |
| 1.4 | 2014 | 484 | 188 | $1.0 \%$ | $0.4 \%$ | 7 |
| 2.1 | 2016 | 17,634 | 1,226 | $34.7 \%$ | $0.6 \%$ | $2.4 \%$ |
| 2.2 | 2015 | 14,345 | 1,359 | $28.3 \%$ | $2.7 \%$ | 222 |
| 2.3 | 2014 | 50,746 |  |  |  | 167 |
| Total |  |  |  |  | 619 |  |

Table 12.-Average length (mid eye to tail fork) of Chilkat Lake sockeye salmon by age class and sex, 2020.

| Age class | Brood year | Male |  |  | Female |  |  | Total |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sample size | Mean length | SE | $\begin{array}{r} \text { Sample } \\ \text { size } \end{array}$ | Mean | SE | $\begin{array}{r} \text { Sample } \\ \text { size } \\ \hline \end{array}$ | Mean | SE |
| 0.3 | 2016 | 10 | 546 | 8.5 | 1 | 530 | 0.0 | 11 | 545 | 7.8 |
| 0.4 | 2015 | - | - | - | 1 | 525 | 0.0 | 1 | 525 | 0.0 |
| 1.1 | 2017 | 8 | 336 | 6.3 | 1 | 360 | 0.0 | 9 | 338 | 6.2 |
| 1.2 | 2016 | 13 | 485 | 8.7 | 13 | 494 | 5.2 | 26 | 489 | 5.0 |
| 1.3 | 2015 | 73 | 559 | 4.2 | 95 | 545 | 2.3 | 168 | 551 | 2.3 |
| 1.4 | 2014 | 3 | 547 | 18.6 | 4 | 560 | 19.5 | 7 | 554 | 12.8 |
| 2.1 | 2016 | 6 | 360 | 6.7 | 1 | 355 | 0.0 | 7 | 359 | 5.7 |
| 2.2 | 2015 | 76 | 496 | 4.0 | 145 | 497 | 1.9 | 221 | 497 | 1.8 |
| 2.3 | 2014 | 73 | 568 | 3.5 | 94 | 550 | 2.6 | 167 | 558 | 2.2 |

## Fish Wheel Counts

After adjusting for effort, 4,866 sockeye salmon were caught at the fish wheels in 2017, 3,047 in $2018,8,433$ in 2019, and 2,626 in 2020. Effort adjustments compensated for 224 hours of inactivity in 2017, 898 hours of inactivity in 2018, 520 hours of inactivity in 2019, and 773 hours of inactivity in 2020. Accounting for effort therefore expanded the raw sockeye salmon counts by $7.7 \%$ in 2017, $10.8 \%$ in $2018,10.8 \%$ in 2019 , and $14.9 \%$ in 2020 (Appendix F). The fish wheels provided adequate inseason indication of the magnitude of the Chilkat Lake sockeye salmon escapement in 2017, 2019, and 2020. However, in 2018, the fish wheel catch did not provide an accurate indication of the large Chilkat Lake sockeye salmon escapement of 108,047 fish (Figure 6), because catch at the fish wheels was misleadingly low; this result was due at least in part to extremely low water and nearby highway construction that prevented the fish wheels from operating properly.
In 2019, sockeye salmon entered freshwater in large numbers early and late in the season, and the fish wheel catch stayed consistently above the historical weekly average during most statistical weeks (Figure 7). Fish wheel catch was below the weekly historical averages (1999-2016) for most of 2017, 2018, and 2020, with only a handful of statistical weeks of above-average numbers in the latter half of 2017 and 2018. In 2020, fish wheel catch remained below the weekly average for the entire year, which matched reasonably well with the poor escapement observed later at the Chilkat Lake weir (Figure 7; Appendix F).


Figure 6.-Inseason fish wheel counts compared to expanded Chilkat Lake weir sockeye salmon escapement estimates (1990-2020). Historical years (1990-2016) are shown as triangles. The years 20172020 are shown as hollow circles. Upper and lower Chilkat Lake weir escapement goal bounds are shown as horizontal dotted and dot-dash lines, respectively. Years when the fish wheels (1992-1993) or weir (1996-1998) were not in operation were not included.


Figure 7.-Weekly fish wheel catch (2017-2020) compared to the historical average (1999-2016).

## Commercial Harvest Estimate

## 2017

In 2017, 39,716 sockeye salmon were harvested in the District 15 commercial drift gillnet fishery. A total of 2,915 sockeye salmon were sampled, of which 1,840 fish (about $5 \%$ of the commercial harvest) were genotyped for use in genetic stock identification analysis (Appendix N). Chilkat Lake sockeye salmon accounted for an estimated $14.3 \%(90 \% \mathrm{CI}=12.7-16.0 \%)$ of the commercial harvest, all weeks combined, or approximately 5,698 fish ( $90 \% \mathrm{CI}=5,063-6,357$ fish; Table 13; Appendices M and N). The Chilkat Lake sockeye salmon harvest was composed primarily of age1.3 fish ( $62 \%$ ), followed by age- 2.3 fish ( $21 \%$ ), age- 2.2 fish ( $12 \%$ ), and age- 1.2 fish ( $2.0 \%$ ). The total Chilkat Lake sockeye salmon run was estimated to be 93,895 fish, and the commercial harvest rate was estimated to be $6.1 \%$ (Appendix A). Additional sockeye salmon harvests of 254 fish in the sport fishery and 3,761 fish in the subsistence fishery consisted of unknown proportions of Chilkat Lake and Chilkat River mainstem fish; thus, the total harvest rate on Chilkat Lake fish only considers commercial harvest and represents a minimum estimate. Chilkat River mainstem sockeye salmon stocks contributed an estimated 515 fish $(90 \% \mathrm{CI}=320-746$ fish $)$ to the commercial harvest.

## 2018

In 2018, 81,688 sockeye salmon were harvested in the District 15 commercial drift gillnet fishery. A total of 3,407 sockeye salmon were sampled, of which 1,794 fish (about $2 \%$ of the commercial harvest) were genotyped for use in genetic stock identification analysis (Appendix O). Chilkat Lake sockeye salmon accounted for an estimated $23.5 \%(90 \% \mathrm{CI}=21.6-25.5 \%)$ of the commercial harvest, all weeks combined, or approximately 19,235 fish ( $90 \% \mathrm{CI}=17,644-20,871 \mathrm{fish}$; Table 13; Appendices M and O). The Chilkat Lake sockeye salmon harvest was composed primarily of age-2.2 fish (41\%), followed by age-1.3 fish (30\%), age-2.3 fish (24\%), and age-1.2 fish (3.0\%). The total Chilkat Lake sockeye salmon run was estimated to be 127,282 fish, and the commercial harvest rate was estimated to be $15.1 \%$ (Appendix A). Additional sockeye salmon harvests of 1,149 fish in the sport fishery and 4,257 fish in the subsistence fishery consisted of unknown proportions of Chilkat Lake and Chilkat River mainstem fish; thus, the total harvest rate on Chilkat Lake fish represents a minimum estimate. Chilkat River mainstem sockeye salmon stocks contributed an estimated 707 fish $(90 \% \mathrm{CI}=376-1,170$ fish $)$ to the commercial harvest.

## 2019

In 2019, 241,533 sockeye salmon were harvested in the District 15 commercial drift gillnet fishery. A total of 3,803 sockeye salmon were sampled, of which 1,880 fish (about $1 \%$ of the commercial harvest) were genotyped for use in genetic stock identification analysis (Appendix P). Chilkat Lake sockeye salmon accounted for an estimated $16.9 \%(90 \% \mathrm{CI}=15.2-18.9 \%)$ of the commercial harvest, all weeks combined, or approximately 40,935 fish ( $90 \% \mathrm{CI}=36,601-45,672$ fish; Table 14; Appendices M and P). The Chilkat Lake sockeye salmon harvest was composed primarily of age-1.3 fish (70\%), followed by age-2.3 fish (18\%), age-2.2 fish (7\%), and age-1.2 fish (1.0\%). The total Chilkat Lake sockeye salmon run was estimated to be 177,026 fish, and the commercial harvest rate was estimated to be $23.1 \%$ (Appendix A). Additional sockeye salmon harvests of 436 fish in the sport fishery and 3,801 fish in the subsistence fishery consisted of unknown proportions of Chilkat Lake and Chilkat River mainstem fish; thus, the total harvest rate on Chilkat Lake fish
represents a minimum estimate. Chilkat River mainstem sockeye salmon stocks contributed an estimated 11,637 fish ( $90 \% \mathrm{CI}=9,059-14,371$ fish $)$ to the commercial harvest.

## 2020

In 2020, 50,220 sockeye salmon were harvested in the District 15 commercial drift gillnet fishery. A total of 3,914 sockeye salmon were sampled, of which 1,666 fish (about $3 \%$ of the commercial harvest) were genotyped for use in genetic stock identification analysis (Appendix Q). Chilkat Lake sockeye salmon accounted for an estimated $17.5 \%(90 \% \mathrm{CI}=15.9-19.1 \%)$ of the commercial harvest, all weeks combined, or approximately 8,776 fish ( $90 \% \mathrm{CI}=7,992-9,571$ fish; Table 14; Appendices M and Q). The Chilkat Lake sockeye salmon harvest was composed primarily of age2.3 fish ( $38 \%$ ) and age-2.2 fish (32\%), followed by age-1.3 fish ( $25 \%$ ) and age-1.2 fish (2.0\%). The total Chilkat Lake sockeye salmon run was estimated to be 59,522 fish, and the commercial harvest rate was estimated to be $14.7 \%$ (Appendix A). Additional sockeye salmon harvests in the sport fishery (estimate not yet available) and 1,573 fish in the subsistence fishery (preliminary) consisted of unknown proportions of Chilkat Lake and Chilkat River mainstem fish; thus, the total harvest rate on Chilkat Lake fish represents a minimum estimate. Chilkat River mainstem sockeye salmon stocks contributed an estimated 1,368 fish ( $90 \% \mathrm{CI}=1,019-1,771$ fish $)$ to the commercial harvest.

Table 13.-Estimated commercial harvest of Chilkat Lake, Chilkoot Lake, and other sockeye salmon stocks in the District 15 commercial drift gillnet fishery based on MAGMA genetic stock identification analysis, 2017 and 2018. (Other stock groups include Chilkat River mainstem, Juneau mainland, Snettisham, Taku River/Stikine mainstem, and Other.)

| Year | Statistical week | $\begin{gathered} \text { Commercial } \\ \text { harvest } \\ \hline \end{gathered}$ | Estimated stock composition |  |  | Estimated Chilkat Lake harvest and 90\% CI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chilkoot Lake | Chilkat Lake | Other | Harvest | Lower 90\% | Upper 90\% |
| 2017 | 25 | 1,358 | 5\% | 13\% | 82\% | 177 | 124 | 237 |
| 2017 | 26 | 2,623 | 6\% | 11\% | 82\% | 299 | 199 | 413 |
| 2017 | 27 | 1,743 | 6\% | 21\% | 73\% | 364 | 276 | 457 |
| 2017 | 28 | 759 | 11\% | 16\% | 72\% | 124 | 78 | 177 |
| 2017 | 29 | 6,077 | 2\% | 6\% | 92\% | 348 | 190 | 541 |
| 2017 | 30 | 5,834 | 3\% | 6\% | 91\% | 352 | 188 | 544 |
| 2017 | 31 | 5,590 | 6\% | 9\% | 86\% | 493 | 295 | 722 |
| 2017 | 32 | 5,772 | 5\% | 36\% | 59\% | 2,105 | 1,746 | 2,474 |
| 2017 | 33 | 2,171 | 8\% | 17\% | 74\% | 379 | 271 | 496 |
| 2017 | 34-40 ${ }^{\text {a }}$ | 7,789 | 5\% | 14\% | 82\% | 1,056 | 736 | 1,407 |
| 2017 | Total | 39,716 | 5\% | 14\% | 81\% | 5,698 | 5,063 | 6,357 |
| 2018 | 25 | 263 | 18\% | 27\% | 55\% | 72 | 54 | 91 |
| 2018 | 26 | 904 | 8\% | 26\% | 66\% | 238 | 188 | 292 |
| 2018 | 27 | 3,630 | 16\% | 24\% | 60\% | 872 | 689 | 1,063 |
| 2018 | 28 | 6,450 | 27\% | 16\% | 57\% | 1,022 | 747 | 1,332 |
| 2018 | 29 | 4,303 | 28\% | 17\% | 55\% | 724 | 527 | 935 |
| 2018 | 30 | 10,149 | 39\% | 21\% | 40\% | 2,110 | 1,620 | 2,632 |
| 2018 | 31 | 19,931 | 50\% | 21\% | 29\% | 4,220 | 3,295 | 5,215 |
| 2018 | 32 | 8,880 | 42\% | 28\% | 31\% | 2,468 | 2,039 | 2,914 |
| 2018 | 33 | 8,357 | 24\% | 26\% | 50\% | 2,187 | 1,794 | 2,598 |
| 2018 | 34-40 ${ }^{\text {a }}$ | 18,821 | 56\% | 28\% | 15\% | 5,323 | 4,413 | 6,275 |
| 2018 | Total | 81,688 | 42\% | 24\% | 35\% | 19,235 | 17,644 | 20,871 |

a In 2017 and 2018, harvest proportions for statistical weeks 35-40 were estimated using the proportions from the last statistical week with genetic samples, in this case statistical week 34.

Table 14.-Estimated commercial harvest of Chilkat Lake, Chilkoot Lake, and other sockeye salmon stocks in the District 15 commercial drift gillnet fishery based on MAGMA genetic stock identification analysis, 2019 and 2020. (Other stock groups include Chilkat River mainstem, Juneau mainland, Snettisham, Taku River/Stikine mainstem, and Other.)

| Year | Statistical week | Commercial harvest | Estimated stock composition |  |  | Estimated Chilkat Lake harvest and 90\% CI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Chilkoot Lake | Chilkat Lake | Other | Harvest | Lower 90\% | Upper 90\% |
| 2019 | 25-26 | 2,215 | 17\% | 27\% | 57\% | 588 | 415 | 792 |
| 2019 | 27 | 6,573 | 20\% | 16\% | 64\% | 1,063 | 761 | 1,400 |
| 2019 | 28 | 10,573 | 28\% | 21\% | 52\% | 2,194 | 1,685 | 2,735 |
| 2019 | 29 | 18,540 | 49\% | 22\% | 29\% | 4,017 | 3,116 | 4,966 |
| 2019 | 30 | 42,029 | 60\% | 15\% | 25\% | 6,471 | 4,685 | 8,479 |
| 2019 | 31 | 69,841 | 77\% | 13\% | 10\% | 9,417 | 6,569 | 12,625 |
| 2019 | 32 | 36,104 | 79\% | 11\% | 10\% | 3,992 | 2,717 | 5,441 |
| 2019 | 33 | 33,072 | 54\% | 23\% | 23\% | 7,716 | 6,083 | 9,481 |
| 2019 | 34 | 15,126 | 53\% | 20\% | 27\% | 3,033 | 2,420 | 3,695 |
| 2019 | 35-40 ${ }^{\text {a }}$ | 7,460 | 37\% | 33\% | 30\% | 2,443 | 2,054 | 2,838 |
| 2019 | Total | 241,533 | 62\% | 17\% | 21\% | 40,935 | 36,601 | 45,672 |
| 2020 | 26-27 | 1,700 | 13\% | 7\% | 80\% | 122 | 76 | 176 |
| 2020 | 28 | 3,163 | 31\% | 13\% | 57\% | 408 | 285 | 549 |
| 2020 | 29 | 4,090 | 41\% | 12\% | 47\% | 503 | 360 | 661 |
| 2020 | 30 | 5,162 | 26\% | 13\% | 61\% | 651 | 464 | 855 |
| 2020 | 31 | 5,410 | 44\% | 17\% | 39\% | 919 | 675 | 1,181 |
| 2020 | 32 | 11,066 | 76\% | 11\% | 13\% | 1,222 | 870 | 1,613 |
| 2020 | 33 | 6,821 | 48\% | 21\% | 31\% | 1,458 | 1,171 | 1,755 |
| 2020 | 34 | 8,993 | 49\% | 21\% | 29\% | 1,922 | 1,495 | 2,369 |
| 2020 | 35-39 ${ }^{\text {b }}$ | 3,815 | 57\% | 41\% | 1\% | 1,570 | 1,375 | 1,770 |
| 2020 | Total | 50,220 | 50\% | 17\% | 33\% | 8,776 | 7,992 | 9,571 |

Note: The gray shaded row indicates genetic stock identification estimates did not meet acceptable levels of precision and accuracy to estimate the proportion of mixtures within $10 \%$ of the true mixture $90 \%$ of the time, due to low sample size.
a In 2019, harvest proportions for statistical weeks 36-40 were estimated using the proportions from the last statistical week with genetic samples, in this case statistical week 35.
b In 2020, harvest proportions for statistical weeks 37-39 were estimated using the proportions from the last statistical week with genetic samples, in this case statistical weeks 35-36.

## Limnological Assessment

## Light and Temperature

Euphotic zone depth was examined as an average of the measurements from both stations on a given day. From 2017 to 2020, the seasonal mean (June-October) euphotic zone depth in Chilkat Lake averaged 21.2 m (range: 19.7-22.7 m; Appendix V). Interannual variability was high, and the euphotic zone depth was deepest in a different month each year. The shallowest euphotic zone depth was typically observed in the early months of the season (June-July), but the deepest euphotic zone depth for 2018 and 2020 also occurred during those two months (Table 15). During this period, the seasonal mean (June-October) water temperature at a depth of 1 m averaged 14.5 ${ }^{\circ} \mathrm{C}$ (range: $13.5-15.7^{\circ} \mathrm{C}$ ); it was coldest in October (average $=12.1^{\circ} \mathrm{C}$ ) and warmest in August (average $=17.1^{\circ} \mathrm{C}$ ). In all years (2017-2020), thermoclines (the depths at which temperature change was $>1{ }^{\circ} \mathrm{C}$ per m ) were detected in 2 to 4 months between July and October (Figure 8). Thermocline depths varied from 5 m in July of 2019 to 18 m in October of 2020. The maximum
lake surface temperature recorded per season was $19.9^{\circ} \mathrm{C}$ on 5 August $2017,16.9^{\circ} \mathrm{C}$ on 11 August $2018,20.7^{\circ} \mathrm{C}$ on 4 July 2019, and $16.7^{\circ} \mathrm{C}$ on 1 August 2020.

Table 15.-Euphotic zone depths (m) in Chilkat Lake, 2017-2020.

| Year | Date | Station 1A | Station 2A | Average |
| :--- | :--- | :---: | :---: | :---: |
| 2017 | 6-Jun | 19.1 | 17.0 | 18.0 |
|  | 5-Jul | 22.5 | 21.2 | 21.9 |
|  | 5-Aug | 19.3 | 19.3 |  |
|  | 5-Sep | 76.7 | 15.3 | 19.2 |
|  | 4-Oct | 23.2 | 28.0 | 34.2 |
|  | Average (June-October) | 40.3 | 20.2 | 22.5 |
| 2018 | 6-Jun | 26.3 | 16.7 | 16.2 |
|  | 17-Jul | 15.7 | 24.4 | 25.5 |
|  | 11-Aug | 26.6 | 18.7 | 17.2 |
|  | 5-Sep | 15.8 | 18.2 | 19.9 |
|  | October | 21.5 | ND | ND |
|  | Average (June-October) | ND | 19.5 | 19.7 |
| 2019 | June | 19.9 | ND | ND |
|  | 4-Jul | ND | 17.0 | 16.6 |
|  | 2-Aug | 16.2 | 17.0 | 17.4 |
|  | 3-Sep | 17.9 | 26.2 | 39.0 |
|  | 3-Oct | 51.8 | 17.6 | 17.6 |
|  | Average (June-October) | 17.7 | 19.5 | 22.7 |
| 2020 | 25.9 | 14.8 | 24.5 |  |
|  | 4-Jun | 34.1 | 17.9 | 17.9 |
|  | 1-Jul | 17.8 | 20.0 | 17.2 |
|  | 1-Aug | 14.5 | 19.3 | 19.9 |
|  | 3-Sep | 20.5 | 14.9 | 19.4 |
|  | 1-Oct | 24.0 | 19.4 | 19.8 |

Note: ND = no data collected.
a The euphotic zone depth at Station 1A on 5 August 2017 was considered an outlier and not included in any average calculations.


Figure 8.-Water temperature profiles by date (averaged between stations 1A and 2A) at Chilkat Lake, 2019-2020. The temperature profiles for June 2018 were averaged over two days.

## Zooplankton Composition

Density and biomass of zooplankton in Chilkat Lake were dominated in all years by copepods (Cyclops sp.), followed by cladocerans (primarily Bosmina and several species of Daphnia)
(Tables 16-19; Appendix W). Total seasonal mean zooplankton density increased year over year from 2017 to 2020, although the maximum abundance of cladocerans occurred in 2019 and maximum abundance of copepods occurred in 2020 (Figure 9). Weighted seasonal zooplankton biomass was greatest in $2018\left(2,204 \mathrm{mg} / \mathrm{m}^{2}\right)$ and trended slightly lower in 2019 and 2020. Estimated biomass was biased low to some degree in 2019 and 2020, however, because Daphnia were primarily identified by body parts in some monthly samples, which precluded length measurements required to estimate biomass.

Table 16.-Mean density of zooplankton per $\mathrm{m}^{2}$ of lake surface area by sampling date and taxon in Chilkat Lake, 2017-2018. Density estimates were the average of two sampling stations, and ovigerous individuals were separated from non-egg-bearing individuals.

| Year | Taxon/Date | Macrozooplankton density (number $/ \mathrm{m}^{2}$ ) by sampling date |  |  |  |  | Seasonal mean |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 6-Jun | 7-Jul | 5-Aug | 5-Sep | 5-Oct | Density | \% Density |
| 2017 | Cyclops sp. | 358,295 | 196,808 | 191,713 | 119,630 | 37,740 | 180,837 | 37\% |
|  | Ovig. Cyclops | 113,771 | 47,207 | 29,207 | 26,745 | 7,981 | 44,982 | 9\% |
|  | Copepod nauplii | 23,773 | 59,603 | 132,960 | 180,846 | 330,065 | 145,449 | 29\% |
|  | Bosmina | 8,490 | 19,188 | 23,264 | 92,206 | 17,151 | 32,060 | 6\% |
|  | Ovig. Bosmina | 0 | 0 | 0 | 0 | 467 | 93 | <1\% |
|  | Daphnia spp. | 15,283 | 94,244 | 39,565 | 98,913 | 39,183 | 57,438 | 12\% |
|  | Ovig. Daphnia spp. | 0 | 0 | 4,755 | 2,292 | 2,292 | 1,868 | <1\% |
|  | Daphnia galeata | 0 | 0 | 3,057 | 18,679 | 0 | 4,347 | 1\% |
|  | Ovig. D. galeata | 0 | 0 | 0 | 1,698 | 0 | 340 | $<1 \%$ |
|  | Daphnia longiremus | 8,490 | 1,528 | 0 | 1,698 | 0 | 2,343 | $<1 \%$ |
|  | Ovig. D. longiremus | 0 | 0 | 0 | 0 | 0 | 0 | 0\% |
|  | Daphnia rosea | 2,547 | 33,113 | 12,056 | 12,566 | 3,099 | 12,676 | 3\% |
|  | Ovig. D. rosea | 1,698 | 0 | 0 | 0 | 467 | 433 | $<1 \%$ |
|  | Imm. Cladocera | 21,226 | 17,490 | 3,906 | 15,113 | 934 | 11,734 | 2\% |
|  | Chydorinae | 0 | 0 | 0 | 0 | 0 | 0 | 0\% |
|  | Total | 553,574 | 469,180 | 440,482 | 570,385 | 439,379 | 494,600 | 100\% |
| 2018 | Taxon/Date | June ${ }^{\text {a }}$ | 17-Jul | 11-Aug | 5-Sep | ND | Density | \% Density |
|  | Cyclops sp. | 1,004,415 | 318,390 | 208,015 | 133,299 | ND | 416,030 | 55\% |
|  | Ovig. Cyclops | 42,452 | 17,830 | 849 | 5,094 | ND | 16,556 | 2\% |
|  | Copepod nauplii | 56,886 | 9,339 | 193,581 | 418,577 | ND | 169,596 | 22\% |
|  | Bosmina | 0 | 9,339 | 20,377 | 38,207 | ND | 16,981 | 2\% |
|  | Ovig. Bosmina | 0 | 0 | 0 | 0 | ND | 0 | 0\% |
|  | Daphnia spp. | 16,132 | 332,824 | 25,471 | 39,905 | ND | 103,583 | 14\% |
|  | Ovig. Daphnia spp. | 849 | 2,547 | 849 | 0 | ND | 1,061 | <1\% |
|  | Daphnia galeata | 0 | 0 | 0 | 0 | ND | 0 | 0\% |
|  | Ovig. D. galeata | 0 | 0 | 0 | 0 | ND | 0 | 0\% |
|  | Daphnia longiremus | 3,396 | 0 | 25,471 | 0 | ND | 7,217 | 1\% |
|  | Ovig. D. longiremus | 849 | 0 | 0 | 0 | ND | 212 | $<1 \%$ |
|  | Daphnia rosea | 849 | 17,830 | 31,415 | 3,396 | ND | 13,372 | 2\% |
|  | Ovig. D. rosea | 0 | 2,547 | 849 | 2,547 | ND | 1,486 | <1\% |
|  | Chydorinae | 0 | 0 | 0 | 0 | ND | 0 | 0\% |
|  | Imm. Cladocera | 32,264 | 11,038 | 11,038 | 6,792 | ND | 15,283 | 2\% |
|  | Total | 1,158,091 | 721,684 | 517,915 | 647,818 | ND | 761,377 | 100\% |

Notes: ND = no data collected.
a In 2018, samples collected at station 2A (June 6) and station 1A (June 16) were combined into a single "June" sample.

Table 17.-Estimated density of zooplankton per $\mathrm{m}^{2}$ of lake surface area by sampling date and taxon in Chilkat Lake, 2019-2020. Density estimates were the average of the two sampling stations, and ovigerous individuals were separated from non-egg-bearing individuals.

| Year | Taxon/Date ${ }^{\text {a }}$ | Macrozooplankton density (number $/ \mathrm{m}^{2}$ ) by sampling date |  |  |  |  | Seasonal mean |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 7-Jun | 4-Jul | 2-Aug | 3-Sep | 3-Oct | Density | \% Density |
| 2019 | Cyclops sp. | 477,161 | 278,485 | 253,014 | 247,071 | 346,833 | 320,513 | 44\% |
|  | Ovig. Cyclops | 0 | 0 | 8,490 | 0 | 5,943 | 2,887 | <1\% |
|  | Copepod nauplii | 13,585 | 13,585 | 43,301 | 136,696 | 321,362 | 105,706 | 14\% |
|  | Bosmina | 13,585 | 221,600 | 71,319 | 61,131 | 56,886 | 84,904 | 12\% |
|  | Ovig. Bosmina | 1,698 | 0 | 0 | 0 | 0 | 340 | <1\% |
|  | Daphnia spp. | 0 | 0 | 0 | 0 | 0 | 0 | 0\% |
|  | Ovig. Daphnia spp. | 0 | 0 | 0 | 0 | 0 | 0 | 0\% |
|  | Daphnia galeata | 0 | 0 | 0 | 0 | 0 | 0 | 0\% |
|  | Ovig. D. galeata | 0 | 0 | 0 | 0 | 0 | 0 | 0\% |
|  | Daphnia longiremus | 0 | 0 | 3,396 | 0 | 0 | 679 | <1\% |
|  | Ovig. D. longiremus | 0 | 0 | 0 | 0 | 0 | 0 | 0\% |
|  | Daphnia rosea | 109,526 | 359,144 | 213,958 | 268,297 | 79,385 | 206,062 | 28\% |
|  | Ovig. D. rosea | 1,698 | 2,547 | 9,339 | 0 | 5,519 | 3,821 | 1\% |
|  | Chydorinae | 0 | 0 | 0 | 0 | 0 | 0 | 0\% |
|  | Imm. Cladocera | 2,547 | 849 | 17,830 | 3,396 | 7,641 | 6,453 | 1\% |
|  | Total | 619,800 | 876,210 | 620,649 | 716,590 | 823,569 | 731,364 | 100\% |
| 2020 | Taxon/Date | 4-Jun | 1-Jul | 1-Aug | 3-Sep | 1-Oct | Density | \% Density |
|  | Cyclops sp. | 1,153,846 | 546,358 | 680,931 | 343,861 | 168,280 | 578,655 | 70\% |
|  | Ovig. Cyclops | 0 | 0 | 0 | 0 | 594 | 119 | <1\% |
|  | Copepod nauplii | 71,744 | 6,792 | 5,943 | 57,056 | 290,457 | 86,398 | 11\% |
|  | Bosmina | 0 | 7,641 | 23,773 | 182,204 | 137,629 | 70,250 | 9\% |
|  | Ovig. Bosmina | 849 | 0 | 0 | 2,547 | 2,547 | 1,189 | <1\% |
|  | Daphnia spp. | 23,773 | 76,414 | 86,602 | 5,943 | 9,509 | 40,448 | 5\% |
|  | Ovig. Daphnia spp. | 0 | 0 | 0 | 0 | 0 | 0 | 0\% |
|  | Daphnia galeata | 0 | 0 | 0 | 0 | 0 | 0 | 0\% |
|  | Ovig. D. galeata | 0 | 0 | 0 | 0 | 0 | 0 | 0\% |
|  | Daphnia longiremus | 1,698 | 1,698 | 1,698 | 0 | 0 | 1,019 | <1\% |
|  | Ovig. D. longiremus | 1,274 | 0 | 0 | 0 | 0 | 255 | <1\% |
|  | Daphnia rosea | 19,103 | 37,782 | 46,697 | 62,489 | 24,537 | 38,122 | 5\% |
|  | Ovig. D. rosea | 1,698 | 1,698 | 0 | 2,038 | 0 | 1,087 | <1\% |
|  | Chydorinae | 0 | 0 | 849 | 0 | 0 | 170 | <1\% |
|  | Imm. Cladocera | 425 | 5,943 | 0 | 5,773 | 4,245 | 3,277 | <1\% |
|  | Total | 1,274,410 | 684,327 | 846,493 | 661,912 | 637,799 | 820,988 | 100\% |

Table 18.-Estimated mean length and biomass of zooplankton by sampling date and taxon in Chilkat Lake, 2017-2018. Biomass estimates were the average of the two sampling stations, and ovigerous individuals were separated from non-egg-bearing individuals.

| Year | Taxon/Date | Macrozooplankton length (mm) by sampling date |  |  |  |  | Weighted seasonal mean |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 6-Jun | 7-Jul | 5-Aug | 5-Sep | 5-Oct | Length (mm) | $\begin{aligned} & \hline \begin{array}{l} \text { Biomass } \\ \left(\mathrm{mg} / \mathrm{m}^{2}\right) \end{array} \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \% \\ \text { biomass } \end{gathered}$ |
| 2017 | Cyclops sp. | 0.91 | 0.98 | 1.02 | 1.03 | 0.94 | 0.96 | 595 | 52\% |
|  | Ovig. Cyclops | 1.05 | 1.06 | 1.09 | 1.16 | 1.19 | 1.07 | 186 | 16\% |
|  | Bosmina | 0.32 | 0.39 | 0.41 | 0.39 | 0.39 | 0.39 | 44 | 4\% |
|  | Ovig. Bosmina | - | - | - | - | 0.38 | 0.38 | <1 | <1\% |
|  | Daphnia spp. | 0.77 | 0.90 | 0.97 | 0.89 | 1.01 | 0.92 | 221 | 19\% |
|  | Ovig. Daphnia spp. | - | - | 1.62 | 1.26 | 1.43 | 1.39 | 20 | 2\% |
|  | Daphnia galeata | - | - | - | 1.16 | - | 1.00 | 11 | 1\% |
|  | Ovig. D. galeata | - | - | - | 1.35 | - | 1.35 | 2 | $<1 \%$ |
|  | Daphnia longiremus | 0.63 | 0.93 | 0 | 0.98 | - | 0.72 | 5 | $<1 \%$ |
|  | Ovig. D. longiremus | - | - | - | - | - | - | - | - |
|  | Daphnia rosea | 0.85 | 1.22 | 1.27 | 0.92 | 1.04 | 1.16 | 64 | 6\% |
|  | Ovig. D. rosea | 1.27 | - | - | - | 1.21 | 1.24 | 3 | <1\% |
|  | Chydorinae | - | - | - | - | - | - | - | - |
|  | Total |  |  |  |  |  |  | 1,150 | 100\% |
| 2018 | Taxon/Date | June ${ }^{\text {a }}$ | 17-Jul | 11-Aug | 5-Sep | ND | $\begin{gathered} \hline \text { Length } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | Biomass (mg/m²) | $\begin{gathered} \% \\ \text { biomass } \end{gathered}$ |
|  | Cyclops sp. | 0.89 | 1.06 | 1.10 | 1.09 | ND | 0.97 | 1,395 | 63\% |
|  | Ovig. Cyclops | 1.20 | 1.19 | 1.17 | 1.15 | ND | 1.19 | 86 | 4\% |
|  | Bosmina | - | 0.39 | 0.37 | 0.36 | ND | 0.37 | 21 | 1\% |
|  | Ovig. Bosmina | - | - | - | - | - | - | - | - |
|  | Daphnia spp. | 0.75 | 1.14 | 0.78 | 0.95 | ND | 1.08 | 565 | 26\% |
|  | Ovig. Daphnia spp. | - | 1.10 | 1.60 | - | ND | 1.14 | 6 | <1\% |
|  | D. galeata | - | - | - | - | - | - | - | - |
|  | Ovig. D. galeata | - | - | - | - | - | - | - | - |
|  | Daphnia longiremus | 0.69 | - | 0.88 | - | ND | 0.87 | 25 | 1\% |
|  | Ovig. D. longiremus | - | - | - | - | - | - | - | - |
|  | Daphnia rosea | 1.22 | 1.30 | 1.37 | 1.08 | ND | 1.33 | 94 | 4\% |
|  | Ovig. D. rosea | - | 1.28 | 1.33 | 1.44 | ND | 1.37 | 11 | 1\% |
|  | Chydorinae | - | - | - | - | - | - | - | - |
|  | Total |  |  |  |  |  |  | 2,204 | 100\% |

Notes: ND = no data collected. A dash ( - ) indicates taxa or life stage not present or samples too damaged to measure.
a In 2018, samples collected at station 2A (June 6) and station 1A (June 16) were combined into a single "June" sample.

Table 19.-Estimated mean length and biomass of zooplankton by sampling date and taxon in Chilkat Lake, 2019-2020. Biomass estimates were the average of the two sampling stations, and ovigerous individuals were separated from non-egg-bearing individuals.

| Year | Taxon/Date | Macrozooplankton length (mm) by sampling date |  |  |  |  | Weighted seasonal mean |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 7-Jun | 4-Jul | 2-Aug | 3-Sep | 3-Oct | Length (mm) | Biomass ( $\mathrm{mg} / \mathrm{m}^{2}$ ) | $\begin{gathered} \% \\ \text { biomass } \end{gathered}$ |
| $2019{ }^{\text {a }}$ | Cyclops sp. | 0.93 | 1.07 | 1.03 | 0.87 | 0.89 | 0.90 | 950 | 53\% |
|  | Ovig. Cyclops | - | - | 1.22 | - | 1.26 | 1.25 | 17 | 1\% |
|  | Bosmina | 0.36 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 113 | 6\% |
|  | Ovig. Bosmina | 0.45 | - | - | - | - | 0.45 | 1 | <1\% |
|  | Daphnia spp. | - | - | - | - | - | - | - | - |
|  | Ovig. Daphnia spp. | - | - | - | - | - | - | - | - |
|  | Daphnia galeata | - | - | - | - | - | - | - | - |
|  | Ovig. D. galeata | - | - | - | - | - | - | - | - |
|  | Daphnia longiremus | - | - | 1.16 | - | - | 1.16 | 4 | <1\% |
|  | Ovig. D. longiremus | - | - | - | - | - | - | - | - |
|  | Daphnia rosea | 1.10 | 1.18 | 1.12 | 1.02 | 1.00 | 0.92 | 668 | 37\% |
|  | Ovig. D. rosea | 1.11 | 1.55 | 1.57 | - | 1.33 | 1.47 | 34 | 2\% |
|  | Chydorinae | - | - | - | - | - | - | - | - |
|  | Total |  |  |  |  |  |  | 1,787 | 100\% |
| $2020{ }^{\text {b }}$ | Taxon/Date | 4-Jun | 1-Jul | 1-Aug | 3-Sep | 1-Oct | $\begin{gathered} \text { Length } \\ (\mathrm{mm}) \end{gathered}$ | Biomass $\left(\mathrm{mg} / \mathrm{m}^{2}\right)$ | $\begin{gathered} \% \\ \text { biomass } \end{gathered}$ |
|  | Cyclops sp. | 0.76 | 0.92 | 1.06 | 1.03 | 0.91 | 0.90 | 1,647 | 80\% |
|  | Ovig. Cyclops | - | - | - | - | 1.19 | 1.19 | 1 | <1\% |
|  | Bosmina | - | 0.36 | 0.44 | 0.38 | 0.38 | 0.38 | 96 | 5\% |
|  | Ovig. Bosmina | 0.52 | - | - | 0.43 | 0.43 | 0.45 | 2 | <1\% |
|  | Daphnia spp. | - | 1.08 | 1.01 | 0.73 | 1.02 | 1.01 | 151 | 7\% |
|  | Ovig. Daphnia spp. | - | - | - | - | - | - | - | - |
|  | Daphnia galeata | - | - | - | - | - | - | - | - |
|  | Ovig. D. galeata | - | - | - | - | - | - | - | - |
|  | Daphnia longiremus | 0.50 | 0.97 | 0.72 | - | - | 0.67 | 3 | $<1 \%$ |
|  | Ovig. D. longiremus | 1.05 | - | - | - | - | 1.05 | 1 | $<1 \%$ |
|  | Daphnia rosea | 0.71 | 0.97 | 1.39 | 1.10 | 0.88 | 1.03 | 148 | 7\% |
|  | Ovig. D. rosea | 1.12 | 1.20 | - | 1.34 | - | 1.22 | 6 | <1\% |
|  | Chydorinae | - | - | 0.57 | - | - | 0.57 | 1 | <1\% |
|  | Total |  |  |  |  |  |  | 2,056 | 100\% |

Notes: A dash (-) indicates taxa or life stage not observed or samples too damaged to measure.
a In 2019, June samples from station 2A and July samples from station 1A were damaged, which precluded measurement of Cyclops, Daphnia, and most Bosmina; thus, biomass may be underestimated.
b In 2020, Daphnia sp. lengths were not available for June samples from station 1A and many samples from station 2A because they were primarily identified by body parts; thus, biomass may be underestimated.


Figure 9.-Annual seasonal (June-October) mean zooplankton abundance in Chilkat Lake, 1987-2020. Copepod nauplii and immature cladocerans were not included because they were not enumerated in laboratory samples until 2002 and 2004. Sampling was not conducted in 1992 and 1993, and seasonal means were not calculated for years in which more than one month of sampling was missing (2004, 2006, and 2012).

## DISCUSSION

Chilkat Lake sockeye salmon escapements were within the escapement goal range of 70,000 to 150,000 fish in 3 years, 2017-2019, but failed to reach the lower bound in 2020. Severe restrictions were placed on the commercial drift gillnet fishery in 2020 (Figure 1; Thynes et al. 2020; Ransbury et al. 2021), primarily to reduce harvest of Chilkat River Chinook salmon, designated as a stock of management concern in 2018 (Lum and Fair 2018), but also due to poor inseason run projections of Chilkat Lake sockeye salmon. Despite these restrictions, the Chilkat Lake escapement in 2020 ( 50,746 fish) was the 9 th lowest in the 45 years since 1976 (the year total runs were first estimated; Appendix A) and the total run (59,522 fish) was the 4th lowest; thus, the escapement goal would not have been met had management restricted the commercial harvest to zero fish. Similarly, although sockeye salmon escapement in 2017 reached the lower bound of the escapement goal, the total run ( 93,895 fish) was the 7th lowest on record (Figure 10). Chilkat Lake sockeye salmon runs in 2018 and 2019 fared better, with total runs of 127,282 fish and 177,026 fish, respectively. Escapements in those years were also larger, with 108,047 fish in 2018 and 136,091 fish in 2019.

The introduction of the DIDSON in 2008 has led to much greater confidence in the escapement counts of Chilkat Lake sockeye salmon compared to the visual weir counts or mark-recapture estimates of previous years (Bednarski et al. 2017). Gradual improvements to the DIDSON operations continue to be implemented as identified in the project operational plan (Zeiser et al. 2020a). Species apportionment has improved since 2017, but sampling for species apportionment was poorly documented in prior years. A retrospective review of species apportionment in all years would improve the historical DIDSON expansion estimates and should be done prior to reviewing the Chilkat Lake sockeye salmon escapement goal. Likewise, inseason observer training should
be formalized to ensure counting accuracy and consistency among observers throughout the season. In 2020, the old steel weir was replaced with an aluminum weir. The framework (bipods and stringers) of the old weir was traditionally left in place during the winter, and over the years the weir had suffered damage from logs and boats. The new weir was constructed to make it easier to maintain a fish-tight weir, improve public access through the boat gate, and allow for easier installation and removal (e.g., installation no longer requires divers to install the boat gate).


Figure 10.-Estimated total runs of Chilkat Lake sockeye salmon, 1976-2020, and the current biological escapement goal range of $70,000-150,000$ sockeye salmon counted with the DIDSON system at the Chilkat Lake weir site. The biological escapement goal was established in 2009 (Eggers 2010). Escapements are represented by expanded weir counts from 1976 to 1995 and 1999 to 2007, expanded DIDSON counts from 2008-2020, and model output from 1996-1998 (posterior medians; Miller and Heinl 2018).

Estimated commercial harvest rates on the Chilkat Lake stock throughout the 4-year period ranged from only $6.1 \%$ (2017) to $23.1 \%$ (2019), well below the 1976-2016 average of $46.2 \%$. The estimated harvest rates in 2017 and 2020 were the lowest in the entire time series. Estimated commercial harvests of Chilkat Lake sockeye salmon were also below average during the 20172020 period; none of the harvests in those years exceeded the 10 -year average harvest of 46,664 fish, which was already below the historical average (1976-2016) of 77,771 fish. Small but unknown numbers of Chilkat Lake sockeye salmon are also harvested in the sport and subsistence fisheries; thus, the estimated total harvest rates are biased low. Estimated harvest rates would increase by an average $2.0 \%$ (range $0.1-5.1 \%$; years $1985-2020$ ) if sport and subsistence harvests were assumed to consist entirely of Chilkat Lake sockeye salmon. The estimated sport harvest of Chilkat Lake and mainstem spawning sockeye salmon in 2018 (1,149 fish) was an all-time high, but the reported subsistence harvest for all 4 years came in slightly below the historical average (1985-2016) of 4,324 fish (Appendix A). Over the 4 years 2017-2020, the estimated commercial harvest of Chilkat River mainstem fish as a proportion of the overall drainage harvest ranged from a low of $3.5 \%$ in 2018 to a high of $22.1 \%$ in 2019.


Figure 11.-Estimated commercial harvest of Chilkat Lake sockeye salmon, 1976-2020.
Commercial fishery harvest rates on sockeye salmon are regulated in part using inseason escapement projections generated by the fish wheel project on the Chilkat River. Effort-adjusted fish wheel catch was used to predict the total Chilkat Lake sockeye salmon escapement adequately enough in 2017, 2019, and 2020 to provide meaningful insight into inseason commercial fishery management, and predicted escapements were within $10 \%$ or less of actual escapements in those years (Figure 6). In 2018, however, the poor fish wheel catch suggested that the Chilkat Lake sockeye salmon escapement goal would not be met, whereas actual escapement at the weir ( 108,047 fish) was above average and well within the escapement goal range. The predicted escapement in 2018 ( 53,000 fish) was $51 \%$ below the actual escapement. The discrepancy appears to have been, at least in part, a result of extremely low water and nearby highway construction that prevented the fish wheels from operating correctly. A total of 898 hours required interpolation, significantly above the historical average of 477 hours. Our current means of adjusting for fish wheel effort, despite adding $10.8 \%$ more sockeye salmon in 2018, did not fully account for the significantly low catch, suggesting that other sources of error, such as poor fish wheel placement, may have been a factor. Historical fish wheel catch records dating back to 1990 are being digitized to allow for more robust analyses of effort, fish wheel placement, and other factors that may shed more light on anomalous years such as 2018.
Recent poor Chilkat Lake sockeye salmon runs (despite reduced fishery harvest and escapements within the escapement goal range) are the cause of significant speculation but may be due to a combination of changing climatic conditions, interspecies competition, and predation. In terms of warming conditions, large warm ocean phenomena such as the "Blob", brought on by a strong El Niño phase (part of the El Niño-Southern Oscillation or ENSO), are changing ecosystem dynamics in the Gulf of Alaska (Fergusson et al. 2020). The "Blob" that occurred during 2014 and 2015 (Amaya et al. 2020) may have been responsible for the widespread, relatively poor runs of sockeye
salmon throughout the region in 2017 and 2018 that were thought to be the result of poor smolt survival in the marine environment (Hyatt et al. 2018; Heinl et al. 2021; Ransbury et al. 2021). Even without oscillating events such as ENSO, the $\mathrm{CO}_{2}$-induced heating of the entire planet warms Alaska at roughly 3 times the magnitude of mean global warming (Wendler et al. 2017), making warm water off the coast of Alaska more likely in the future. The identification of a second, smaller warm-water anomaly in 2019 suggests that future sockeye salmon runs may also be negatively affected (Amaya et al. 2020).

It is important to understand that while the "Blob" appears to fit 2017 fish well, the exact mechanisms that link warm-water anomalies in the Gulf of Alaska to poor sockeye salmon runs require still more investigation. The "Blob" does not easily explain the poor Chilkat Lake sockeye salmon run in 2020, one of the lowest runs ever, which consisted of fish that entered the ocean during cool La Niña years. Additionally, the strong run in 2019 suggests that there were no lingering harmful effects in the ocean from the warm years, and some positives have even been identified. Daphnia spp., common freshwater prey of sockeye salmon fry, have been shown to increase in density due to warming in Alaska lakes, leading to increased sockeye salmon growth during their first year of life (Schindler et al. 2005) and, subsequently, to earlier outmigration (Cline et al. 2019). Larger outmigrating smolts have better survival rates to a point (Koenings et al. 1993), and the earlier exodus may allow salmon to match their outmigration to the earlier increases in marine phytoplankton and zooplankton growth that occur during warmer years. However, over the course of the entire year there may be issues, because stronger early-season phytoplankton concentrations also correspond with weaker concentrations later in May and beyond (Pinchuk et al. 2008).

In addition to altered predator-prey dynamics between smolts and zooplankton, warmer conditions increase the metabolic rate of sockeye salmon nearly exponentially with increasing temperature (Brett 1983). During periods of warmer temperatures, sockeye salmon will naturally respond to diminishing food resources later in the season by switching food resources. For example, upon entering the marine environment, sockeye salmon consume a wide variety of euphausiid, amphipod, decapod, terrestrial insect, fish, egg, and cumacean prey. Although it is unclear how warming seas are affecting these populations (Dalpadado et al. 2016), there is evidence that Icy Strait sockeye salmon continue to meet their energetic demands (Fergusson et al. 2020). It is important to recognize that despite notable exceptions, the cumulative effects of warming in both the freshwater and marine environments are widely thought to negatively impact sockeye salmon at all life stages (Healey 2011; Prystay et al. 2017; Hyatt et al. 2018; Barnett et al. 2020; Elmer 2020) or at least cause significant behavioral change (Armstrong et al. 2016). With that in mind, more studies should be performed to elucidate under which conditions sockeye salmon perform better and worse in warming water.
Over the 5 years since the "Blob", adult Chilkat Lake sockeye salmon declined in average length at all ages (Figure 12). This trend matches trends seen in the neighboring Chilkoot sockeye salmon stock (Ransbury et al. 2021), sockeye salmon elsewhere in Southeast Alaska (Brunette and Piston 2019; Iris Frank, ADF\&G Commercial Fisheries salmon-aging laboratory supervisor, Douglas, personal communication), and sockeye salmon throughout broader Alaska (Oke et al. 2020). The most likely drivers of this decrease include reductions in salmon nutrient uptake or large salmon being selectively predated or harvested, but no mechanism has been clearly identified. Although warming marine conditions is a driver of prey scarcity, other indirect factors probably contribute. For example, competition at sea with hatchery chum salmon and pink salmon has been correlated
with reduced productivity of sockeye salmon in the northeast Pacific (Irvine and Akenhead 2013). Similarly, juvenile sockeye salmon face competition from juvenile groundfish, with whom they share a significant dietary overlap (Daly et al. 2019). In terms of predation, there is no evidence that a natural predator is selectively pursuing large sockeye salmon, and it is unknown whether current commercial fishing practices have selectively reduced the size of the fish.


Figure 12.-Average annual sockeye salmon mid eye to fork length by sex and ocean age for the major age classes (ages 1.2, 1.3, 2.2, and 2.3) in the Chilkat Lake escapement compared to the 1982-2020 averages (horizontal lines).

Total zooplankton density, all species combined, declined substantially in the mid-1990s before trending upward again over the last 10 years (Figure 9; Appendix W). The decline was particularly dramatic in the copepod population, which exhibited a $98 \%$ reduction in average density from 515,000 per $\mathrm{m}^{2}$ prior to 1996 to only 12,000 per $\mathrm{m}^{2}$ over the next decade (Bednarski et al. 2017; Figure 9; Appendix V). Eggers et al. (2010) attributed this decline to increased predation resulting from 2 sockeye salmon fry stocking projects that occurred at Chilkat Lake. During 1994-1997 and in 2001, an average of 3.0 million fry were back-planted annually into Chilkat Lake, and from 1989-1998 and in 2003, incubation boxes introduced an estimated 0.3 million sockeye salmon fry annually. Once restructured by excessive predation, zooplankton communities can be slow to recover even after grazing pressure is reduced (Koenings and Kyle 1997). This is particularly true of copepods, which have a more protracted reproductive strategy compared to cladocerans (Pennak
1978) and are not as quick to respond to variation in lake productivity and abundance of predators (Kyle et al. 1990; Edmundson et al. 1992; Edmundson and Edmundson 2002). Zooplankton populations at Chilkat Lake have improved steadily since the late 2000s, and the total zooplankton density in 2020 was the second highest in the entire time series (Figure 9). Historical peaks in the abundance of copepods and cladocerans (particularly Daphnia), the preferred prey of juvenile sockeye salmon (Koenings 1983; Kyle et al. 1988; Koenings et al. 1989), were observed in 2020 and 2019, respectively.

## ACKNOWLEDGEMENTS

The authors would like to thank crew leaders Robert Chadwell, Taylor Cowan, Shelby Flemming, and Dan Schultz for their hard work and dedication to the Chilkat weir and fish wheel projects. We would also like to thank Haines program technician Faith Lorentz for entering project data into the ADF\&G database and supporting the projects from town. Iris Frank (ADF\&G Region I Scale Aging Laboratory, Douglas) processed, aged, and analyzed sockeye salmon scale samples. Chase Jalbert and Kyle Shedd (ADF\&G Gene Conservation Laboratory, Anchorage) processed and analyzed genetic samples and provided stock composition estimates.

## REFERENCES CITED

Amaya, D. J., A. J. Miller, S. P. Xie, and Y. Kosaka. 2020. Physical drivers of the summer 2019 North Pacific marine heatwave. Nature Communications 11:1-9.

Armstrong, J. B., E. J. Ward, D. E. Schindler, and P. J. Lisi. 2016. Adaptive capacity at the northern front: sockeye salmon behaviourally thermoregulate during novel exposure to warm temperatures. Conservation Physiology 4:110.

Bachman, R. L., and A. J. McGregor. 2001. Stock assessment studies of Chilkat River adult salmon stocks in 1999. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J0136, Juneau.

Barnett, H. K., T. P. Quinn, M. Bhuthimethee, and J. R. Winton. 2020. Increased prespawning mortality threatens an integrated natural- and hatchery-origin sockeye salmon population in the Lake Washington Basin. Fisheries Research 227:105527. https://doi.org/10.1016/j.fishres.2020.105527. [Accessed 27 April 2021]

Barto, D. L. 1996. Summary of limnology and fisheries investigations of Chilkat and Chilkoot lakes, 1987-1991. Alaska department of Fish and Game, Division of Commercial Fisheries Management and Development, Regional Information Report No. 5J96-07, Juneau.

Bednarski, J. A., M. M. Sogge, S. E. Miller, and S. C. Heinl. 2017. A comprehensive review of Chilkat Lake and River sockeye salmon stock assessment studies. Alaska Department of Fish and Game, Fishery Manuscript Series No. 17-06, Anchorage.

Bentley, K. T., D. E. Schindler, T. J. Cline, J. B. Armstrong, D. Macias, L. R. Ciepiela, and R. Hilborn. 2014. Predator avoidance during reproduction: diel movements by spawning sockeye salmon between stream and lake habitats. Journal of Animal Ecology 83(6):1478-1489.

Bergander, F. 1974. Southeastern Alaska sockeye salmon optimum escapement studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Anadromous Fish Conservation Act, Completion report for period July 1, 1971, to June 30, 1974, AFC-40, Juneau.

Bergander, F. E., S. A. McPherson, and J. P. Koenings. 1988. Southeast Alaska sockeye salmon studies, 1987-1988. technical report for the period July 1, 1987, to June 30, 1988. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J88-44, Juneau.

Brett, J. R. 1983. Life energetics of sockeye salmon, Oncorhynchus nerka. Pages 29-63 [In] W. P. Aspey and S. I. Lustick, editors. Behavioral energetics: the cost of survival in vertebrates. Ohio State University Press: Columbus.

Bromaghin, J. F. 2005. A versatile net selectivity model, with application to Pacific salmon and freshwater species of the Yukon River, Alaska. Fisheries Research 74:157-168.

Brooks, S. P., and A. Gelman. 1998. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7(4):434-455.

Brunette, M. T., and A. W. Piston. 2019. Hugh Smith Lake sockeye salmon stock assessment, 2017-2018. Alaska Department of Fish and Game, Fishery Data Series No. 19-24, Anchorage.

Buettner, A. R., A. M. Reynolds, and J. R. Rice. 2017. Operational Plan: Southeast Alaska and Yakutat salmon commercial port sampling 2016-2019. Alaska Department of Fish and Game, Regional Operational Plan ROP.CF.1J.17-01, Douglas.

Bugliosi, E. F. 1988. Hydrologic reconnaissance of the Chilkat River basin. U.S. Geological Survey, Water-Resources Investigations Report 88-4023, Anchorage.

Cline, T. J., J. Ohlberger, and D. E. Schindler. 2019. Effects of warming climate and competition in the ocean for lifehistories of Pacific salmon. Nature Ecology \& Evolution 3(6):935-942.

Clutter, R., and L. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. Bulletin International Pacific Salmon Fisheries Commission, 9. New Westminster, B.C.

Cochran, W. 1977. Sampling techniques. 3rd edition. John Wiley and Sons, Inc., New York.

## REFERENCES CITED (Continued)

Conn, P. B., B. T. McClintock, M. F. Cameron, D. S. Johnson, E. E. Moreland, and P. L. Boveng. 2013. Accommodating species identification errors in transect surveys. Ecology 94(11):2607-2618.

Cronkite, G. M. W., H. Enzenhofer, T. Ridley, J. Holmes, J. Lilja, and K. Benner. 2006. Use of high-frequency imaging sonar to estimate adult sockeye salmon escapement in the Horsefly River, British Columbia. Canadian Technical Report of Fisheries and Aquatic Sciences 2647.

Dalpadado, P., H. Hop, J. Rønning, V. Pavlov, E. Sperfeld, F. Buchholz, A. Rey, and A. Wold. 2016. Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. Polar Biology 39(10):1765-1784.
Daly, E. A., J. H. Moss, E. Fergusson, and R. D. Brodeur. 2019. Potential for resource competition between juvenile groundfishes and salmon in the eastern Gulf of Alaska. Deep Sea Research Part II: Topical Studies in Oceanography 165:150-162.

Dann, T. H., C. Habicht, S. D. Rogers Olive, H. L. Liller, E. K. C. Fox, J. R. Jasper, A. R. Munro, M. J. Witteveen, T. T. Baker, K. G. Howard, E. C. Volk, and W. D. Templin. 2012. Stock composition of sockeye salmon harvests in fisheries of the Western Alaska Salmon Stock Identification Program (WASSIP), 2006-2008. Alaska Department of Fish and Game, Special Publication No. 12-22, Anchorage.

Edmundson, J. M., and J. A. Edmundson. 2002. Sockeye salmon production relative to changes in rearing capacity of Crescent Lake, Upper Cook Inlet. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 2A02-08, Anchorage.
Edmundson, J. A., G. B. Kyle, and M. Willette. 1992. Limnological and fisheries assessment of Coghill Lake relative to sockeye salmon (Oncorhynchus nerka) production and lake fertilization. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement, and Development, Report No. 118, Juneau.

Edmundson, J. A., V. P. Litchfield, G. L. Todd, J. M. Edmundson, and L. Brannian. 2000. Central Region limnology 2000 annual report of progress. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 2A00-27, Anchorage.

Eggers, D. M., J. H. Clark, R. L. Bachman, and S. C. Heinl. 2008. Sockeye salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No. 08-17, Anchorage.

Eggers, D. M., R. L. Bachman, and J. Stahl. 2010. Stock status and escapement goals for Chilkat Lake sockeye salmon in Southeast Alaska. Alaska Department of Fish and Game, Fishery Manuscript No. 10-05, Anchorage.

Elmer, L. K. 2020. Fisheries escape, temperature, and infectious agents: multiple stressors impacting wild sockeye salmon spawning migrations. Doctoral dissertation, Carleton University, Ottawa.
Fergusson, E., T. Miller, M. V. McPhee, C. Fugate, and H. Schultz. 2020. Trophic responses of juvenile Pacific salmon to warm and cool periods within inside marine waters of Southeast Alaska. Progress in Oceanography 186:102378. https://doi.org/10.1016/j.pocean.2020.102378. [Accessed 27 April 2021]
Geiger, H. J., R. L. Bachman, S. C. Heinl, K. Jensen, T. A. Johnson, A. Piston, and R. Riffe. 2005. Sockeye salmon stock status and escapement goals in Southeast Alaska [In] Der Hovanisian, J. A., and H. J. Geiger, editors. Stock status and escapement goals for salmon in Southeast Alaska 2005. Alaska Department of Fish and Game, Special Publication No. 05-22, Anchorage.

Gelman, A., and D. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7(4):457-511.

Gilk-Baumer, S. E., S. D. Rogers Olive, D. K. Harris, S. C. Heinl, E. K. C. Fox, and W. D. Templin. 2015. Genetic mixed stock analysis of sockeye salmon harvests in selected northern Chatham Strait commercial fisheries, Southeast Alaska, 2012-2014. Alaska Department of Fish and Game, Fishery Data Series No. 15-03, Anchorage.
Gray, D., N. Zeiser, T. Kowalske, S. Forbes, B. Meredith, and A. Dupuis. 2019. 2019 Southeast Alaska drift gillnet fishery management plan. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J19-03, Douglas.

## REFERENCES CITED (Continued)

Healey, M. 2011. The cumulative impacts of climate change on Fraser River sockeye salmon (Oncorhynchus nerka) and implications for management. Canadian Journal of Fisheries and Aquatic Sciences 68(4):718-737.
Heinl, S. C., E. L. Jones III, A. W. Piston, P. J. Richards, L. D. Shaul, B. W. Elliott, S. E. Miller, R. E. Brenner, and J. V. Nichols. 2017. Review of salmon escapement goals in Southeast Alaska, 2017. Alaska Department of Fish and Game, Fishery Manuscript Series No. 17-11, Anchorage.

Heinl, S. C., E. L. Jones III, A. W. Piston, P. J. Richards, J. T. Priest, J. A. Bednarski, B. W. Elliott, S. E. Miller, R. E. Brenner, and J. V. Nichols. 2021. Review of salmon escapement goals in Southeast Alaska, 2020. Alaska Department of Fish and Game, Fishery Manuscript Series No. 21-03, Anchorage.

Holmes, J. A., G. M. W. Cronkite, H. J. Enzenhofer, and T. J. Mulligan. 2006. Accuracy and precision of fish-count data from a "dual-frequency identification sonar" (DIDSON) imaging system. ICES Journal of Marine Science 63(3):543-555.

Hyatt, K. D., H. Stiff, M. M. Stockwell, and A. Ogden. 2018. Sockeye salmon indicator stocks - regional overview of trends, 2017 returns, and 2018-2019 outlook. Pages 116-120 [In] P. C. Chandler, S. A. King, and J. Boldt, editors. State of the physical, biological and selected fishery resources of Pacific Canadian marine ecosystems in 2017. Canadian Technical Report of Fisheries and Aquatic Sciences 3266, Nanaimo, B.C.

Ingledue, D. 1989. Hawk Inlet shoreline purse seine fishery, 1989. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J89-31, Juneau.
INPFC (International North Pacific Fisheries Commission). 1963. Annual report 1961. Vancouver, Canada.
Irvine, J. R., and S. A. Akenhead. 2013. Understanding smolt survival trends in sockeye salmon. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 5:303-328.

Johnson, J., and M. Daigneault. 2013. Catalog of waters important for spawning, rearing, or migration of anadromous fishes - Southeastern Region, effective July 1, 2013. Alaska Department of Fish and Game, Special Publication No. 13-09, Anchorage.
Keefer, M. L., C. C. Caudill, E. L. Johnson, T. S. Clabough, C. T. Boggs, P. N. Johnson, and W. T. Nagy. 2017. Interobserver bias in fish classification and enumeration using dual-frequency identification sonar (DIDSON): a Pacific lamprey case study. Northwest Science 91(1):41-53.
Kelley, M. S., and R. Bachman. 2000. Stock assessment studies of the Chilkat River adult salmon stocks in 1998. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J0029, Juneau.

Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.
Koenings, J. P. 1983. Southeast lake fertilization project progress report limnology investigations at Bakewell Lake (1981-1982) and at Badger Lake (1982). Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement, and Development, Report No. 5, Juneau.
Koenings, J. P., and G. B. Kyle. 1997. Consequences to juvenile sockeye salmon and the zooplankton community resulting from intense predation. Alaska Fishery Research Bulletin 4(2):120-135.
Koenings, J. P., G. B. Kyle, J. A. Edmundson, and J. E. Edmundson. 1987. Limnology field and laboratory manual: methods for assessing aquatic production. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement, and Development, Report No. 71, Juneau.

Koenings, J. P., R. D. Burkett, M. Haddix, G. B. Kyle, and D. L. Barto. 1989. Experimental manipulation of lakes for sockeye salmon (Oncorhynchus nerka) rehabilitation and enhancement. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement, and Development, Report No. 96, Juneau.
Koenings, J. P., H. J. Geiger, and J. J. Hasbrouck. 1993. Smolt-to-adult survival patterns of sockeye salmon (Oncorhynchus nerka): effects of smolt length and geographic latitude when entering the sea. Canadian Journal of Fisheries and Aquatic Sciences 50(3): 600-611.

## REFERENCES CITED (Continued)

Koo, T. S. Y. 1962. Age designation in salmon. Pages 37-48 [In] Koo, T. S. Y., editor. Studies of Alaska red salmon. University of Washington Press, Seattle.
Kyle, G. B., J. P. Koenings, and B. M. Barrett. 1988. Density-dependent, trophic level responses to an introduced run of sockeye salmon (Oncorhynchus nerka) at Frazer Lake, Kodiak Island, Alaska. Canadian Journal of Fisheries and Aquatic Sciences 45(5):856-867.

Kyle, G. B., L. E. White, and J. P. Koenings. 1990. Limnological and fisheries assessment of the potential production of sockeye salmon (Oncorhynchus nerka) in Spiridon Lake. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement, and Development, Report No. 108, Juneau.

Lozori, J. D., and B. C. McIntosh. 2014. Sonar estimation of salmon passage in the Yukon River near Pilot Station, 2012. Alaska Department of Fish and Game, Fishery Data Series No. 14-22, Anchorage.

Luhtala, H., and H. Tolvanen. 2013. Optimizing the use of Secchi depth as a proxy for euphotic depth in coastal waters: An empirical study from the Baltic Sea. ISPRS International Journal of Geo-Information 2(4):1153-1168.
Lum, J. L., and L. Fair. 2018. Chilkat River and King Salmon River king salmon stock status and action plan, 2018. Alaska Department of Fish and Game, Regional Information Report No. 1J18-05, Douglas.

Martignac, F., A. Daroux, J. L. Bagliniere, D. Ombredane, and J. Guillard. 2015. The use of acoustic cameras in shallow waters: new hydroacoustic tools for monitoring migratory fish population. A review of DIDSON technology. Fish and Fisheries 16(3):486-510.
Maxwell, S. L., and N. E. Gove. 2007. Assessing a dual-frequency identification sonars' fish-counting accuracy, precision, and turbid river range capability. Journal of the Acoustical Society of America 122(6):3364-3377.
McPherson, S. A. 1990. An in-season management system for sockeye salmon returns to Lynn Canal, southeast Alaska. M. S. Thesis, University of Alaska, Fairbanks.

McPherson, S. A., F. E. Bergander, M. A. Olsen, and R. R. Riffe. 1992. Contribution, exploitation, and migratory timing of Lynn Canal sockeye salmon runs in 1988 based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report No. 92-21, Juneau.
Miller, S. E., and S. C. Heinl. 2018. Chilkat Lake sockeye salmon escapement goal review. Alaska Department of Fish and Game, Fishery Manuscript Series No. 18-05, Anchorage.

Moran, B. M., and E. C. Anderson. 2019. Bayesian inference from the conditional genetic stock identification model. Canadian Journal of Fisheries and Aquatic Sciences 76(4):551-560.

Nichols, J. D., J. E. Hines, J. R. Sauer, F. W. Fallon, J. E. Fallon, and P. J. Heglund. 2000. A double-observer approach for estimating detection probability and abundance from point counts. Auk 117(2):393-408.
Oke, K. B., C. J. Cunningham, P. A. H. Westley, M. L. Baskett, S. M. Carlson, J. Clark, A. P. Hendry, V. A. Karatayev, N. W. Kendall, J. Kibele, H. K. Kindsvater, K. M. Kobayashi, B. Lewis, S. Munch, J. D. Reynolds, G. K. Vick, and E. P. Palkovacs. 2020. Recent declines in salmon body size impact ecosystems and fisheries. Nature Communications 11:4155.

Pella, J., and M. Masuda. 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fishery Bulletin 99(1):151-167.

Pennak, R. W. 1978. Fresh-water invertebrates of the United States. Second edition. John Wiley \& Sons, Inc., New York.

Pinchuk, A. I., K. O. Coyle, and R. R. Hopcroft. 2008. Climate-related variability in abundance and reproduction of euphausiids in the northern Gulf of Alaska in 1998-2003. Progress in Oceanography 77(2):203-216.
Prystay, T. S., E. J. Eliason, M. J. Lawrence, M. Dick, J. W. Brownscombe, D. A. Patterson, G. T. Crossin, S. G. Hinch, and S. J. Cooke. 2017. The influence of water temperature on sockeye salmon heart rate recovery following simulated fisheries interactions. Conservation Physiology 5:1-12.

## REFERENCES CITED (Continued)

Ransbury, S. R., N. L. Zeiser, and S. C. Heinl. 2021. Stock assessment study of Chilkoot Lake sockeye salmon, 20162019. Alaska Department of Fish and Game, Fishery Data Series No. 21-18, Anchorage.

Rich, W. H., and E. M. Ball. 1933. Statistical review of the Alaska salmon fisheries. Part IV: Southeastern Alaska. Bulletin of the Bureau of Fisheries 47(13):437-673.

Rogers Olive, S. D., E. K. C. Fox, and S. E. Gilk-Baumer. 2018. Genetic baseline for mixed stock analyses of sockeye salmon harvested in Southeast Alaska for Pacific Salmon Treaty applications, 2018. Alaska Department of Fish and Game, Fishery Manuscript No. 18-03, Anchorage.
Schindler, D. W. 1971. Light, temperature, and oxygen regimes of selected lakes in the experimental lakes area, northwestern Ontario. Journal of the Fisheries Research Board of Canada 28(2):157-169.

Schindler, D. E., D. E. Rogers, M. D. Scheuerell, and C. A. Abrey. 2005. Effects of changing climate on zooplankton and juvenile sockeye salmon growth in southwestern Alaska. Ecology 86(1):198-209.
Shedd, K. R., T. H. Dann, M. B. Foster, and C. Habicht. 2016. Addendum to FMS 16-03: Redefinition of reporting groups by combining Ayakulik and Frazer into one group for the genetic baseline of North American sockeye salmon for mixed stock analyses of Kodiak Management Area commercial fisheries, 2014-2016. Alaska Department of Fish and Game, Fishery Manuscript Series No. 16-05, Anchorage.

Sogge, M. M., and R. L. Bachman. 2014. Operational Plan: Stock assessment studies of Chilkat River adult salmon. Alaska Department of Fish and Game, Regional Operational Plan ROP.CF.1J.14-03, Douglas.
Stockley, C. 1950. The sockeye salmon of Chilkat and Chilkoot inlets. Fisheries Research Institute Paper No 286, University of Washington, Seattle.

Thompson, S. K. 1987. Sample size for estimating multinomial proportions. The American Statistician 41(1):42-46.
Thompson, S. K. 2002. Sampling, 2nd ed. John Wiley and Sons, Inc., New York.
Thynes, T., N. Zeiser, S. Forbes, T. Kowalske, B. Meredith, and A. Dupuis. 2020. 2020 Southeast Alaska drift gillnet fishery management plan. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J20-08, Douglas.
Wendler, G., T. Gordon, and M. Stuefer. 2017. On the precipitation and precipitation change in Alaska. Atmosphere 8:253. https://doi.org/10.3390/atmos8120253 [Accessed 27 April 2021]

Westerman, D. L., and T. M. Willette. 2012. Upper Cook Inlet salmon escapement studies, 2011. Alaska Department of Fish and Game, Fishery Data Series No. 12-83, Anchorage.

Zeiser, N. L., S. C. Heinl, S. E. Miller, and K. R. Shedd. 2019. Operational Plan: Stock assessment studies of Chilkoot Lake sockeye salmon, 2019. Alaska Department of Fish and Game, Regional Operational Plan ROP.CF.1J.2019.07, Douglas.

Zeiser, N. L., S. R. Ransbury, S. C. Heinl, and S. E. Miller. 2020a. Operational plan: Chilkat Lake salmon weir enumeration and sampling procedures, 2020-2022. Alaska Department of Fish and Game, Regional Operational Plan ROP.CF.1J.2020.02, Douglas.

Zeiser, N. L., S. R. Ransbury, S. C. Heinl, and S. E. Miller. 2020b. Operational plan: Chilkat River fish wheels salmon enumeration and sampling procedures, 2020-2022. Alaska Department of Fish and Game, Regional Operational Plan ROP.CF.1J.2020.05, Douglas.

## APPENDICES

Appendix A.-Estimated Chilkat Lake sockeye salmon escapement, commercial harvest, total run, and commercial harvest rates, 1976-2020. Chilkat mainstem fish are not included in the commercial harvest estimates; sport and subsistence harvest are not included in estimated total run or harvest rate.

| Year | Escapement goal |  | Escapement estimate | Commercial harvest | Total run | Harvest rate | Sport harvest | Subsistence harvest |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lower | Upper |  |  |  |  |  |  |
| 1976 | 60,000 | 70,000 | 69,729 | 58,765 | 128,494 | 45.7\% | ND | ND |
| 1977 | 60,000 | 70,000 | 50,363 | 41,477 | 91,840 | 45.2\% | ND | ND |
| 1978 | 60,000 | 70,000 | 67,528 | 89,558 | 157,086 | 57.0\% | ND | ND |
| 1979 | 60,000 | 70,000 | 80,588 | 115,995 | 196,583 | 59.0\% | ND | ND |
| 1980 | 60,000 | 70,000 | 101,135 | 31,267 | 132,402 | 23.6\% | ND | ND |
| 1981 | 70,000 | 90,000 | 84,097 | 48,420 | 132,517 | 36.5\% | ND | ND |
| 1982 | 70,000 | 90,000 | 86,213 | 127,174 | 213,387 | 59.6\% | ND | ND |
| 1983 | 70,000 | 90,000 | 134,601 | 124,180 | 258,781 | 48.0\% | ND | ND |
| 1984 | 70,000 | 90,000 | 123,190 | 99,592 | 222,782 | 44.7\% | ND | ND |
| 1985 | 70,000 | 90,000 | 58,335 | 131,091 | 189,426 | 69.2\% | ND | 1,708 |
| 1986 | 70,000 | 90,000 | 23,947 | 168,006 | 191,953 | 87.5\% | ND | 1,695 |
| 1987 | 70,000 | 90,000 | 48,972 | 69,900 | 118,872 | 58.8\% | ND | 2,181 |
| 1988 | 70,000 | 90,000 | 27,722 | 76,883 | 104,605 | 73.5\% | ND | 2,647 |
| 1989 | 70,000 | 90,000 | 141,475 | 156,160 | 297,635 | 52.5\% | 314 | 3,165 |
| 1990 | 52,000 | 106,000 | 60,230 | 149,377 | 209,607 | 71.3\% | 357 | 3,994 |
| 1991 | 52,000 | 106,000 | 51,138 | 60,721 | 111,859 | 54.3\% | 249 | 4,023 |
| 1992 | 52,000 | 106,000 | 95,880 | 113,146 | 209,026 | 54.1\% | 81 | 3,932 |
| 1993 | 52,000 | 106,000 | 212,757 | 103,531 | 316,288 | 32.7\% | 161 | 3,902 |
| 1994 | 52,000 | 106,000 | 86,385 | 126,852 | 213,237 | 59.5\% | 141 | 4,023 |
| 1995 | 52,000 | 106,000 | 61,783 | 68,737 | 130,520 | 52.7\% | 174 | 5,137 |
| $1996{ }^{\text {a }}$ | 52,000 | 106,000 | 159,968 | 99,677 | 259,645 | 38.4\% | 299 | 5,352 |
| $1997{ }^{\text {a }}$ | 52,000 | 106,000 | 151,585 | 73,761 | 225,346 | 32.7\% | 225 | 4,068 |
| $1998{ }^{\text {a }}$ | 52,000 | 106,000 | 133,791 | 112,630 | 246,421 | 45.7\% | 60 | 5,066 |
| 1999 | 52,000 | 106,000 | 134,048 | 149,410 | 283,458 | 52.7\% | 656 | 5,271 |
| 2000 | 52,000 | 106,000 | 47,077 | 78,265 | 125,342 | 62.4\% | 446 | 4,626 |
| 2001 | 52,000 | 106,000 | 53,239 | 60,183 | 113,422 | 53.1\% | 237 | 4,432 |
| 2002 | 52,000 | 106,000 | 65,611 | 47,332 | 112,943 | 41.9\% | 496 | 4,481 |
| 2003 | 52,000 | 106,000 | 55,516 | 49,955 | 105,471 | 47.4\% | 573 | 4,579 |
| 2004 | 52,000 | 106,000 | 83,534 | 51,110 | 134,644 | 38.0\% | 143 | 4,530 |
| 2005 | 52,000 | 106,000 | 32,098 | 22,852 | 54,950 | 41.6\% | 556 | 3,383 |
| 2006 | 80,000 | 200,000 | 38,850 | 15,979 | 54,829 | 29.1\% | 348 | 3,527 |
| 2007 | 80,000 | 200,000 | 27,915 | 14,208 | 42,123 | 33.7\% | 243 | 2,324 |
| 2008 | 80,000 | 200,000 | 73,979 | 22,156 | 96,135 | 23.0\% | 596 | 5,655 |
| 2009 | 70,000 | 150,000 | 153,033 | 85,551 | 238,584 | 35.9\% | 254 | 6,649 |
| 2010 | 70,000 | 150,000 | 61,906 | 48,079 | 109,985 | 43.7\% | 302 | 6,030 |
| 2011 | 70,000 | 150,000 | 63,628 | 15,599 | 79,227 | 19.7\% | 133 | 5,192 |
| 2012 | 70,000 | 150,000 | 119,142 | 54,884 | 174,026 | 31.5\% | 611 | 5,128 |
| 2013 | 70,000 | 150,000 | 115,237 | 75,588 | 190,825 | 39.6\% | 114 | 6,324 |
| 2014 | 70,000 | 150,000 | 70,470 | 81,502 | 151,972 | 53.6\% | 97 | 6,553 |
| 2015 | 70,000 | 150,000 | 164,014 | 33,085 | 197,099 | 16.8\% | 390 | 3,431 |
| 2016 | 70,000 | 150,000 | 87,622 | 35,991 | 123,613 | 29.1\% | 89 | 5,375 |
| 2017 | 70,000 | 150,000 | 88,197 | 5,698 | 93,895 | 6.1\% | 254 | 3,761 |

-continued-

Appendix A.-Page 2 of 2.

|  | Escapement goal |  | $\begin{array}{r}\text { Escapement } \\ \text { Year }\end{array}$ | Lower | Upper | $\begin{array}{r}\text { Commercial } \\ \text { estimate }\end{array}$ | $\begin{array}{r}\text { Total } \\ \text { harvest }\end{array}$ | $\begin{array}{r}\text { Harvest } \\ \text { rate }\end{array}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | \(\left.\begin{array}{r}Sport <br>

harvest\end{array} $$
\begin{array}{r}\text { Subsistence } \\
\text { harvest }\end{array}
$$\right)\)

Note: $\mathrm{ND}=$ no data.
a The weir was not operated from 1996 to 1998 . Escapement values for those years are the posterior medians from model output by Miller and Heinl (2018).
b The 2020 estimates of sport harvest was not available for this report, and the 2020 subsistence harvest is preliminary.

Appendix B.-ADF\&G statistical weeks, 2017-2020.

| Statistical week | 2017 |  | 2018 |  | 2019 |  | 2020 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Beginning | Ending | Beginning | Ending | Beginning | Ending | Beginning | Ending |
| 23 | 4-Jun | 10-Jun | 3-Jun | 9 -Jun | 2-Jun | 8-Jun | 31-May | 6-Jun |
| 24 | 11-Jun | 17-Jun | 10-Jun | 16-Jun | 9-Jun | 15-Jun | 7-Jun | 13-Jun |
| 25 | 18-Jun | 24-Jun | 17-Jun | 23-Jun | 16-Jun | 22-Jun | 14-Jun | 20-Jun |
| 26 | 25-Jun | 1-Jul | 24-Jun | 30-Jun | 23-Jun | 29-Jun | 21-Jun | 27-Jun |
| 27 | 2-Jul | 8-Jul | 1-Jul | 7-Jul | 30-Jun | 6-Jul | 28-Jun | 4-Jul |
| 28 | 9-Jul | 15-Jul | 8-Jul | 14-Jul | 7-Jul | 13-Jul | 5-Jul | 11-Jul |
| 29 | 16-Jul | 22-Jul | 15-Jul | 21-Jul | 14-Jul | 20-Jul | 12-Jul | 18-Jul |
| 30 | 23-Jul | 29-Jul | 22-Jul | 28-Jul | 21-Jul | 27-Jul | 19-Jul | 25-Jul |
| 31 | 30-Jul | 5-Aug | 29-Jul | 4-Aug | 28-Jul | 3-Aug | 26-Jul | 1-Aug |
| 32 | 6-Aug | 12-Aug | 5-Aug | 11-Aug | 4-Aug | 10-Aug | 2-Aug | 8-Aug |
| 33 | 13-Aug | 19-Aug | 12-Aug | 18-Aug | 11-Aug | 17-Aug | 9-Aug | 15-Aug |
| 34 | 20-Aug | 26-Aug | 19-Aug | 25-Aug | 18-Aug | 24-Aug | 16-Aug | 22-Aug |
| 35 | 27-Aug | 2-Sep | 26-Aug | 1-Sep | 25-Aug | 31-Aug | 23-Aug | 29-Aug |
| 36 | 3-Sep | 9-Sep | 2-Sep | 8-Sep | 1-Sep | 7-Sep | 30-Aug | 5-Sep |
| 37 | 10-Sep | 16-Sep | 9-Sep | 15-Sep | 8-Sep | 14-Sep | 6-Sep | 12-Sep |
| 38 | 17-Sep | 23-Sep | 16-Sep | 22-Sep | 15-Sep | 21-Sep | 13-Sep | 19-Sep |
| 39 | 24-Sep | 30-Sep | 23-Sep | 29-Sep | 22-Sep | 28-Sep | 20-Sep | 26-Sep |
| 40 | 1-Oct | 7-Oct | 30-Sep | 6-Oct | 29-Sep | 5-Oct | 27-Sep | 3 -Oct |
| 41 | 8-Oct | 14-Oct | 7-Oct | 13-Oct | 6-Oct | 12-Oct | 4-Oct | $10-\mathrm{Oct}$ |
| 42 | $15-\mathrm{Oct}$ | 21-Oct | $14-\mathrm{Oct}$ | $15-\mathrm{Oct}$ | 13-Oct | 19-Oct | $11-\mathrm{Oct}$ | $17-\mathrm{Oct}$ |

The weekly sockeye salmon age-sex distribution, the seasonal age-sex distribution weighted by week, and the mean length by age and sex weighted by week were calculated using equations from Cochran (1977).
Let

$$
\begin{array}{ll}
h & =\quad \text { index of the stratum (week), } \\
j & =\quad \text { index of the age class, } \\
p_{h j} & =\quad \text { proportion of the sample taken during stratum } h \text { that is age } j, \\
n_{h} & =\quad \text { number of fish sampled in week } h, \text { and } \\
n_{h j} & =\quad \text { number observed in class } j, \text { week } h .
\end{array}
$$

Then the age distribution was estimated for each week of the escapement in the usual manner:

$$
\begin{equation*}
\hat{p}_{h j}=n_{h j} / n_{h} . \tag{1}
\end{equation*}
$$

If $N_{h}$ equals the number of fish in the escapement in week $h$, standard errors of the weekly age class proportions are calculated in the usual manner (Cochran 1977, page 52, equation 3.12):

$$
\begin{equation*}
S E\left(\hat{p}_{h j}\right)=\sqrt{\left[\frac{\left(\hat{p}_{h}\right)\left(1-\hat{p}_{h j}\right)}{n_{h}-1}\right]\left[1-n_{h} / N_{h}\right]} . \tag{2}
\end{equation*}
$$

The age distributions for the total escapement were estimated as a weighted sum (by stratum size) of the weekly proportions. That is,

$$
\begin{equation*}
\hat{p}_{j}=\sum_{h} p_{h j}\left(N_{h} / N\right), \tag{3}
\end{equation*}
$$

such that $N$ equals the total escapement. The standard error of a seasonal proportion is the square root of the weighted sum of the weekly variances (Cochran 1977, pages 107-108):

$$
\begin{equation*}
S E\left(\hat{p}_{j}\right)=\sqrt{\sum_{j}^{h}\left[S E\left(\hat{p}_{h j}\right)\right]^{2}\left(N_{h} / N\right)^{2}} . \tag{4}
\end{equation*}
$$

The mean length, by sex and age class (weighted by week of escapement), and the variance of the weighted mean length, were calculated using the following equations from Cochran (1977, pages 142-144) for estimating means over subpopulations. That is, let $i$ equal the index of the individual fish in the age-sex class $j$, and $y_{h i j}$ equal the length of the $i$ th fish in class $j$, week $h$, so that,

$$
\begin{gather*}
\hat{Y}_{j}=\frac{\sum_{h}\left(N_{h} / n_{h}\right) \sum_{i} y_{h i j}}{\sum_{h}\left(N_{h} / n_{h}\right) n_{h j}} \text {, and }  \tag{5}\\
\hat{V}\left(\hat{Y_{j}}\right)=\frac{1}{\hat{N}_{j}^{2}} \sum_{h} \frac{N_{h}^{2}\left(1-n_{h} / N_{h}\right)}{n_{h}\left(n_{h}-1\right)}\left[\sum_{i}\left(y_{h i j}-\bar{y}_{h j}\right)^{2}+n_{h j}\left(1-\frac{n_{h j}}{n_{h}}\right)\left(\bar{y}_{h j}-\hat{\bar{Y}}_{j}\right)^{2}\right] . \tag{6}
\end{gather*}
$$

Appendix D.-Chilkat Lake weir and DIDSON dates of operation, sockeye and coho salmon counts, and counts expanded to account for late installation and early removal of the project, 1971-2020. For the weir counts, visual counts that were expanded for late installation were expanded to 31 May (years 1982, 1983, 1985, 1987, 1988, 1999, 2001-2007). For the weir counts, visual counts that were expanded for early removal were expanded to 20 November (years 1972, 1974, 1977, 1980, 1982, 1984, 1994, 1995, 2001, 2003-2006).

| Year | Start date | End date | Sockeye salmon |  | Coho salmon |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Raw count | $\begin{gathered} \text { Expanded } \\ \text { count } \\ \hline \end{gathered}$ | First day past weir | Raw <br> count |
| 1971 | 31-May | $28-$ Oct | 49,342 | 49,342 | 27-Sep | 1,063 |
| 1972 | 3-Jun | 12-Oct | 51,860 | 53,082 | 3-Oct | 518 |
| 1973 | 11-Jun | 15-Oct | 50,527 | 50,527 | 20-Sep | 157 |
| 1974 | 31-May | 30-Sep | 84,456 | 94,900 | 23-Sep | 161 |
| 1975 | 4-Jun | 6-Nov | 41,520 | 41,520 | 15-Sep | 699 |
| 1976 | 3-Jun | 20-Oct | 69,729 | 69,729 | 12-Sep | 196 |
| 1977 | 3-Jun | 27-Sep | 41,044 | 50,363 | ND | ND |
| 1978 | 5-Jun | 5-Nov | 67,528 | 67,528 | 21-Sep | 370 |
| 1979 | 9-Jun | 11-Nov | 80,588 | 80,588 | 21-Sep | 963 |
| 1980 | 15-Jun | 8-Oct | 95,347 | 101,135 | ND | ND |
| 1981 | 11-Jun | 22-Oct | 84,097 | 84,097 | 21-Sep | 1,149 |
| 1982 | 24-Jun | 7-Oct | 80,221 | 86,213 | 21-Sep | 163 |
| 1983 | 22-Jun | 12-Nov | 134,022 | 134,601 | 9-Sep | 1,023 |
| 1984 | 9-Jun | 7-Oct | 115,269 | 123,190 | 21-Aug | 691 |
| 1985 | 23-Jun | 23-Oct | 57,649 | 58,335 | 13-Sep | 564 |
| 1986 | 16-Jun | 14-Nov | 23,947 | 23,947 | 11-Sep | 635 |
| 1987 | 19-Jun | 20-Nov | 48,861 | 48,972 | 17-Sep | 942 |
| 1988 | 18-Jun | 14-Nov | 27,662 | 27,722 | 4-Sep | 1,307 |
| 1989 | 5-Jun | 28-Oct | 141,475 | 141,475 | 16-Sep | 1,260 |
| 1990 | 6-Jun | 13-Nov | 60,230 | 60,230 | 2-Sep | 630 |
| 1991 | 9-Jun | $25-$ Oct | 51,138 | 51,138 | 12-Sep | 1,462 |
| 1992 | 8-Jun | $15-\mathrm{Oct}$ | 95,880 | 95,880 | 12-Sep | 1,099 |
| 1993 | 13-Jun | 15-Oct | 212,757 | 212,757 | 13-Sep | 595 |
| 1994 | 31-May | 6-Oct | 80,859 | 86,385 | 6-Sep | 800 |
| 1995 | 6-Jun | 9-Oct | 59,698 | 61,783 | 15-Aug | 797 |
| $1996{ }^{\text {a }}$ | - | - | - | - | - | - |
| $1997{ }^{\text {a }}$ | - | - | - | - | - | - |
| $1998{ }^{\text {a }}$ | - | - | - | - | - | - |
| 1999 | 30-Jun | 27-Oct | 129,533 | 134,048 | 11-Sep | 2,788 |
| 2000 | 16-Jun | 16-Oct | 47,077 | 47,077 | 3-Sep | 872 |
| 2001 | 19-Jun | 13-Oct | 51,979 | 53,239 | 23-Aug | 978 |
| 2002 | 22-Jun | 17-Oct | 65,085 | 65,611 | 26-Aug | 4,740 |
| 2003 | 27-Jun | 10-Oct | 52,417 | 55,516 | 29-Aug | 1,678 |
| 2004 | 6-Jul | 13-Oct | 75,632 | 83,534 | 19-Aug | 4,915 |
| 2005 | 28-Jun | 12-Oct | 30,145 | 32,098 | 10-Sep | 327 |
| 2006 | 27-Jun | 10-Oct | 37,108 | 38,850 | 12-Aug | 1,779 |
| 2007 | 13-Jul | 17-Oct | 21,236 | 27,915 | 4-Sep | 4,651 |
| $2008^{\text {b }}$ | 27-Jun | 19-Oct | 71,735 | 73,979 | 31-Aug | 11,464 |
| 2009 | 15-Jun | $12-\mathrm{Oct}$ | 153,033 | 153,033 | 6-Sep | 4,880 |
| 2010 | 18-Jun | 20-Oct | 61,906 | 61,906 | 11-Sep | 5,813 |
| 2011 | 8-Jun | 16-Oct | 63,628 | 63,628 | 11-Sep | 3,625 |
| 2012 | 18-Jun | 1-Oct | 107,723 | 119,142 | 21-Aug | 2,753 |
| 2013 | 19-Jun | 6-Oct | 110,979 | 115,237 | $25-\mathrm{Sep}$ | 3,095 |
| 2014 | 17-Jun | 16-Oct | 70,470 | 70,470 | 15-Sep | 3,680 |

-continued-

Appendix D.-Page 2 of 2.

| Year | Start date | End date | Sockeye salmon |  | Coho salmon |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Raw count | Expanded count | First day past weir | Raw count |
| 2015 | 26-Jun | 29-Sep | 135,110 | 164,014 | 4-Sep | 1,832 |
| 2016 | 24-Jun | 11-Oct | 85,935 | 87,622 | 9-Sep | 2,329 |
| 2017 | 15-Jun | 10-Oct | 88,197 | 88,197 | 10-Sep | 1,819 |
| 2018 | 10-Jun | 12-Oct | 108,047 | 108,047 | 16-Aug | 3,678 |
| 2019 | 10-Jun | 9-Oct | 134,958 | 136,091 | 24-Aug | 6,020 |
| 2020 | 18-Jun | 11-Oct | 50,746 | 50,746 | 27-Aug | 3,862 |
| Average $(1971-2016)$ | 15-Jun | 18-Oct | 76,196 | 79,125 | 3-Sep | 1,938 |

Note: ND = no data collected. Bold dates denote when the weir started operations late or ended operations early.
Note: There is much greater confidence in the DIDSON escapement counts of Chilkat Lake sockeye salmon than in the visual weir counts or mark-recapture estimates; however, DIDSON counts should still be considered minimum estimates of escapement due to operational rather than technological limitations (see the escapement estimates section of the Results and Discussions).
a The weir was not operated 1996-1998.
b DIDSON sonar was used at the weir from 2008 onward.

Appendix E.-Expanded escapement counts.

## Chilkat Lake Visual Weir Count Expansions

The visual counts, which were used prior to DIDSON installation in 2008, were expanded to 31 May if the weir was not in operation on or prior to 16 June. Specifically, visual counts were expanded to 31 May in 1982, 1983, 1985, 1987, 1988, 1999, and 2001-2007 to account for late installations. A base year, used for a late installation expansion, was defined as a year in which the weir was installed on or prior to 16 June, regardless of the removal date (i.e., 1971-1981, 1984, 1986, 1989-1995, and 2000; Appendix D). For example, in 2007 the weir was installed on 13 July and the total weir count through 17 October was $21,236(X)$ sockeye salmon. To determine the late installation expansion, cumulative escapement from 13 July on ( $X$ ) (i.e., to the end of the weir operation in each base year) was regressed against total escapement in the late installation base years $(Y)$. For these base years, total escapement was calculated through the duration of the weir operation which ranged from 27 September in 1977 to 14 November in 1986. Using the results of the linear regression,

$$
\begin{equation*}
\widehat{Y}_{i}=a+b X_{i} \tag{1}
\end{equation*}
$$

the expanded weir count in $2007(\hat{Y})$ was calculated as 27,915 , where $a=5,770$ and $b=1.04$ (see table below). Therefore, it was assumed that 6,679 sockeye salmon would have been counted from 31 May to 12 July, if the weir had been in operation. The year 2007 was then added to the early removal base years.

Similarly, visual counts were expanded to 20 November in 1972, 1974, 1977, 1980, 1982, 1984, 1994, 1995, 2001, and 2003-2006 to account for weir removal prior to 15 October. A base year, used for an early removal expansion, was defined as a year in which the weir remained in operation on or after 15 October, regardless of the install date (i.e., 1971, 1973, 1975, 1976, 1978, 1979, 1981, 1983, 1985-1993, 1999, 2000, 2002, 2007; Appendix D). For example, in 2005 the weir was removed on 12 October and the total weir count was $31,628(X)$ sockeye salmon for that year (after first expanding for late installation). To determine the early removal expansion, cumulative escapement to 12 October $(X)$ was regressed against total escapement in the early removal base years $(Y)$. For the base years, total escapement included the entire count during weir operation, not just the period from 16 June to 15 October. This ranged from as early as 15 October in the base year 1993 to as late as 20 November in the base year 1987. Using the results of this regression, the expanded weir count in $2005(\hat{Y})$ was then calculated as 32,098 , where $a=-706$ and $b=1.04$. Therefore, in 2005, when the weir was removed early on 12 October, it was estimated that 470 fish would have been counted from 13 October to 20 November if the weir had still been in operation during that time period.

Intercept (a), slope (b), and $R$-squared values from the output of the linear regressions for late installation and early removal expansions of the Chilkat Lake weir were as follows (all regressions were significant at the $p<0.001$ value):

|  | Date | $a$ | $b$ | $R^{2}$ |
| :--- | :--- | ---: | ---: | ---: |
| Late installation | 18 June | 24 | 1.00 | 1.00 |
|  | 19 June | 52 | 1.00 | 1.00 |
|  | 22 June | 475 | 1.00 | 1.00 |
|  | 23 June | 613 | 1.00 | 1.00 |
|  | 24 June | 475 | 1.01 | 1.00 |
|  | 27 June | 618 | 1.02 | 1.00 |
|  | 28 June | 852 | 1.02 | 0.99 |
|  | 30 June | 1,295 | 1.02 | 0.99 |
|  | 6 July | 3,243 | 1.03 | 0.98 |
|  | 13 July | 5,770 | 1.04 | 0.97 |
| Early removal | 27 September | 5,462 | 1.09 | 0.95 |
|  | 30 September | 1,553 | 1.11 | 0.97 |
|  | 6 October | $-1,457$ | 1.09 | 1.00 |
|  | 7 October | $-1,723$ | 1.08 | 1.00 |
|  | 8 October | $-2,123$ | 1.08 | 1.00 |
|  | 9 October | $-2,824$ | 1.08 | 1.00 |
|  | 10 October | $-2,208$ | 1.07 | 1.00 |
|  | 12 October | -706 | 1.04 | 1.00 |
|  | 13 October | -406 | 1.03 | 1.00 |

## Chilkat Lake DIDSON Count Expansions

After the DIDSON install in 2008, the base period of weir operation was changed to 20 June-10 October. By this metric, the DIDSON was installed late in years 2008, 2015, and 2016 and removed early in 2012, 2013, 2015, and 2019 (Appendix D). Linear regression, similar to the method used to expand the visual weir counts, was applied to the DIDSON counts.

When the DIDSON was installed late, escapement data were expanded by regressing cumulative escapement by date ( 24 June-27 June) against total escapement in the late installation base years 2009-2014, 2017-2020. Base years for the late installation of DIDSON counts were defined as years that the DIDSON was installed on or prior to 20 June, regardless of the removal date. For these base years, total escapement was calculated through the duration of the DIDSON installation. The 10 base years used in the regression for late installation expansions in this report were updated from the 6 base years used in Bednarski et al. 2017 (see table below). Updating the base years updated the regression used for the expansion and updated the final expanded escapement counts. After late installation expansion, the 2008 and 2016 escapements were then added to the early removal base years.

DIDSON counts in years when the DIDSON was removed early were then expanded by regressing cumulative escapement by date ( 29 September-9 October) against total escapement in the early removal base years (2008-2011, 2014, 2016-2018, 2020). A base year, for the early removal expansion of DIDSON counts, was a year that the DIDSON was still in operation on or after 10 October, regardless of whether the DIDSON was installed late in the early part of the season. Again, for the base years, total escapement included the entire fish count from the DIDSON installation through the end of DIDSON operation, not just the period from 20 June to 10 October. These 9 early removal base years were updated in this report from the 6 base years for early removal used in the Bednarski et al. (2017) report. Updating the base years updated the regression used for the expansion and updated the final expanded escapement counts. In 2015, the weir was installed late and removed early so expansions were done to account for both late installation and early removal. Intercept (a), slope (b), and $R$-squared values from the output of the linear regressions for late installation and early removal expansions of the Chilkat Lake DIDSON were as follows (all regressions were significant at the $p<0.001$ value):

|  | Date | $a$ | $b$ | $R^{2}$ |
| :--- | :--- | ---: | ---: | ---: |
| Late installation | 24 June | $-2,981$ | 1.05 | 0.99 |
|  | 26 June | $-1,945$ | 1.05 | 0.99 |
|  | 27 June | $-2,044$ | 1.06 | 0.99 |
| Early removal | 29 September | $-4,184$ | 1.20 | 0.95 |
|  | 1 October | 205 | 1.10 | 0.97 |
|  | 6 October | 5,860 | 0.99 | 0.98 |
|  | 9 October | 5,569 | 0.97 | 0.98 |

## Limitations of the Expanded Counts

Expanded weir and DIDSON counts are considered more accurate estimates of the annual escapement, because expanded counts adjust the raw counts to account for missed days each year. However, this is an imperfect solution to a difficult problem and there are many limitations with the methods applied.

The first limitation is that by applying a target end date (e.g., 15 October for operation of the weir during pre-DIDSON years and 10 October for operation of the weir during DIDSON years), expansions are limited to the years that the DIDSON (or weir) was removed prior to the target date (or installed after a target date); these counts still underrepresent the true escapement because we know fish continue to enter the lake after the target date. For example, in 2017, the DIDSON was operated from 15 June to 10 October. Therefore, the counts in 2017 were not expanded because operations encompassed the target dates. In 2019, however, the DIDSON was operated from 10 June to 9 October, so the counts were expanded to account for the missed days of operation from 10 October to 20 October.
-continued-

The second limitation is that it is difficult to run the weir after 10 October due to low water and budget constraints; as a result, there are few years of data that extend through the end of October to add information about missed counts using the DIDSON. In most years, the numbers of fish counted after 10 October are low. For example, in the pre-DIDSON years 1978, 1979, 1983, 19861988, and 1990, weir operations extended through early or mid-November and counts after 15 October accounted for only $2 \%$ or less of the total sockeye salmon escapement. However, once the DIDSON was installed, the DIDSON counts that extended through mid-October were more variable and accounted for $<1 \%$ (2011), $6 \%$ (2010), $7 \%$ (2014), and $17 \%$ (2008) of the escapement. If the weir and DIDSON could be operated through the end of October for a number of years, the additional counts would be very informative, but budget constraints (in particular) and low water continue to prevent this from occurring. Because the sockeye salmon proportion of the total escapement that enters Chilkat Lake through October and November is highly variable and inconsistent, it is recommended that the escapement goal analysis be revisited to include (i) a model using only raw, unexpanded weir and DIDSON counts, and a (ii) a model with escapement data from the current expansion methods described above. The third limitation is that, up until recent years, species apportionment, which determines the portion of the run attributed to sockeye salmon late in the season, has been inconsistent and poorly documented. As a result, it is difficult to assess the accuracy of the very large numbers of sockeye salmon counted after mid-October in 2008 that contributed such a large portion of the total escapement.

## Future Recommendations

The weir/DIDSON operation should be conducted during a base period from 20 June to 10 October. Otherwise, DIDSON counts should be expanded to account for late installation or early removal using two methods: a) expand the counts the entire length of the season from 31 May to 20 October for years that do not encompass the base period, and $b$ ) expand the counts the entire length of the base period ( 20 June to 10 October) for years that do not encompass the base period. The base years used in the late installation/early removal regressions should be updated every 3 years, because updating the base years used in the regression also updates prior years that need to be expanded and also affects the weighted age composition of escapement.

Appendix F.-Raw and expanded sockeye salmon catch at the Chilkat River fish wheels, 1990-2020.

| Year ${ }^{\text {a }}$ | Days operated |  |  | Raw count | Effort adjustment |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Start | End | Total days |  | $\begin{gathered} \hline \text { Expanded } \\ \text { count } \\ \hline \end{gathered}$ | Hours interpolated | Percent change |
| 1990 | 13-Aug | 29-Oct | 78 | 2,984 | ND | ND | ND |
| 1991 | 8-May | 20-Jul | 74 | 1,385 | ND | ND | ND |
| 1994 | 18-Jun | 12-Sep | 87 | 3,865 | ND | ND | ND |
| 1995 | 16-Jun | 16-Sep | 93 | 3,224 | ND | ND | ND |
| 1996 | 22-Jun | 16-Sep | 87 | 3,115 | ND | ND | ND |
| 1997 | 11-Jun | 10-Oct | 122 | 5,016 | ND | ND | ND |
| 1998 | 9-Jun | 13-Oct | 127 | 5,747 | ND | ND | ND |
| 1999 | 8-Jun | 8-Oct | 123 | 7,735 | ND | ND | ND |
| 2000 | 9-Jun | 7-Oct | 121 | 3,709 | ND | ND | ND |
| 2001 | 6-Jun | 7-Oct | 124 | 4,414 | ND | ND | ND |
| 2002 | 7-Jun | 19-Oct | 135 | 4,217 | ND | ND | ND |
| 2003 | 6-Jun | 21-Oct | 138 | 4,551 | 4,774 | 393 | 4.9\% |
| 2004 | 7-Jun | 19-Oct | 135 | 4,366 | ND | ND | ND |
| 2005 | 6-Jun | 11-Oct | 128 | 3,692 | 3,900 | 415 | 5.6\% |
| 2006 | 7-Jun | 14-Oct | 130 | 3,169 | 3,227 | 205 | 1.8\% |
| 2007 | 11-Jun | $9-\mathrm{Oct}$ | 121 | 2,751 | 2,914 | 387 | 5.9\% |
| 2008 | 10-Jun | 10-Oct | 123 | 6,412 | ND | ND | ND |
| 2009 | 11-Jun | $9-\mathrm{Oct}$ | 121 | 9,045 | 9,730 | 611 | 7.6\% |
| 2010 | 7-Jun | 11-Oct | 127 | 3,504 | ND | ND | ND |
| 2011 | 7-Jun | 8-Oct | 124 | 4,940 | 5,274 | 512 | 6.8\% |
| 2012 | 12-Jun | 7-Oct | 118 | 4,101 | 4,260 | 387 | 4.0\% |
| 2013 | 6-Jun | 3-Oct | 120 | 5,961 | 6,614 | 729 | 11.0\% |
| 2014 | 5-Jun | 8 -Oct | 126 | 6,165 | 6,409 | 288 | 4.0\% |
| 2015 | 8-Jun | 6-Oct | 121 | 9,971 | 10,272 | 448 | 3.0\% |
| 2016 | 9-Jun | $5-\mathrm{Oct}$ | 119 | 4,651 | 4,891 | 875 | 5.2\% |
| 2017 | 7-Jun | 4-Oct | 120 | 4,517 | 4,866 | 224 | 7.7\% |
| 2018 | 8 -Jun | 3-Oct | 118 | 2,750 | 3,047 | 898 | 10.8\% |
| 2019 | 9-Jun | 27-Sep | 111 | 7,608 | 8,433 | 520 | 10.8\% |
| 2020 | 8-Jun | 29-Sep | 114 | 2,285 | 2,626 | 773 | 14.9\% |
| $\begin{aligned} & \hline \text { Average } \\ & (1990-2016) \end{aligned}$ | 10-Jun | 4-Oct | 117 | 4,748 | 5,660 | 477 | 5.4\% |

Note: ND = no data.
a The fish wheels were not operated in 1992 or 1993.

Appendix G.-Chilkat River fish wheel counts of sockeye salmon by statistical week and year, 1999-2020.

|  | Statistical week |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 23-25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40-42 |  |
| 1999 | 43 | 183 | 422 | 962 | 567 | 766 | 518 | 617 | 680 | 654 | 602 | 295 | 302 | 413 | 308 | 403 | 7,735 |
| 2000 | 83 | 330 | 371 | 359 | 441 | 317 | 306 | 292 | 255 | 246 | 148 | 199 | 110 | 135 | 60 | 47 | 3,709 |
| 2001 | 24 | 175 | 232 | 274 | 450 | 804 | 447 | 632 | 348 | 280 | 238 | 253 | 91 | 75 | 67 | 24 | 4,414 |
| 2002 | 179 | 273 | 339 | 340 | 303 | 337 | 433 | 441 | 384 | 283 | 259 | 338 | 176 | 67 | 33 | 32 | 4,217 |
| 2003 | 105 | 246 | 307 | 253 | 205 | 243 | 463 | 545 | 639 | 619 | 535 | 275 | 182 | 88 | 43 | 25 | 4,774 |
| 2004 | 30 | 110 | 264 | 395 | 396 | 305 | 352 | 588 | 481 | 448 | 337 | 352 | 81 | 74 | 53 | 100 | 4,366 |
| 2005 | 48 | 130 | 159 | 194 | 252 | 304 | 250 | 344 | 301 | 258 | 216 | 350 | 260 | 491 | 228 | 114 | 3,900 |
| 2006 | 7 | 46 | 112 | 125 | 99 | 155 | 385 | 417 | 278 | 477 | 311 | 216 | 225 | 153 | 43 | 180 | 3,227 |
| 2007 | 4 | 8 | 36 | 112 | 164 | 351 | 134 | 167 | 235 | 167 | 247 | 395 | 325 | 196 | 225 | 147 | 2,914 |
| 2008 | 57 | 249 | 248 | 436 | 620 | 454 | 343 | 394 | 454 | 576 | 710 | 708 | 424 | 326 | 232 | 181 | 6,412 |
| 2009 | 543 | 793 | 884 | 502 | 317 | 364 | 578 | 907 | 806 | 636 | 608 | 611 | 697 | 461 | 719 | 304 | 9,730 |
| 2010 | 85 | 64 | 303 | 281 | 399 | 233 | 285 | 277 | 385 | 474 | 279 | 90 | 162 | 100 | 45 | 42 | 3,504 |
| 2011 | 174 | 123 | 297 | 430 | 348 | 353 | 379 | 553 | 461 | 368 | 441 | 442 | 213 | 360 | 205 | 128 | 5,274 |
| 2012 | 104 | 285 | 446 | 513 | 343 | 291 | 250 | 170 | 320 | 365 | 397 | 343 | 174 | 131 | 75 | 53 | 4,260 |
| 2013 | 120 | 477 | 499 | 276 | 294 | 250 | 470 | 294 | 523 | 682 | 374 | 640 | 427 | 549 | 365 | 372 | 6,614 |
| 2014 | 1,131 | 693 | 574 | 354 | 324 | 357 | 259 | 502 | 321 | 490 | 352 | 290 | 288 | 199 | 175 | 99 | 6,409 |
| 2015 | 83 | 305 | 615 | 1,123 | 954 | 991 | 1,098 | 1,091 | 865 | 713 | 679 | 462 | 496 | 498 | 108 | 191 | 10,272 |
| 2016 | 13 | 71 | 335 | 660 | 491 | 441 | 363 | 584 | 548 | 322 | 235 | 253 | 327 | 150 | 83 | 14 | 4,891 |
| 2017 | 24 | 65 | 249 | 258 | 214 | 373 | 371 | 462 | 480 | 317 | 416 | 305 | 377 | 466 | 347 | 142 | 4,866 |
| 2018 | 19 | 70 | 181 | 170 | 132 | 305 | 270 | 122 | 171 | 633 | 384 | 293 | 197 | 68 | 28 | 5 | 3,047 |
| 2019 | 35 | 258 | 574 | 715 | 652 | 940 | 860 | 495 | 616 | 675 | 428 | 523 | 611 | 811 | 239 | $\mathrm{ND}^{\text {a }}$ | 8,433 |
| 2020 | 23 | 56 | 86 | 211 | 211 | 206 | 263 | 347 | 306 | 357 | 247 | 169 | 80 | 46 | 17 | 2 | 2,626 |
| Average (1999-2016) | 157 | 253 | 358 | 422 | 387 | 406 | 406 | 490 | 460 | 448 | 387 | 362 | 276 | 248 | 170 | 137 | 5,368 |
| Average (2017-2020) | 25 | 112 | 273 | 339 | 302 | 456 | 441 | 357 | 393 | 495 | 369 | 322 | 316 | 348 | 158 | 50 | 4,743 |

Note: Gray cells denote years (1999-2002, 2004, 2008, and 2010) for which only raw counts are available; counts for all other years were expanded to account for fish wheel effort.
In 2019, the fish wheels were not operated after statistical week 39.

Appendix H.-Water level (cm), water temperature $\left({ }^{\circ} \mathrm{C}\right)$, and water visibility (very poor, poor, fair, good, or excellent) at the Chilkat Lake weir, 2017-2020.


Appendix H.-Page 2 of 4.

|  |  | 2017 |  |  | 2018 |  |  | 2019 |  |  | 2020 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Date | Water level (cm) | $\begin{array}{r} \text { Water } \\ \text { temp }\left({ }^{\circ} \mathrm{C}\right) \end{array}$ | Water visibility | Water level (cm) | $\begin{array}{r} \text { Water } \\ \text { temp }\left({ }^{\circ} \mathrm{C}\right) \end{array}$ | Water visibility | Water level (cm) | $\begin{array}{r} \text { Water } \\ \text { temp }\left({ }^{\circ} \mathrm{C}\right) \end{array}$ | $\underset{\text { Water }}{\text { visibility }}$ | Water level (cm) | $\begin{array}{r} \text { Water } \\ \text { temp }\left({ }^{\circ} \mathrm{C}\right) \end{array}$ | Water visibility |
|  | 17-Jul | 132 | 16 | good | 134 | 15 | fair | 121 | 17 | fair | 144 | 15 | poor |
|  | 18-Jul | 132 | 15 | good | 130 | 16 | good | 128 | 11 | poor | 143 | 15 | fair |
|  | 19-Jul | 138 | 15 | fair | 128 | 15 | good | 125 | 11 | poor | 143 | 15 | poor |
|  | 20-Jul | 141 | 15 | fair | 122 | 16 | fair | 126 | 16 | poor | 142 | 14 | poor |
|  | 21-Jul | 139 | 15 | good | 120 | 16 | fair | 126 | 16 | fair | 148 | 15 | poor |
|  | 22-Jul | 140 | 15 | good | 120 | 18 | fair | 124 | 18 | fair | 152 | 14 | poor |
|  | 23-Jul | 140 | 15 | good | 119 | 17 | fair | 123 | 17 | fair | 154 | 14 | poor |
|  | 24-Jul | 141 | 15 | good | 119 | 19 | fair | 120 | 17 | fair | 165 | 3 | very poor |
|  | 25-Jul | 140 | 15 | good | 122 | 19 | good | 119 | 17 | poor | 169 | 10 | very poor |
|  | 26-Jul | 134 | 16 | good | 127 | 7 | poor | 125 | 17 | poor | 169 | 14 | poor |
|  | 27-Jul | 128 | 16 | excellent | 131 | 8 | poor | 129 | 16 | poor | 170 | 14 | poor |
|  | 28-Jul | 128 | 16 | good | 136 | 16 | poor | 130 | 15 | fair | 179 | 4 | very poor |
|  | 29-Jul | 126 | 16 | good | 133 | 18 | poor | 130 | 15 | fair | 167 | 15 | poor |
|  | 30-Jul | 124 | 16 | good | 132 | 19 | poor | 124 | 16 | fair | 162 | 15 | good |
|  | 31-Jul | 122 | 16 | fair | 138 | 5 | poor | 120 | 16 | excellent | 164 | 12 | very poor |
|  | 1-Aug | 122 | 16 | fair | 140 | 5 | poor | 120 | 18 | fair | 171 | 18 | fair |
|  | 2-Aug | 120 | 16 | excellent | 136 | 18 | poor | 119 | 17 | poor | 179 | 6 | very poor |
| の | 3-Aug | 128 | 16 | poor | 127 | 18 | poor | 121 | 19 | fair | 174 | 16 | good |
|  | 4-Aug | 131 | 17 | good | 122 | 16 | fair | 125 | 19 | fair | 169 | 16 | good |
|  | 5-Aug | 138 | 20 | good | 118 | 20 | fair | 122 | 19 | poor | 164 | 15 | fair |
|  | 6-Aug | 141 | 10 | good | 119 | 18 | fair | 121 | 19 | poor | 169 | 10 | fair |
|  | 7-Aug | 148 | 8 | poor | 119 | 16 | poor | 129 | 12 | poor | 164 | 16 | excellent |
|  | 8-Aug | 158 | 8 | poor | 136 | 5 | poor | 137 | 7 | poor | 157 | 10 | good |
|  | 9-Aug | 154 | 20 | fair | 159 | 4 | poor | 138 | 6 | poor | 165 | 14 | poor |
|  | 10-Aug | 148 | 20 | fair | 143 | 15 | poor | 130 | 18 | fair | 164 | 12 | poor |
|  | 11-Aug | 144 | 20 | fair | 129 | 15 | poor | 135 | 18 | fair | 162 | 15 | fair |
|  | 12-Aug | 138 | 20 | fair | 120 | 16 | fair | 136 | 20 | fair | 155 | 14 | excellent |
|  | 13-Aug | 132 | 20 | fair | 119 | 16 | poor | 135 | 19 | fair | 150 | 14 | excellent |
|  | 14-Aug | 132 | 18 | poor | 125 | 15 | poor | 130 | 19 | fair | 145 | 14 | good |
|  | 15-Aug | 128 | 18 | poor | 118 | 16 | poor | 134 | 18 | fair | 141 | 14 | good |
|  | 16-Aug | 120 | 18 | fair | 108 | 15 | poor | 137 | 9 | poor | 140 | 14 | good |
|  | 17-Aug | 121 | 17 | poor | 100 | 15 | fair | 136 | 18 | fair | 137 | 14 | excellent |
|  | 18-Aug | 122 | 17 | good | 96 | 15 | fair | 125 | 13 | poor | 135 | 14 | good |
|  | 19-Aug | 119 | 15 | good | 90 | 15 | good | 120 | 14 | fair | 133 | 14 | fair |
|  | 20-Aug | 120 | 15 | good | 90 | 16 | good | 114 | 14 | excellent | 129 | 14 | good |
|  | 21-Aug | 122 | 15 | good | 82 | 17 | good | 109 | 14 | excellent | 127 | 14 | good |
|  | 22-Aug | 118 | 15 | poor | 113 | 7 | poor | 105 | 15 | excellent | 133 | 15 | good |
|  | 23-Aug | 122 | 14 | fair | 124 | 5 | poor | 103 | 14 | fair | 140 | 9 | very poor |

-continued-

Appendix H.-Page 3 of 4.

-continued-

Appendix H.-Page 4 of 4.

|  | 2017 |  |  | 2018 |  |  | 2019 |  |  | 2020 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Water level (cm) | Water <br> temp ( ${ }^{\circ} \mathrm{C}$ ) | Water visibility | Water level (cm) | Water temp ( ${ }^{\circ} \mathrm{C}$ ) | Water visibility | Water level (cm) | Water <br> temp ( ${ }^{\circ} \mathrm{C}$ ) | Water visibility | Water level (cm) | Water <br> temp ( ${ }^{\circ} \mathrm{C}$ ) | Water visibility |
| 2-Oct | 85 | 10 | fair | ND | ND | ND | 95 | 11 | poor | 136 | 10 | good |
| 4-Oct | 79 | 10 | fair | ND | ND | ND | 90 | 9 | excellent | 142 | 11 | fair |
| 5-Oct | 81 | 10 | poor | 72 | 9 | fair | 89 | 10 | fair | 145 | 10 | poor |
| 6-Oct | 79 | 10 | fair | 72 | 9 | fair | 89 | 10 | poor | ND | ND | ND |
| 7-Oct | 76 | 10 | fair | 72 | 9 | fair | 88 | 8 | fair | 140 | 9 | fair |
| 8-Oct | 74 | 10 | fair | 72 | 9 | fair | 87 | 7 | fair | 135 | 9 | good |
| $9-$ Oct | 71 | 10 | fair | 71 | 8 | fair | 85 | 7 | fair | 131 | 8 | poor |
| 10-Oct | ND | ND | ND | 70 | 7 | fair | ND | ND | ND | 127 | 9 | excellent |
| 11-Oct | ND | ND | ND | 70 | 7 | poor | ND | ND | ND | 122 | 9 | good |
| 12-Oct | ND |

Note: ND = no data collected.

Appendix I.-Daily Chilkat Lake weir counts of salmon, by species, 2017. Species apportionment of Chilkat Lake DIDSON counts started on the first day a coho salmon was observed at the weir or captured in morning beach seine sampling events in conjunction with sockeye salmon scale sampling (denoted by the horizontal dotted line). Species apportionment data collected in 2017 were minimal; therefore, the 10 -year average proportion of coho salmon was used for species apportionment.

| Date | Total DIDSON count | Species apportionment | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Proportion of coho salmon in sample | Sockeye salmon | Coho salmon |
| 15-Jun | 6 |  | 6 |  |
| 16-Jun | 59 |  | 59 |  |
| 17-Jun | 41 |  | 41 |  |
| 18-Jun | 28 |  | 28 |  |
| 19-Jun | 126 |  | 126 |  |
| 20-Jun | 125 |  | 125 |  |
| 21-Jun | 150 |  | 150 |  |
| 22-Jun | 151 |  | 151 |  |
| 23-Jun | 90 |  | 90 |  |
| 24-Jun | 195 |  | 195 |  |
| 25-Jun | 213 |  | 213 |  |
| 26-Jun | 686 |  | 686 |  |
| 27-Jun | 536 |  | 536 |  |
| 28-Jun | 186 |  | 186 |  |
| 29-Jun | 245 |  | 245 |  |
| 30-Jun | 333 |  | 333 |  |
| 1-Jul | 455 |  | 455 |  |
| 2-Jul | 155 |  | 155 |  |
| 3-Jul | 72 |  | 72 |  |
| 4-Jul | 107 |  | 107 |  |
| 5-Jul | 1 |  | 1 |  |
| 6-Jul | -4 |  | -4 |  |
| 7-Jul | 1,597 |  | 1,597 |  |
| 8-Jul | 1,107 |  | 1,107 |  |
| 9-Jul | 502 |  | 502 |  |
| 10-Jul | 946 |  | 946 |  |
| 11-Jul | 843 |  | 843 |  |
| 12-Jul | 854 |  | 854 |  |
| 13-Jul | 424 |  | 424 |  |
| 14-Jul | 1,426 |  | 1,426 |  |
| 15-Jul | 215 |  | 215 |  |
| 16-Jul | 806 |  | 806 |  |
| 17-Jul | 395 |  | 395 |  |
| 18-Jul | 1,376 |  | 1,376 |  |
| 19-Jul | 108 |  | 108 |  |
| 20-Jul | 378 |  | 378 |  |
| 21-Jul | 702 |  | 702 |  |
| 22-Jul | 504 |  | 504 |  |
| 23-Jul | 1,055 |  | 1,055 |  |
| 24-Jul | 1,233 |  | 1,233 |  |
| 25-Jul | 167 |  | 167 |  |
| 26-Jul | 796 |  | 796 |  |
| 27-Jul | 1,197 |  | 1,197 |  |
| 28-Jul | 1,119 |  | 1,119 |  |
| 29-Jul | 1,393 |  | 1,393 |  |
| 30-Jul | 654 |  | 654 |  |
| 31-Jul | 1,282 |  | 1,282 |  |
| 1-Aug | 104 |  | 104 |  |
| 2-Aug | 695 |  | 695 |  |
| 3-Aug | 665 |  | 665 |  |
| 4-Aug | 2,266 |  | 2,266 |  |

Appendix I.-Page 2 of 3.

| Date | Total DIDSON count | Species apportionment | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Proportion of coho salmon in sample | Sockeye salmon | Coho salmon |
| 5-Aug | 205 |  | 205 |  |
| 6-Aug | 158 |  | 158 |  |
| 7-Aug | 624 |  | 624 |  |
| 8-Aug | 241 |  | 241 |  |
| 9-Aug | 636 |  | 636 |  |
| 10-Aug | 711 |  | 711 |  |
| 11-Aug | 1,547 |  | 1,547 |  |
| 12-Aug | 2,043 |  | 2,043 |  |
| 13-Aug | 1,349 |  | 1,349 |  |
| 14-Aug | 66 |  | 66 |  |
| 15-Aug | 1,684 |  | 1,684 |  |
| 16-Aug | 1,148 |  | 1,148 |  |
| 17-Aug | 1,718 |  | 1,718 |  |
| 18-Aug | 2,897 |  | 2,897 |  |
| 19-Aug | 1,693 |  | 1,693 |  |
| 20-Aug | 1,004 |  | 1,004 |  |
| 21-Aug | 2,373 |  | 2,373 |  |
| 22-Aug | 728 |  | 728 |  |
| 23-Aug | 3 |  | 3 |  |
| 24-Aug | 1,123 |  | 1,123 |  |
| 25-Aug | 43 |  | 43 |  |
| 26-Aug | 405 |  | 405 |  |
| 27-Aug | 15 |  | 15 |  |
| 28-Aug | 79 |  | 79 |  |
| 29-Aug | 626 |  | 626 |  |
| 30-Aug | 803 |  | 803 |  |
| 31-Aug | 1,090 |  | 1,090 |  |
| 1-Sep | 95 |  | 95 |  |
| 2-Sep | 590 |  | 590 |  |
| 3-Sep | 488 |  | 488 |  |
| 4-Sep | 434 |  | 434 |  |
| 5-Sep | 125 |  | 125 |  |
| 6-Sep | 31 |  | 31 |  |
| 7-Sep | -1 |  | -1 |  |
| 8-Sep | 529 |  | 529 |  |
| 9-Sep | 310 |  | 310 |  |
| 10-Sep | 489 | 0.0142 | 482 | 7 |
| 11-Sep | 51 | 0.0142 | 50 | 1 |
| 12-Sep | 1,043 | 0.0142 | 1,028 | 15 |
| 13-Sep | 2,986 | 0.0142 | 2,944 | 42 |
| 14-Sep | 4,584 | 0.0142 | 4,519 | 65 |
| 15-Sep | 5,256 | 0.0142 | 5,181 | 75 |
| 16-Sep | 4,888 | 0.0142 | 4,818 | 70 |
| 17-Sep | 3,296 | 0.0453 | 3,147 | 149 |
| 18-Sep | 2,379 | 0.0453 | 2,271 | 108 |
| 19-Sep | 251 | 0.0453 | 240 | 11 |
| 20-Sep | 585 | 0.0453 | 559 | 26 |
| 21-Sep | 245 | 0.0453 | 234 | 11 |
| 22-Sep | 192 | 0.0453 | 183 | 9 |
| 23-Sep | 14 | 0.0453 | 13 | 1 |
| 24-Sep | 358 | 0.0936 | 324 | 34 |
| $25-\mathrm{Sep}$ | 768 | 0.0936 | 696 | 72 |
| 26-Sep | 965 | 0.0936 | 875 | 90 |
| 27-Sep | 454 | 0.0936 | 411 | 43 |
| 28-Sep | 55 | 0.0936 | 50 | 5 |

-continued-

Appendix I.--Page 3 of 3 .

| Date | Total DIDSON count | Species apportionment | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Proportion of coho salmon in sample | Sockeye salmon | Coho salmon |
| 29-Sep | 114 | 0.0936 | 103 | 11 |
| 30-Sep | 397 | 0.0936 | 360 | 37 |
| 1-Oct | 19 | 0.1721 | 16 | 3 |
| 2-Oct | 9 | 0.1721 | 7 | 2 |
| 3-Oct | 130 | 0.1721 | 108 | 22 |
| 4-Oct | 261 | 0.1721 | 216 | 45 |
| 5-Oct | 250 | 0.1721 | 207 | 43 |
| 6-Oct | 174 | 0.1721 | 144 | 30 |
| 7-Oct | 1,360 | 0.1721 | 1,126 | 234 |
| 8-Oct | 796 | 0.2705 | 581 | 215 |
| 9-Oct | 1,266 | 0.2705 | 924 | 342 |
| 10-Oct | 3 | 0.2705 | 2 | 1 |

Appendix J.-Daily Chilkat Lake weir counts of salmon, by species, 2018. Species apportionment of Chilkat Lake DIDSON counts started on the first day a coho salmon was observed at the weir or captured in morning beach seine sampling events in conjunction with sockeye salmon scale sampling (denoted by the horizontal dotted line). The daily sampling ratio is the number of sockeye salmon to number of coho salmon.

| Date | Total <br> DIDSON <br> count | Samples (beach seine) |  |  | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Daily sample ratio (sockeye:coho) | Total count from prior day's sampling (must be $\geq 68$ fish) | Total number of coho in prior day's sampling | Sockeye salmon | Coho salmon |
| 10-Jun | 0 |  |  |  | 0 | 0 |
| 11-Jun | 2 |  |  |  | 2 | 0 |
| 12-Jun | 3 |  |  |  | 3 | 0 |
| 13-Jun | 1 |  |  |  | 1 | 0 |
| 14-Jun | 16 |  |  |  | 16 | 0 |
| 15-Jun | 19 |  |  |  | 19 | 0 |
| 16-Jun | 17 |  |  |  | 17 | 0 |
| 17-Jun | 7 |  |  |  | 7 | 0 |
| 18-Jun | 4 |  |  |  | 4 | 0 |
| 19-Jun | 0 |  |  |  | 0 | 0 |
| 20-Jun | 3 |  |  |  | 3 | 0 |
| 21-Jun | 6 |  |  |  | 6 | 0 |
| 22-Jun | 6 |  |  |  | 6 | 0 |
| 23-Jun | 13 |  |  |  | 13 | 0 |
| 24-Jun | 19 |  |  |  | 19 | 0 |
| 25-Jun | 0 |  |  |  | 0 | 0 |
| 26-Jun | 0 |  |  |  | 0 | 0 |
| 27-Jun | 55 |  |  |  | 55 | 0 |
| 28-Jun | 6 | 0:1 |  |  | 6 | 0 |
| 29-Jun | 194 | 10:0 |  |  | 194 | 0 |
| 30-Jun | 188 | 2:0 |  |  | 188 | 0 |
| 1-Jul | 573 | ND |  |  | 573 | 0 |
| 2-Jul | 763 | ND |  |  | 763 | 0 |
| 3-Jul | 517 | ND |  |  | 517 | 0 |
| 4-Jul | 574 | ND |  |  | 574 | 0 |
| 5-Jul | 553 | ND |  |  | 553 | 0 |
| 6-Jul | 216 | ND |  |  | 216 | 0 |
| 7-Jul | 370 | 27:0 |  |  | 370 | 0 |
| 8-Jul | 465 | 13:0 |  |  | 465 | 0 |
| 9-Jul | 480 | 20:0 |  |  | 480 | 0 |
| 10-Jul | 451 | ND |  |  | 451 | 0 |
| 11-Jul | 29 | ND |  |  | 29 | 0 |
| 12-Jul | 0 | 1:0 |  |  | 0 | 0 |
| 13-Jul | 170 | 4:0 |  |  | 170 | 0 |
| 14-Jul | 411 | 10:0 |  |  | 411 | 0 |
| 15-Jul | 1,689 | 10:0 |  |  | 1689 | 0 |
| 16-Jul | 629 | 10:0 |  |  | 629 | 0 |
| 17-Jul | 1,251 | 75:0 |  |  | 1251 | 0 |
| 18-Jul | 1,509 | 10:0 |  |  | 1509 | 0 |
| 19-Jul | 1,125 | 10:0 |  |  | 1125 | 0 |
| 20-Jul | 1,411 | 10:0 |  |  | 1411 | 0 |
| 21-Jul | 876 | 10:0 |  |  | 876 | 0 |
| 22-Jul | 995 | 10:0 |  |  | 995 | 0 |
| 23-Jul | 431 | 2:0 |  |  | 431 | 0 |
| 24-Jul | 706 | 12:0 |  |  | 706 | 0 |
| 25-Jul | 514 | 20:0 |  |  | 514 | 0 |
| 26-Jul | 325 | 1:0 |  |  | 325 | 0 |
| 27-Jul | 472 | 2:0 |  |  | 472 | 0 |
| 28-Jul | 794 | ND |  |  | 794 | 0 |
| 29-Jul | 491 | 14:0 |  |  | 491 | 0 |

Appendix J.-Page 2 of 3.

| Date | Total <br> DIDSON <br> count | Samples (beach seine) |  |  | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Daily sample ratio (sockeye:coho) | Total count from prior day's sampling (must be $\geq 68$ fish) | Total number of coho in prior day's sampling | Sockeye salmon | Coho salmon |
| 30-Jul | 342 | 11:0 |  |  | 342 | 0 |
| 31-Jul | 682 | 10:0 |  |  | 682 | 0 |
| 1-Aug | 936 | 10:0 |  |  | 936 | 0 |
| 2-Aug | 670 | 9:0 |  |  | 670 | 0 |
| 3-Aug | 471 | 6:0 |  |  | 471 | 0 |
| 4-Aug | 360 | 15:0 |  |  | 360 | 0 |
| 5-Aug | 396 | 14:0 |  |  | 396 | 0 |
| 6-Aug | 1,146 | 10:0 |  |  | 1,146 | 0 |
| 7-Aug | 707 | 9:0 |  |  | 707 | 0 |
| 8-Aug | 26 | 1:0 |  |  | 26 | 0 |
| 9-Aug | 258 | ND |  |  | 258 | 0 |
| 10-Aug | 673 | 1:0 |  |  | 673 | 0 |
| 11-Aug | 629 | 4:0 |  |  | 629 | 0 |
| 12-Aug | 1,138 | 10:0 |  |  | 1,138 | 0 |
| 13-Aug | 1,083 | 10:0 |  |  | 1,083 | 0 |
| 14-Aug | 774 | 10:0 |  |  | 774 | 0 |
| 15-Aug | 997 | 10:0 |  |  | 997 | 0 |
| 16-Aug | 1,152 | 10:1 | 79 | 1 | 1,137 | 15 |
| 17-Aug | 1,601 | ND | 76 | 1 | 1,580 | 21 |
| 18-Aug | 1,234 | 9:0 | 75 | 1 | 1,218 | 16 |
| 19-Aug | 1,064 | 68:0 | 68 | 0 | 1,064 | 0 |
| 20-Aug | 2,987 | 68:0 | 68 | 0 | 2,987 | 0 |
| 21-Aug | 1,139 | 66:2 | 68 | 2 | 1,106 | 34 |
| 22-Aug | 153 | 2:0 | 70 | 2 | 149 | 4 |
| 23-Aug | 426 | ND | 70 | 2 | 414 | 12 |
| 24-Aug | 228 | ND | 70 | 2 | 221 | 7 |
| 25-Aug | 240 | ND | 70 | 2 | 233 | 7 |
| 26-Aug | 1,120 | 15:0 | 85 | 2 | 1,094 | 26 |
| 27-Aug | 619 | 21:0 | 106 | 2 | 607 | 12 |
| 28-Aug | 770 | 68:0 | 68 | 0 | 770 | 0 |
| 29-Aug | 1,337 | 68:0 | 68 | 0 | 1,337 | 0 |
| 30-Aug | 1,667 | 68:0 | 68 | 0 | 1,667 | 0 |
| 31-Aug | 1,558 | 153:0 | 153 | 0 | 1,558 | 0 |
| 1-Sep | 1,480 | 24:0 | 177 | 0 | 1,480 | 0 |
| 2-Sep | 1,951 | 188:0 | 188 | 0 | 1,951 | 0 |
| 3-Sep | 2,291 | 71:2 | 73 | 2 | 2,228 | 63 |
| 4-Sep | 3,021 | ND | 73 | 2 | 2,938 | 83 |
| 5-Sep | 3,201 | ND | 73 | 2 | 3,113 | 88 |
| 6-Sep | 2,027 | ND | 73 | 2 | 1,971 | 56 |
| 7-Sep | 1,108 | ND | 73 | 2 | 1,078 | 30 |
| 8-Sep | 2,925 | 227:7 | 234 | 7 | 2,838 | 88 |
| 9-Sep | 1,228 | 98:1 | 99 | 1 | 1,216 | 12 |
| 10-Sep | 2,126 | 35:0 | 134 | 1 | 2,110 | 16 |
| 11-Sep | 1,426 | 78:4 | 82 | 4 | 1,356 | 70 |
| 12-Sep | 1,030 | 93:4 | 97 | 4 | 988 | 42 |
| 13-Sep | 1,228 | 229:11 | 240 | 11 | 1,172 | 56 |
| 14-Sep | 865 | 130:9 | 139 | 9 | 809 | 56 |
| 15-Sep | 911 | 112:9 | 121 | 9 | 843 | 68 |
| 16-Sep | 1,490 | 59:6 | 186 | 15 | 1,370 | 120 |
| 17-Sep | 1,318 | 79:2 | 81 | 2 | 1,285 | 33 |
| 18-Sep | 2,592 | 74:4 | 78 | 4 | 2,459 | 133 |
| 19-Sep | 1,681 | ND | 78 | 4 | 1,595 | 86 |
| 20-Sep | 2,265 | ND | 78 | 4 | 2,149 | 116 |
| 21-Sep | 2,661 | ND | 78 | 4 | 2,525 | 136 |
| 22-Sep | 3,118 | 94:4 | 98 | 4 | 2,991 | 127 |

-continued-

Appendix J.-Page 3 of 3.

| Date | TotalDIDSON count | Samples (beach seine) |  |  | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Daily sample ratio (sockeye:coho) | Total count from prior day's sampling (must be $\geq 68$ fish) | Total number of coho in prior day's sampling | Sockeye salmon | Coho salmon |
| 23-Sep | 1,329 | 96:5 | 101 | 5 | 1,263 | 66 |
| $24-\mathrm{Sep}$ | 3,919 | 94:1 | 95 | 1 | 3,878 | 41 |
| $25-\mathrm{Sep}$ | 2,926 | 23:0 | 118 | 1 | 2,901 | 25 |
| 26-Sep | 1,161 | 89:5 | 94 | 5 | 1,099 | 62 |
| 27-Sep | 908 | 73:15 | 88 | 15 | 753 | 155 |
| 28-Sep | 929 | 113:14 | 127 | 14 | 827 | 102 |
| 29-Sep | 592 | 62:9 | 71 | 9 | 517 | 75 |
| 30-Sep | 681 | 35:3 | 109 | 12 | 606 | 75 |
| 1-Oct | 1,460 | 71:18 | 89 | 18 | 1,165 | 295 |
| 2-Oct | 1,429 | ND | 89 | 18 | 1,140 | 289 |
| 3-Oct | 1,099 | ND | 89 | 18 | 877 | 222 |
| 4-Oct | 769 | ND | 89 | 18 | 613 | 156 |
| 5-Oct | 865 | 57:11 | 68 | 11 | 725 | 140 |
| 6-Oct | 1,090 | 126:9 | 135 | 9 | 1,017 | 73 |
| 7-Oct | 1,130 | 153:22 | 175 | 22 | 988 | 142 |
| 8-Oct | 683 | 210:15 | 225 | 15 | 637 | 46 |
| $9-\mathrm{Oct}$ | 334 | 56:4 | 285 | 19 | 312 | 22 |
| 10-Oct | 130 | 24:5 | 89 | 9 | 117 | 13 |
| 11-Oct | 42 | 0:1 | 90 | 10 | 37 | 5 |
| 12-Oct | 372 | ND | 90 | 10 | 331 | 41 |

Note: ND = no data.

Appendix K.-Daily Chilkat Lake weir counts of salmon, by species, 2019. Species apportionment of Chilkat Lake DIDSON counts started on the first day a coho salmon was observed at the weir or captured in morning beach seine sampling events in conjunction with sockeye salmon scale sampling (denoted by the horizontal dotted line). The daily sampling ratio is the number of sockeye salmon to number of coho salmon.

| Date | TotalDIDSON count | Samples (beach seine) |  |  | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Daily sample ratio (sockeye:coho) | Total count from prior day's sampling (must be $\geq 68$ fish) | Total number of coho in prior day's sampling | Sockeye salmon | Coho salmon |
| 10-Jun | 9 |  |  |  | 9 | 0 |
| 11-Jun | 10 |  |  |  | 10 | 0 |
| 12-Jun | 0 |  |  |  | 0 | 0 |
| 13-Jun | 86 |  |  |  | 86 | 0 |
| 14-Jun | 14 |  |  |  | 14 | 0 |
| 15-Jun | 48 |  |  |  | 48 | 0 |
| 16-Jun | 26 |  |  |  | 26 | 0 |
| 17-Jun | 3 |  |  |  | 3 | 0 |
| 18-Jun | 2 |  |  |  | 2 | 0 |
| 19-Jun | 36 |  |  |  | 36 | 0 |
| 20-Jun | 1 |  |  |  | 1 | 0 |
| 21-Jun | 59 |  |  |  | 59 | 0 |
| 22-Jun | 112 |  |  |  | 112 | 0 |
| 23-Jun | 103 |  |  |  | 103 | 0 |
| 24-Jun | 132 |  |  |  | 132 | 0 |
| 25-Jun | 157 |  |  |  | 157 | 0 |
| 26-Jun | 17 |  |  |  | 17 | 0 |
| 27-Jun | 211 |  |  |  | 211 | 0 |
| 28-Jun | 25 |  |  |  | 25 | 0 |
| 29-Jun | 51 |  |  |  | 51 | 0 |
| 30-Jun | -12 |  |  |  | -12 | 0 |
| 1-Jul | 31 |  |  |  | 31 | 0 |
| 2-Jul | 94 |  |  |  | 94 | 0 |
| 3-Jul | 73 |  |  |  | 73 | 0 |
| 4-Jul | 372 |  |  |  | 372 | 0 |
| 5-Jul | 306 |  |  |  | 306 | 0 |
| 6-Jul | 494 |  |  |  | 494 | 0 |
| 7-Jul | 655 |  |  |  | 655 | 0 |
| 8-Jul | 236 |  |  |  | 236 | 0 |
| 9-Jul | 514 |  |  |  | 514 | 0 |
| 10-Jul | 265 |  |  |  | 265 | 0 |
| 11-Jul | 2,434 |  |  |  | 2,434 | 0 |
| 12-Jul | 3,214 |  |  |  | 3,214 | 0 |
| 13-Jul | 2,763 |  |  |  | 2,763 | 0 |
| 14-Jul | 2,118 |  |  |  | 2,118 | 0 |
| 15-Jul | 2,327 |  |  |  | 2,327 | 0 |
| 16-Jul | 2,477 |  |  |  | 2,477 | 0 |
| 17-Jul | 1,133 |  |  |  | 1,133 | 0 |
| 18-Jul | 1,713 |  |  |  | 1,713 | 0 |
| 19-Jul | 705 |  |  |  | 705 | 0 |
| 20-Jul | 2,106 |  |  |  | 2,106 | 0 |
| 21-Jul | 608 |  |  |  | 608 | 0 |
| 22-Jul | 1,410 |  |  |  | 1,410 | 0 |
| 23-Jul | 1,913 |  |  |  | 1,913 | 0 |
| 24-Jul | 3,096 |  |  |  | 3,096 | 0 |
| 25-Jul | 2,618 |  |  |  | 2,618 | 0 |
| 26-Jul | 1,815 |  |  |  | 1,815 | 0 |
| 27-Jul | 3,216 |  |  |  | 3,216 | 0 |
| 28-Jul | 1,541 |  |  |  | 1,541 | 0 |
| 29-Jul | 1,615 |  |  |  | 1,615 | 0 |

Appendix K.-Page 2 of 3.

| Date | Total <br> DIDSON <br> count | Samples (beach seine) |  |  | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Daily sample ratio (sockeye:coho) | Total count from prior day's sampling (must be $\geq 68$ fish) | Total number of coho in prior day's sampling | Sockeye salmon | Coho salmon |
| 30-Jul | 2,306 |  |  |  | 2,306 | 0 |
| 31-Jul | 3,923 |  |  |  | 3,923 | 0 |
| 1-Aug | 2,555 |  |  |  | 2,555 | 0 |
| 2-Aug | 1,924 |  |  |  | 1,924 | 0 |
| 3-Aug | 1,332 |  |  |  | 1,332 | 0 |
| 4-Aug | 1,767 |  |  |  | 1,767 | 0 |
| 5-Aug | 2,124 |  |  |  | 2,124 | 0 |
| 6-Aug | 1,317 |  |  |  | 1,317 | 0 |
| 7-Aug | 409 |  |  |  | 409 | 0 |
| 8-Aug | 779 |  |  |  | 779 | 0 |
| 9-Aug | 847 |  |  |  | 847 | 0 |
| 10-Aug | 499 |  |  |  | 499 | 0 |
| 11-Aug | 682 |  |  |  | 682 | 0 |
| 12-Aug | 949 |  |  |  | 949 | 0 |
| 13-Aug | 4,131 |  |  |  | 4,131 | 0 |
| 14-Aug | 3,379 |  |  |  | 3,379 | 0 |
| 15-Aug | 744 |  |  |  | 744 | 0 |
| 16-Aug | 2,943 |  |  |  | 2,943 | 0 |
| 17-Aug | 4,548 |  |  |  | 4,548 | 0 |
| 18-Aug | 3,554 | 98:0 |  |  | 3,554 | 0 |
| 19-Aug | 2,148 | 148:0 |  |  | 2,148 | 0 |
| 20-Aug | 2,350 | 143:0 |  |  | 2,350 | 0 |
| 21-Aug | 2,733 | 77:0 |  |  | 2,733 | 0 |
| 22-Aug | 2,675 | 94:0 |  |  | 2,675 | 0 |
| 23-Aug | 1,568 | 18:0 |  |  | 1,568 | 0 |
| 24-Aug | 2,136 | 59:2 | 79 | 2 | 2,082 | 54 |
| 25-Aug | 2,304 | 30:0 | 91 | 2 | 2,253 | 51 |
| 26-Aug | 1,630 | 35:0 | 126 | 2 | 1,604 | 26 |
| 27-Aug | 636 | 118:1 | 119 | 1 | 631 | 5 |
| 28-Aug | 1,165 | 22:0 | 141 | 1 | 1,157 | 8 |
| 29-Aug | 1,728 | 111:1 | 112 | 1 | 1,713 | 15 |
| 30-Aug | 509 | 91:0 | 91 | 0 | 509 | 0 |
| 31-Aug | 591 | 59:0 | 150 | 0 | 591 | 0 |
| 1-Sep | 1,274 | 65:3 | 68 | 3 | 1,218 | 56 |
| 2-Sep | 1,500 | 85:2 | 87 | 2 | 1,466 | 34 |
| 3-Sep | 1,004 | 49:1 | 137 | 3 | 982 | 22 |
| 4-Sep | 1,240 | 50:3 | 103 | 4 | 1,192 | 48 |
| 5-Sep | 632 | 130:4 | 134 | 4 | 613 | 19 |
| 6-Sep | 825 | 97:1 | 98 | 1 | 817 | 8 |
| 7-Sep | 1,704 | 90:1 | 91 | 1 | 1,685 | 19 |
| 8-Sep | 1,150 | 103:0 | 103 | 0 | 1,150 | 0 |
| 9-Sep | 881 | 359:9 | 368 | 9 | 859 | 22 |
| 10-Sep | 1,258 | 59:1 | 428 | 10 | 1,229 | 29 |
| 11-Sep | 187 | 11:0 | 71 | 1 | 184 | 3 |
| 12-Sep | 107 | 20:0 | 91 | 1 | 106 | 1 |
| 13-Sep | 150 | $4: 5$ | 100 | 6 | 141 | 9 |
| 14-Sep | -77 | 1:0 | 101 | 6 | -72 | -5 |
| 15-Sep | -115 | 6:0 | 107 | 6 | -109 | -6 |
| 16-Sep | -151 | 13:0 | 120 | 6 | -143 | -8 |
| 17-Sep | 298 | ND | 120 | 6 | 283 | 15 |
| 18-Sep | 869 | 220:23 | 243 | 23 | 787 | 82 |
| 19-Sep | 359 | ND | 243 | 23 | 325 | 34 |
| 20-Sep | 540 | 21:2 | 266 | 25 | 489 | 51 |
| 21-Sep | -20 | ND | 266 | 25 | -18 | -2 |
| 22-Sep | 215 | 3:1 | 270 | 26 | 194 | 21 |

-continued-

Appendix K.-Page 3 of 3 .

| Date | TotalDIDSON count | Samples (beach seine) |  |  | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Daily sample ratio (sockeye:coho) | Total count from prior day's sampling (must be $\geq 68$ fish) | Total number of coho in prior day's sampling | Sockeye salmon | Coho salmon |
| 23-Sep | 1,528 | 88:10 | 98 | 10 | 1,372 | 156 |
| 24-Sep | 1,245 | 129:20 | 149 | 20 | 1,078 | 167 |
| 25-Sep | 1,361 | 152:34 | 186 | 34 | 1,112 | 249 |
| 26-Sep | 1,823 | 79:14 | 93 | 14 | 1,549 | 274 |
| 27-Sep | 1,618 | 73:32 | 105 | 32 | 1,125 | 493 |
| 28-Sep | 2,589 | 89:39 | 128 | 39 | 1,800 | 789 |
| 29-Sep | 2,502 | 318:104 | 422 | 104 | 1,885 | 617 |
| 30-Sep | 1,888 | 86:21 | 107 | 21 | 1,517 | 371 |
| 1-Oct | 1,251 | 7:2 | 116 | 23 | 1,003 | 248 |
| 2-Oct | 1,773 | 16:6 | 138 | 29 | 1,400 | 373 |
| 3-Oct | 1,299 | 9:6 | 153 | 35 | 1,002 | 297 |
| 4-Oct | 872 | 15:33 | 85 | 45 | 410 | 462 |
| 5-Oct | 549 | 3:4 | 70 | 43 | 212 | 337 |
| 6-Oct | 591 | 13:4 | 72 | 41 | 254 | 337 |
| 7-Oct | 215 | 1:0 | 73 | 41 | 94 | 121 |
| 8-Oct | 189 | 5:8 | 86 | 49 | 81 | 108 |
| 9-Oct | 18 | 1:2 | 89 | 51 | 8 | 10 |

Note: ND = no data.

Appendix L.-Daily Chilkat Lake weir counts of salmon, by species, 2020. Species apportionment of Chilkat Lake DIDSON counts started on the first day a coho salmon was observed at the weir or captured in morning beach seine sampling events in conjunction with sockeye salmon scale sampling (denoted by the horizontal dotted line). The daily sampling ratio is the number of sockeye salmon to number of coho salmon.

| Date | TotalDIDSON count | Samples (beach seine) |  |  | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Daily sample ratio (sockeye:coho) | Total count from prior day's sampling (must be $\geq 68$ fish) | Total number of coho in prior day's sampling | Sockeye salmon | Coho salmon |
| 18-Jun | -2 |  |  |  | -2 | 0 |
| 19-Jun | 5 |  |  |  | 5 | 0 |
| 20-Jun | 24 |  |  |  | 24 | 0 |
| 21-Jun | 21 |  |  |  | 21 | 0 |
| 22-Jun | 19 |  |  |  | 19 | 0 |
| 23-Jun | 54 |  |  |  | 54 | 0 |
| 24-Jun | 49 |  |  |  | 49 | 0 |
| $25-J u n$ | 86 |  |  |  | 86 | 0 |
| 26-Jun | 26 |  |  |  | 26 | 0 |
| 27-Jun | 110 |  |  |  | 110 | 0 |
| 28-Jun | 182 |  |  |  | 182 | 0 |
| 29-Jun | 167 |  |  |  | 167 | 0 |
| 30-Jun | 299 |  |  |  | 299 | 0 |
| 1-Jul | 169 |  |  |  | 169 | 0 |
| 2-Jul | 250 |  |  |  | 250 | 0 |
| 3-Jul | 109 |  |  |  | 109 | 0 |
| 4-Jul | 65 |  |  |  | 65 | 0 |
| 5-Jul | 311 |  |  |  | 311 | 0 |
| 6-Jul | 143 |  |  |  | 143 | 0 |
| 7-Jul | 150 |  |  |  | 150 | 0 |
| 8-Jul | 200 |  |  |  | 200 | 0 |
| 9-Jul | 90 |  |  |  | 90 | 0 |
| 10-Jul | 322 |  |  |  | 322 | 0 |
| 11-Jul | 505 |  |  |  | 505 | 0 |
| 12-Jul | 660 |  |  |  | 660 | 0 |
| 13-Jul | 843 |  |  |  | 843 | 0 |
| 14-Jul | 281 |  |  |  | 281 | 0 |
| 15-Jul | 215 |  |  |  | 215 | 0 |
| 16-Jul | 611 |  |  |  | 611 | 0 |
| 17-Jul | 634 |  |  |  | 634 | 0 |
| 18-Jul | 549 |  |  |  | 549 | 0 |
| 19-Jul | 448 |  |  |  | 448 | 0 |
| 20-Jul | 415 |  |  |  | 415 | 0 |
| 21-Jul | 159 |  |  |  | 159 | 0 |
| 22-Jul | 152 |  |  |  | 152 | 0 |
| 23-Jul | 317 |  |  |  | 317 | 0 |
| 24-Jul | 0 |  |  |  | 0 | 0 |
| $25-\mathrm{Jul}$ | 182 |  |  |  | 182 | 0 |
| 26-Jul | 604 |  |  |  | 604 | 0 |
| 27-Jul | 93 |  |  |  | 93 | 0 |
| 28-Jul | 899 |  |  |  | 899 | 0 |
| 29-Jul | 1,307 |  |  |  | 1,307 | 0 |
| 30-Jul | 755 |  |  |  | 755 | 0 |
| 31-Jul | 379 |  |  |  | 379 | 0 |
| 1-Aug | 89 |  |  |  | 89 | 0 |
| 2-Aug | 277 |  |  |  | 277 | 0 |
| 3-Aug | 711 |  |  |  | 711 | 0 |
| 4-Aug | 788 |  |  |  | 788 | 0 |
| 5-Aug | 220 |  |  |  | 220 | 0 |
| 6-Aug | 549 |  |  |  | 549 | 0 |

Appendix L.--Page 2 of 3.

| Date | Total <br> DIDSON <br> count | Samples (beach seine) |  |  | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Daily sample ratio (sockeye:coho) | Total count from prior day's sampling (must be $\geq 68$ fish) | Total number of coho in prior day's sampling | Sockeye salmon | Coho salmon |
| 7-Aug | 635 |  |  |  | 635 | 0 |
| 8-Aug | 686 |  |  |  | 686 | 0 |
| 9-Aug | 303 |  |  |  | 303 | 0 |
| 10-Aug | 237 |  |  |  | 237 | 0 |
| 11-Aug | 953 |  |  |  | 953 | 0 |
| 12-Aug | 702 |  |  |  | 702 | 0 |
| 13-Aug | 1,088 |  |  |  | 1,088 | 0 |
| 14-Aug | 806 |  |  |  | 806 | 0 |
| 15-Aug | 836 |  |  |  | 836 | 0 |
| 16-Aug | 560 |  |  |  | 560 | 0 |
| 17-Aug | 1,044 |  |  |  | 1,044 | 0 |
| 18-Aug | 1,021 |  |  |  | 1,021 | 0 |
| 19-Aug | 1,038 |  |  |  | 1,038 | 0 |
| 20-Aug | 1,499 |  |  |  | 1,499 | 0 |
| 21-Aug | 176 |  |  |  | 176 | 0 |
| 22-Aug | 4 |  |  |  | 4 | 0 |
| 23-Aug | 128 |  |  |  | 128 | 0 |
| 24-Aug | 238 |  |  |  | 238 | 0 |
| 25-Aug | 517 |  |  |  | 517 | 0 |
| 26-Aug | 536 |  |  |  | 536 | 0 |
| 27-Aug | 312 | 56:1 ${ }^{\text {a }}$ | 57 | 1 | 307 | 5 |
| 28-Aug | 296 | 25:0 | 82 | 1 | 292 | 4 |
| 29-Aug | 553 | 79:0 | 79 | 0 | 553 | 0 |
| 30-Aug | 505 | 154:0 | 154 | 0 | 505 | 0 |
| 31-Aug | 451 | 17:0 | 171 | 0 | 451 | 0 |
| 1-Sep | 38 | ND | 171 | 0 | 38 | 0 |
| 2-Sep | 6 | ND | 171 | 0 | 6 | 0 |
| 3-Sep | 8 | ND | 171 | 0 | 8 | 0 |
| 4-Sep | 845 | 14:1 | 186 | 1 | 840 | 5 |
| 5-Sep | 430 | 14:0 | 200 | 1 | 428 | 2 |
| 6-Sep | 41 | 2:1 | 203 | 2 | 41 | 0 |
| 7-Sep | 1,883 | 186:12 | 198 | 12 | 1,769 | 114 |
| 8-Sep | 794 | 77:7 | 84 | 7 | 728 | 66 |
| 9-Sep | 1,469 | 68:5 | 73 | 5 | 1,368 | 101 |
| 10-Sep | 422 | 122:1 | 123 | 1 | 419 | 3 |
| 11-Sep | 15 | 7:0 | 130 | 1 | 15 | 0 |
| 12-Sep | 694 | 1:0 | 131 | 1 | 689 | 5 |
| 13-Sep | 35 | 2:0 | 133 | 1 | 35 | 0 |
| 14-Sep | 417 | 16:6 | 155 | 7 | 398 | 19 |
| 15-Sep | 1,149 | 3:5 | 163 | 12 | 1,064 | 85 |
| 16-Sep | 1,537 | 160:12 | 172 | 12 | 1,430 | 107 |
| 17-Sep | 2,290 | 141:10 | 151 | 10 | 2,138 | 152 |
| 18-Sep | 1,372 | 197:10 | 207 | 10 | 1,306 | 66 |
| 19-Sep | 906 | 213:29 | 242 | 29 | 797 | 109 |
| 20-Sep | 1,676 | 127:12 | 139 | 12 | 1,531 | 145 |
| 21-Sep | 1,204 | 203:19 | 222 | 19 | 1,101 | 103 |
| 22-Sep | 1,054 | 124:22 | 146 | 22 | 895 | 159 |
| 23-Sep | 266 | 51:18 | 69 | 18 | 197 | 69 |
| 24-Sep | 253 | 26:5 | 100 | 23 | 195 | 58 |
| $25-\mathrm{Sep}$ | 203 | 87:20 | 107 | 20 | 165 | 38 |
| 26-Sep | 569 | 5:0 | 112 | 20 | 467 | 102 |
| 27-Sep | 24 | ND | 112 | 20 | 20 | 4 |
| 28-Sep | 60 | ND | 112 | 20 | 49 | 11 |
| 29-Sep | 519 | 1:0 | 113 | 20 | 427 | 92 |
| 30-Sep | 181 | ND | 113 | 20 | 149 | 32 |

-continued-

Appendix L.-Page 3 of 3 .

| Date | TotalDIDSON count | Samples (beach seine) |  |  | Daily escapement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Daily sample ratio (sockeye:coho) | Total count from prior day's sampling (must be $\geq 68$ fish) | Total number of coho in prior day's sampling | Sockeye salmon | Coho salmon |
| 1-Oct | 333 | 35:64 | 99 | 64 | 118 | 215 |
| 2-Oct | 266 | ND | 99 | 64 | 94 | 172 |
| 3-Oct | 144 | ND | 99 | 64 | 51 | 93 |
| 4-Oct | 167 | 38:12 | 149 | 76 | 82 | 85 |
| 5-Oct | 212 | 2:3 | 154 | 79 | 103 | 109 |
| 6-Oct | 205 | 0:1 | 155 | 80 | 99 | 106 |
| 7-Oct | 166 | 9:12 | 77 | 28 | 106 | 60 |
| 8-Oct | 136 | 14:32 | 68 | 45 | 46 | 90 |
| $9-\mathrm{Oct}$ | 239 | 5:12 | 84 | 56 | 80 | 159 |
| 10-Oct | 573 | 24:38 | 79 | 50 | 210 | 363 |
| 11-Oct | 1,192 | 0:0 | 79 | 50 | 438 | 754 |

Note: ND = no data.
a August 27th was the first time a coho salmon was seen at the Chilkat Lake weir in 2020. On this day, the ratio of sockeye to coho salmon in a seine sample of 57 fish was used to apportion the total daily count of 312 fish. The rest of the season, a minimum of 68 fish, based on 1 day or multiple days, was used to apportion the daily count into sockeye and coho salmon.

Appendix M.-Estimated commercial harvest of Chilkat Lake, Chilkoot Lake, and other sockeye salmon stocks in the District 15 commercial drift gillnet fishery based on scale pattern analysis (1976-2016) and genetic stock identification (2017-2020).

| Year | Harvest |  |  | Percentile rank |  |  | Percent of harvest |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Chilkoot Lake | Chilkat Lake | Other | Chilkoot Lake | Chilkat Lake | Other | Chilkoot Lake | Chilkat Lake | Other |
| 1976 | 61,861 | 58,765 | 4,796 | 0.52 | 0.43 | 0.11 | 49\% | 47\% | 4\% |
| 1977 | 113,555 | 41,477 | 5,389 | 0.66 | 0.25 | 0.14 | 71\% | 26\% | 3\% |
| 1978 | 14,264 | 89,558 | 4,658 | 0.11 | 0.68 | 0.09 | 13\% | 83\% | 4\% |
| 1979 | 69,864 | 115,995 | 7,117 | 0.59 | 0.82 | 0.16 | 36\% | 60\% | 4\% |
| 1980 | 21,244 | 31,267 | 1,588 | 0.20 | 0.18 | 0.02 | 39\% | 58\% | 3\% |
| 1981 | 43,756 | 48,420 | 1,070 | 0.45 | 0.34 | 0.00 | 47\% | 52\% | 1\% |
| 1982 | 144,748 | 127,174 | 1,911 | 0.82 | 0.89 | 0.05 | 53\% | 46\% | 1\% |
| 1983 | 242,034 | 124,180 | 3,965 | 0.93 | 0.84 | 0.07 | 65\% | 34\% | 1\% |
| 1984 | 225,634 | 99,592 | 9,502 | 0.89 | 0.70 | 0.18 | 67\% | 30\% | 3\% |
| 1985 | 153,533 | 131,091 | 18,704 | 0.84 | 0.91 | 0.50 | 51\% | 43\% | 6\% |
| 1986 | 110,114 | 168,006 | 12,174 | 0.61 | 1.00 | 0.30 | 38\% | 58\% | 4\% |
| 1987 | 327,323 | 69,900 | 18,658 | 1.00 | 0.52 | 0.48 | 79\% | 17\% | 4\% |
| 1988 | 248,640 | 76,883 | 26,353 | 0.95 | 0.59 | 0.75 | 71\% | 22\% | 7\% |
| 1989 | 292,830 | 156,160 | 25,908 | 0.98 | 0.98 | 0.73 | 62\% | 33\% | 5\% |
| 1990 | 181,260 | 149,377 | 31,499 | 0.86 | 0.93 | 0.82 | 50\% | 41\% | 9\% |
| 1991 | 228,607 | 60,721 | 24,353 | 0.91 | 0.48 | 0.68 | 73\% | 19\% | 8\% |
| 1992 | 142,471 | 113,146 | 33,729 | 0.80 | 0.80 | 0.91 | 49\% | 39\% | 12\% |
| 1993 | 52,080 | 103,531 | 19,605 | 0.48 | 0.75 | 0.57 | 30\% | 59\% | 11\% |
| 1994 | 25,367 | 126,852 | 19,578 | 0.30 | 0.86 | 0.55 | 15\% | 74\% | 11\% |
| 1995 | 9,637 | 68,737 | 10,302 | 0.09 | 0.50 | 0.23 | 11\% | 78\% | 12\% |
| 1996 | 19,882 | 99,677 | 30,019 | 0.18 | 0.73 | 0.80 | 13\% | 67\% | 20\% |
| 1997 | 31,822 | 73,761 | 13,245 | 0.36 | 0.55 | 0.34 | 27\% | 62\% | 11\% |
| 1998 | 2,838 | 112,630 | 19,469 | 0.02 | 0.77 | 0.52 | 2\% | 83\% | 14\% |
| 1999 | 4,604 | 149,410 | 9,547 | 0.05 | 0.95 | 0.20 | 3\% | 91\% | 6\% |
| 2000 | 14,622 | 78,265 | 16,673 | 0.14 | 0.61 | 0.41 | 13\% | 71\% | 15\% |
| 2001 | 66,355 | 60,183 | 21,273 | 0.55 | 0.45 | 0.61 | 45\% | 41\% | 14\% |
| 2002 | 24,200 | 47,332 | 10,482 | 0.25 | 0.30 | 0.27 | 30\% | 58\% | 13\% |
| 2003 | 32,446 | 49,955 | 12,729 | 0.41 | 0.36 | 0.32 | 34\% | 53\% | 13\% |
| 2004 | 66,498 | 51,110 | 33,637 | 0.57 | 0.39 | 0.89 | 44\% | 34\% | 22\% |
| 2005 | 29,276 | 22,852 | 13,341 | 0.34 | 0.16 | 0.36 | 45\% | 35\% | 20\% |
| 2006 | 119,201 | 15,979 | 10,400 | 0.68 | 0.09 | 0.25 | 82\% | 11\% | 7\% |
| 2007 | 125,199 | 14,208 | 17,529 | 0.75 | 0.05 | 0.45 | 80\% | 9\% | 11\% |
| 2008 | 7,491 | 22,156 | 17,008 | 0.07 | 0.14 | 0.43 | 16\% | 47\% | 36\% |
| 2009 | 16,622 | 85,551 | 24,422 | 0.16 | 0.66 | 0.70 | 13\% | 68\% | 19\% |
| 2010 | 32,064 | 48,079 | 20,830 | 0.39 | 0.32 | 0.59 | 32\% | 48\% | 21\% |
| 2011 | 26,766 | 15,599 | 21,428 | 0.32 | 0.07 | 0.64 | 42\% | 24\% | 34\% |
| 2012 | 124,366 | 54,884 | 45,393 | 0.73 | 0.41 | 0.98 | 55\% | 24\% | 20\% |
| 2013 | 23,111 | 75,588 | 23,404 | 0.23 | 0.57 | 0.66 | 19\% | 62\% | 19\% |
| 2014 | 110,487 | 81,502 | 42,693 | 0.64 | 0.64 | 0.95 | 47\% | 35\% | 18\% |
| 2015 | 58,568 | 33,085 | 39,924 | 0.50 | 0.20 | 0.93 | 45\% | 25\% | 30\% |
| 2016 | 119,843 | 35,991 | 33,010 | 0.70 | 0.23 | 0.86 | 63\% | 19\% | 17\% |
| 2017 | 1,933 | 5,698 | 32,085 | 0.00 | 0.00 | 0.84 | 5\% | 14\% | 81\% |
| 2018 | 33,969 | 19,235 | 28,483 | 0.43 | 0.11 | 0.77 | 42\% | 24\% | 35\% |
| 2019 | 149,586 | 40,935 | 51,012 | 0.82 | 0.25 | 1.00 | 62\% | 17\% | 21\% |
| 2020 | 24,878 | 8,776 | 16,566 | 0.27 | 0.02 | 0.39 | 50\% | 17\% | 33\% |
| Average ${ }^{\text {a }}$ | 91,831 | 77,771 | 18,471 |  |  |  | 42\% | 46\% | 12\% |
| Median ${ }^{\text {a }}$ | 61,861 | 73,761 | 18,658 |  |  |  | 45\% | 46\% | 11\% |

a Average and median values use 1976-2016 data.

Appendix N.-District 15 commercial drift gillnet fishery genetic stock composition results by statistical week and reporting group, 2017.

| Statistical week | $\begin{gathered} \text { Sample } \\ \text { size } \end{gathered}$ | Genotyped | Aged only | Not genotyped or aged | Reporting group | Mean | SD | CI 5\% | CI 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 300 | 185 | 95 | 20 | Chilkat Lake | 0.131 | 0.026 | 0.091 | 0.175 |
|  |  |  |  |  | Chilkat Mainstem | 0.005 | 0.010 | 0.000 | 0.027 |
|  |  |  |  |  | Chilkoot | 0.045 | 0.016 | 0.023 | 0.074 |
|  |  |  |  |  | Other | 0.819 | 0.030 | 0.767 | 0.866 |
| 26 | 305 | 187 | 95 | 23 | Chilkat Lake | 0.114 | 0.025 | 0.076 | 0.157 |
|  |  |  |  |  | Chilkat Mainstem | 0.033 | 0.015 | 0.011 | 0.061 |
|  |  |  |  |  | Chilkoot | 0.064 | 0.020 | 0.035 | 0.099 |
|  |  |  |  |  | Other | 0.790 | 0.033 | 0.735 | 0.842 |
| 27 | 312 | 185 | 104 | 23 | Chilkat Lake | 0.209 | 0.032 | 0.159 | 0.262 |
|  |  |  |  |  | Chilkat Mainstem | 0.062 | 0.019 | 0.033 | 0.096 |
|  |  |  |  |  | Chilkoot | 0.065 | 0.021 | 0.034 | 0.101 |
|  |  |  |  |  | Other | 0.664 | 0.038 | 0.601 | 0.725 |
| 28 | 190 | 188 | 2 | 0 | Chilkat Lake | 0.164 | 0.039 | 0.103 | 0.233 |
|  |  |  |  |  | Chilkat Mainstem | 0.005 | 0.010 | 0.000 | 0.027 |
|  |  |  |  |  | Chilkoot | 0.113 | 0.033 | 0.065 | 0.170 |
|  |  |  |  |  | Other | 0.718 | 0.049 | 0.634 | 0.795 |
| 29 | 360 | 187 | 152 | 21 | Chilkat Lake | 0.057 | 0.018 | 0.031 | 0.089 |
|  |  |  |  |  | Chilkat Mainstem | 0.006 | 0.007 | 0.000 | 0.020 |
|  |  |  |  |  | Chilkoot | 0.024 | 0.013 | 0.007 | 0.049 |
|  |  |  |  |  | Other | 0.912 | 0.022 | 0.872 | 0.946 |
| 30 | 305 | 183 | 113 | 9 | Chilkat Lake | 0.060 | 0.019 | 0.032 | 0.093 |
|  |  |  |  |  | Chilkat Mainstem | 0.014 | 0.012 | 0.000 | 0.037 |
|  |  |  |  |  | Chilkoot | 0.035 | 0.015 | 0.014 | 0.061 |
|  |  |  |  |  | Other | 0.891 | 0.026 | 0.846 | 0.930 |
| 31 | 240 | 185 | 49 | 6 | Chilkat Lake | 0.088 | 0.023 | 0.053 | 0.129 |
|  |  |  |  |  | Chilkat Mainstem | 0.001 | 0.003 | 0.000 | 0.007 |
|  |  |  |  |  | Chilkoot | 0.056 | 0.020 | 0.026 | 0.092 |
|  |  |  |  |  | Other | 0.855 | 0.029 | 0.804 | 0.900 |
| 32 | 303 | 170 | 111 | 22 | Chilkat Lake | 0.365 | 0.039 | 0.303 | 0.429 |
|  |  |  |  |  | Chilkat Mainstem | 0.028 | 0.013 | 0.010 | 0.051 |
|  |  |  |  |  | Chilkoot | 0.050 | 0.018 | 0.024 | 0.083 |
|  |  |  |  |  | Other | 0.558 | 0.040 | 0.491 | 0.624 |
| 33 | 300 | 184 | 101 | 15 | Chilkat Lake | 0.175 | 0.031 | 0.125 | 0.228 |
|  |  |  |  |  | Chilkat Mainstem | 0.005 | 0.007 | 0.000 | 0.020 |
|  |  |  |  |  | Chilkoot | 0.085 | 0.022 | 0.051 | 0.124 |
|  |  |  |  |  | Other | 0.736 | 0.037 | 0.673 | 0.796 |
| 34-40 | 300 | 186 | 98 | 16 | Chilkat Lake | 0.136 | 0.026 | 0.094 | 0.181 |
|  |  |  |  |  | Chilkat Mainstem | 0.001 | 0.003 | 0.000 | 0.008 |
|  |  |  |  |  | Chilkoot | 0.048 | 0.018 | 0.021 | 0.080 |
|  |  |  |  |  | Other | 0.815 | 0.030 | 0.764 | 0.862 |
| All | 2,915 | 1,840 | 920 | 155 | Chilkat Lake |  | 0.010 | 0.127 | 0.160 |
|  |  |  |  |  | Chilkat Mainstem | 0.013 | 0.003 | 0.008 | 0.019 |
|  |  |  |  |  | Chilkoot | 0.049 | 0.007 | 0.038 | 0.060 |
|  |  |  |  |  | Other | 0.795 | 0.011 | 0.776 | 0.813 |

Appendix O.-District 15 commercial drift gillnet fishery genetic stock composition results by statistical week and reporting group, 2018.

| Statistical week | Sample size | Genotyped | $\begin{gathered} \text { Aged } \\ \text { only } \end{gathered}$ | Not genotyped or aged | Reporting group | Mean | SD | CI 5\% | CI 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 126 | 121 | 5 | 0 | Chilkat Lake | 0.273 | 0.043 | 0.204 | 0.346 |
|  |  |  |  |  | Chilkat Mainstem | 0.061 | 0.026 | 0.022 | 0.109 |
|  |  |  |  |  | Chilkoot | 0.178 | 0.035 | 0.124 | 0.237 |
|  |  |  |  |  | Other | 0.488 | 0.048 | 0.410 | 0.567 |
| 26 | 326 | 186 | 100 | 40 | Chilkat Lake | 0.264 | 0.035 | 0.208 | 0.322 |
|  |  |  |  |  | Chilkat Mainstem | 0.104 | 0.024 | 0.068 | 0.145 |
|  |  |  |  |  | Chilkoot | 0.081 | 0.022 | 0.049 | 0.120 |
|  |  |  |  |  | Other | 0.551 | 0.040 | 0.485 | 0.615 |
| 27 | 413 | 183 | 195 | 35 | Chilkat Lake | 0.240 | 0.031 | 0.190 | 0.293 |
|  |  |  |  |  | Chilkat Mainstem | 0.060 | 0.023 | 0.025 | 0.100 |
|  |  |  |  |  | Chilkoot | 0.160 | 0.027 | 0.118 | 0.205 |
|  |  |  |  |  | Other | 0.540 | 0.040 | 0.475 | 0.606 |
| 28 | 503 | 186 | 261 | 56 | Chilkat Lake | 0.158 | 0.028 | 0.116 | 0.207 |
|  |  |  |  |  | Chilkat Mainstem | 0.023 | 0.015 | 0.001 | 0.050 |
|  |  |  |  |  | Chilkoot | 0.268 | 0.033 | 0.214 | 0.323 |
|  |  |  |  |  | Other | 0.551 | 0.038 | 0.488 | 0.613 |
| 29 | 390 | 186 | 166 | 38 | Chilkat Lake | 0.168 | 0.029 | 0.122 | 0.217 |
|  |  |  |  |  | Chilkat Mainstem | 0.001 | 0.003 | 0.000 | 0.006 |
|  |  |  |  |  | Chilkoot | 0.283 | 0.035 | 0.227 | 0.341 |
|  |  |  |  |  | Other | 0.548 | 0.040 | 0.483 | 0.613 |
| 30 | 310 | 188 | 89 | 33 |  |  | 0.030 | 0.160 | 0.259 |
|  |  |  |  |  | Chilkat Mainstem | 0.008 | 0.010 | 0.000 | 0.028 |
|  |  |  |  |  | Chilkoot | 0.392 | 0.036 | 0.332 | 0.452 |
|  |  |  |  |  | Other | 0.392 | 0.037 | 0.331 | 0.454 |
| 31 | 399 | 187 | 166 | 46 |  | 0.212 | 0.029 | 0.165 | 0.262 |
|  |  |  |  |  | Chilkat Mainstem | 0.003 | 0.006 | 0.000 | 0.015 |
|  |  |  |  |  | Chilkoot | 0.503 | 0.037 | 0.442 | 0.562 |
|  |  |  |  |  | Other | 0.282 | 0.035 | 0.225 | 0.341 |
| 32 | 300 | 182 | 88 | 30 | Chilkat Lake | 0.278 | 0.030 | 0.230 | 0.328 |
|  |  |  |  |  | Chilkat Mainstem | 0.001 | 0.002 | 0.000 | 0.004 |
|  |  |  |  |  | Chilkoot | 0.417 | 0.035 | 0.359 | 0.476 |
|  |  |  |  |  | Other | 0.305 | 0.034 | 0.251 | 0.361 |
| 33 | 340 | 189 | 114 | 37 | Chilkat Lake | 0.262 | 0.029 | 0.215 | 0.311 |
|  |  |  |  |  | Chilkat Mainstem | 0.001 | 0.002 | 0.000 | 0.005 |
|  |  |  |  |  | Chilkoot | 0.239 | 0.031 | 0.189 | 0.291 |
|  |  |  |  |  | Other | 0.499 | 0.036 | 0.440 | 0.558 |
| 34-40 | 300 | 186 | 80 | 34 | Chilkat Lake | 0.283 | 0.030 | 0.234 | 0.333 |
|  |  |  |  |  | Chilkat Mainstem | 0.004 | 0.006 | 0.000 | 0.016 |
|  |  |  |  |  | Chilkoot | 0.565 | 0.034 | 0.508 | 0.620 |
|  |  |  |  |  | Other | 0.149 | 0.027 | 0.107 | 0.194 |
| All | 3,407 | 1,794 | 1,264 | 349 | Chilkat Lake | 0.235 | 0.012 | 0.216 | 0.255 |
|  |  |  |  |  | Chilkat Mainstem | 0.009 | 0.003 | 0.005 | 0.014 |
|  |  |  |  |  | Chilkoot | 0.416 | 0.014 | 0.393 | 0.439 |
|  |  |  |  |  | Other | 0.340 | 0.014 | 0.318 | 0.363 |

Appendix P.-District 15 commercial drift gillnet fishery genetic stock composition results by statistical week and reporting group, 2019.

| Statistical week | $\begin{gathered} \text { Sample } \\ \text { size } \\ \hline \end{gathered}$ | Genotyped | $\begin{gathered} \text { Aged } \\ \text { only } \end{gathered}$ | Not genotyped or aged | Reporting group | Mean | SD | CI 5\% | CI 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25-26 | 539 | 187 | 297 | 55 | Chilkat Lake | 0.266 | 0.052 | 0.187 | 0.357 |
|  |  |  |  |  | Chilkat Mainstem | 0.191 | 0.050 | 0.109 | 0.273 |
|  |  |  |  |  | Chilkoot | 0.165 | 0.026 | 0.124 | 0.211 |
|  |  |  |  |  | Other | 0.378 | 0.039 | 0.315 | 0.444 |
| 27 | 418 | 188 | 186 | 44 | Chilkat Lake | 0.162 | 0.030 | 0.116 | 0.213 |
|  |  |  |  |  | Chilkat Mainstem | 0.149 | 0.032 | 0.099 | 0.203 |
|  |  |  |  |  | Chilkoot | 0.202 | 0.028 | 0.156 | 0.249 |
|  |  |  |  |  | Other | 0.488 | 0.040 | 0.422 | 0.555 |
| 28 | 448 | 190 | 212 | 46 | Chilkat Lake | 0.208 | 0.030 | 0.159 | 0.259 |
|  |  |  |  |  | Chilkat Mainstem | 0.100 | 0.024 | 0.062 | 0.142 |
|  |  |  |  |  | Chilkoot | 0.277 | 0.032 | 0.225 | 0.331 |
|  |  |  |  |  | Other | 0.416 | 0.038 | 0.354 | 0.478 |
| 29 | 289 | 188 | 90 | 11 | Chilkat Lake | 0.217 | 0.030 | 0.168 | 0.268 |
|  |  |  |  |  | Chilkat Mainstem | 0.125 | 0.027 | 0.083 | 0.171 |
|  |  |  |  |  | Chilkoot | 0.493 | 0.035 | 0.436 | 0.550 |
|  |  |  |  |  | Other | 0.165 | 0.030 | 0.118 | 0.216 |
| 30 | 350 | 188 | 151 | 11 | Chilkat Lake | 0.154 | 0.028 | 0.111 | 0.202 |
|  |  |  |  |  | Chilkat Mainstem | 0.060 | 0.020 | 0.030 | 0.095 |
|  |  |  |  |  | Chilkoot | 0.597 | 0.035 | 0.539 | 0.654 |
|  |  |  |  |  | Other | 0.188 | 0.031 | 0.139 | 0.240 |
| 31 | 350 | 187 | 141 | 22 | Chilkat Lake | 0.135 | 0.027 | 0.094 | 0.181 |
|  |  |  |  |  | Chilkat Mainstem | 0.047 | 0.015 | 0.025 | 0.073 |
|  |  |  |  |  | Chilkoot | 0.770 | 0.030 | 0.719 | 0.818 |
|  |  |  |  |  | Other | 0.049 | 0.019 | 0.020 | 0.083 |
| 32 | 470 | 186 | 256 | 28 | Chilkat Lake | 0.111 | 0.023 | 0.075 | 0.151 |
|  |  |  |  |  | Chilkat Mainstem | 0.020 | 0.011 | 0.005 | 0.041 |
|  |  |  |  |  | Chilkoot | 0.787 | 0.028 | 0.740 | 0.830 |
|  |  |  |  |  | Other | 0.082 | 0.020 | 0.052 | 0.118 |
| 33 | 330 | 188 | 127 | 15 | Chilkat Lake | 0.233 | 0.031 | 0.184 | 0.287 |
|  |  |  |  |  | Chilkat Mainstem | 0.008 | 0.010 | 0.000 | 0.029 |
|  |  |  |  |  | Chilkoot | 0.536 | 0.034 | 0.479 | 0.593 |
|  |  |  |  |  | Other | 0.222 | 0.033 | 0.170 | 0.277 |
| 34 | 310 | 188 | 101 | 21 | Chilkat Lake | 0.201 | 0.026 | 0.160 | 0.244 |
|  |  |  |  |  | Chilkat Mainstem | 0.001 | 0.004 | 0.000 | 0.008 |
|  |  |  |  |  | Chilkoot | 0.532 | 0.035 | 0.475 | 0.590 |
|  |  |  |  |  | Other | 0.266 | 0.033 | 0.214 | 0.321 |
| 35-40 | 299 | 190 | 100 | 9 | Chilkat Lake | 0.327 | 0.032 | 0.275 | 0.380 |
|  |  |  |  |  | Chilkat Mainstem | 0.004 | 0.007 | 0.000 | 0.019 |
|  |  |  |  |  | Chilkoot | 0.370 | 0.034 | 0.315 | 0.428 |
|  |  |  |  |  | Other | 0.298 | 0.034 | 0.242 | 0.355 |
| All | 3,803 | 1,880 | 1,661 | 262 | Chilkat Lake |  | 0.011 | 0.152 | 0.189 |
|  |  |  |  |  | Chilkat Mainstem | 0.048 | 0.007 | 0.038 | 0.059 |
|  |  |  |  |  | Chilkoot | 0.619 | 0.013 | 0.597 | 0.641 |
|  |  |  |  |  | Other | 0.163 | 0.010 | 0.146 | 0.180 |

Note: Gray highlighted rows indicate the genetic stock identification estimates did not meet acceptable levels of precision and accuracy to estimate the proportion of mixtures within $10 \%$ of the true mixture $90 \%$ of the time.

Appendix Q.-District 15 commercial drift gillnet fishery genetic stock composition results by statistical week and reporting group, 2020.

| Statistical week | $\begin{gathered} \text { Sample } \\ \text { size } \end{gathered}$ | Genotyped | Aged only | Not genotyped or aged | Reporting group | Mean | SD | CI 5\% | CI 95\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26-27 | 537 | 187 | 272 | 78 | Chilkat Lake | 0.072 | 0.018 | 0.045 | 0.103 |
|  |  |  |  |  | Chilkat Mainstem | 0.088 | 0.022 | 0.054 | 0.126 |
|  |  |  |  |  | Chilkoot | 0.130 | 0.024 | 0.093 | 0.171 |
|  |  |  |  |  | Other | 0.711 | 0.034 | 0.654 | 0.765 |
| 28 | 498 | 187 | 232 | 79 | Chilkat Lake | 0.129 | 0.025 | 0.090 | 0.173 |
|  |  |  |  |  | Chilkat Mainstem | 0.108 | 0.022 | 0.074 | 0.146 |
|  |  |  |  |  | Chilkoot | 0.305 | 0.034 | 0.251 | 0.361 |
|  |  |  |  |  | Other | 0.458 | 0.038 | 0.397 | 0.520 |
| 29 | 504 | 185 | 256 | 63 | Chilkat Lake | 0.123 | 0.022 | 0.088 | 0.162 |
|  |  |  |  |  | Chilkat Mainstem | 0.057 | 0.016 | 0.032 | 0.085 |
|  |  |  |  |  | Chilkoot | 0.408 | 0.035 | 0.352 | 0.466 |
|  |  |  |  |  | Other | 0.412 | 0.036 | 0.354 | 0.470 |
| 30 | 554 | 184 | 276 | 94 | Chilkat Lake | 0.126 | 0.023 | 0.090 | 0.166 |
|  |  |  |  |  | Chilkat Mainstem | 0.065 | 0.017 | 0.039 | 0.096 |
|  |  |  |  |  | Chilkoot | 0.263 | 0.031 | 0.213 | 0.314 |
|  |  |  |  |  | Other | 0.546 | 0.036 | 0.487 | 0.605 |
| 31 | 344 | 186 | 118 | 40 | Chilkat Lake | 0.170 | 0.028 | 0.125 | 0.218 |
|  |  |  |  |  | Chilkat Mainstem | 0.031 | 0.018 | 0.000 | 0.062 |
|  |  |  |  |  | Chilkoot | 0.438 | 0.035 | 0.379 | 0.495 |
|  |  |  |  |  | Other | 0.361 | 0.039 | 0.300 | 0.425 |
| 32 | 397 | 186 | 159 | 52 | Chilkat Lake | 0.110 | 0.021 | 0.079 | 0.146 |
|  |  |  |  |  | Chilkat Mainstem | 0.002 | 0.003 | 0.000 | 0.009 |
|  |  |  |  |  | Chilkoot | 0.760 | 0.030 | 0.709 | 0.807 |
|  |  |  |  |  | Other | 0.128 | 0.026 | 0.088 | 0.172 |
| 33 | 480 | 184 | 205 | 91 | Chilkat Lake | 0.214 | 0.026 | 0.172 | 0.257 |
|  |  |  |  |  | Chilkat Mainstem | 0.001 | 0.003 | 0.000 | 0.007 |
|  |  |  |  |  | Chilkoot | 0.479 | 0.033 | 0.425 | 0.534 |
|  |  |  |  |  | Other | 0.306 | 0.033 | 0.252 | 0.362 |
| 34 | 260 | 184 | 64 | 12 | Chilkat Lake | 0.214 | 0.030 | 0.166 | 0.263 |
|  |  |  |  |  | Chilkat Mainstem | 0.011 | 0.011 | 0.000 | 0.033 |
|  |  |  |  |  | Chilkoot | 0.492 | 0.036 | 0.433 | 0.551 |
|  |  |  |  |  | Other | 0.283 | 0.036 | 0.226 | 0.343 |
| 35-39 | 340 | 183 | 114 | 43 |  |  | 0.032 | 0.360 |  |
|  |  |  |  |  | Chilkat Mainstem | 0.003 | 0.004 | 0.000 | 0.012 |
|  |  |  |  |  | Chilkoot | 0.574 | 0.032 | 0.521 | 0.626 |
|  |  |  |  |  | Other | 0.012 | 0.009 | 0.002 | 0.029 |
| all | 3,914 | 1,666 | 1,696 | 552 |  |  | 0.010 | 0.159 |  |
|  |  |  |  |  | Chilkat Mainstem | 0.027 | 0.005 | 0.020 | 0.035 |
|  |  |  |  |  | Chilkoot | 0.495 | 0.013 | 0.475 | 0.516 |
|  |  |  |  |  | Other | 0.303 | 0.012 | 0.283 | 0.323 |

Appendix R.-Estimated age composition of sockeye salmon harvested in the District 15 commercial drift gillnet fishery by year and reporting group, 2017-2020.

| Year | Age | Reporting group | Mean | SD | CI 5\% | CI 95\% | P0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2017 | 0.3 | Chilkat Lake | 0.002 | 0.001 | 0.000 | 0.004 | 0.015 |
| 2017 | 0.3 | Chilkat Mainstem | 0.008 | 0.002 | 0.005 | 0.012 | 0.000 |
| 2017 | 0.3 | Chilkoot | 0.002 | 0.001 | 0.000 | 0.004 | 0.000 |
| 2017 | 0.3 | Other | 0.032 | 0.004 | 0.026 | 0.039 | 0.000 |
| 2017 | 1.2 | Chilkat Lake | 0.003 | 0.002 | 0.001 | 0.006 | 0.000 |
| 2017 | 1.2 | Chilkat Mainstem | 0.000 | 0.001 | 0.000 | 0.001 | 0.159 |
| 2017 | 1.2 | Chilkoot | 0.009 | 0.003 | 0.004 | 0.014 | 0.000 |
| 2017 | 1.2 | Other | 0.196 | 0.009 | 0.182 | 0.210 | 0.000 |
| 2017 | 1.3 | Chilkat Lake | 0.089 | 0.008 | 0.076 | 0.103 | 0.000 |
| 2017 | 1.3 | Chilkat Mainstem | 0.003 | 0.002 | 0.000 | 0.006 | 0.006 |
| 2017 | 1.3 | Chilkoot | 0.030 | 0.005 | 0.021 | 0.039 | 0.000 |
| 2017 | 1.3 | Other | 0.504 | 0.013 | 0.482 | 0.525 | 0.000 |
| 2017 | 2.2 | Chilkat Lake | 0.017 | 0.003 | 0.012 | 0.023 | 0.000 |
| 2017 | 2.2 | Chilkat Mainstem | 0.000 | 0.000 | 0.000 | 0.000 | 0.788 |
| 2017 | 2.2 | Chilkoot | 0.000 | 0.000 | 0.000 | 0.000 | 0.766 |
| 2017 | 2.2 | Other | 0.021 | 0.004 | 0.016 | 0.028 | 0.000 |
| 2017 | 2.3 | Chilkat Lake | 0.030 | 0.005 | 0.023 | 0.038 | 0.000 |
| 2017 | 2.3 | Chilkat Mainstem | 0.000 | 0.000 | 0.000 | 0.000 | 0.782 |
| 2017 | 2.3 | Chilkoot | 0.007 | 0.003 | 0.003 | 0.012 | 0.000 |
| 2017 | 2.3 | Other | 0.032 | 0.004 | 0.025 | 0.038 | 0.000 |
| 2017 | Other | Chilkat Lake | 0.002 | 0.001 | 0.001 | 0.004 | 0.000 |
| 2017 | Other | Chilkat Mainstem | 0.002 | 0.001 | 0.001 | 0.004 | 0.000 |
| 2017 | Other | Chilkoot | 0.002 | 0.001 | 0.001 | 0.004 | 0.000 |
| 2017 | Other | Other | 0.010 | 0.002 | 0.007 | 0.014 | 0.000 |
| 2018 | 0.3 | Chilkat Lake | 0.001 | 0.001 | 0.000 | 0.003 | 0.006 |
| 2018 | 0.3 | Chilkat Mainstem | 0.004 | 0.001 | 0.002 | 0.007 | 0.000 |
| 2018 | 0.3 | Chilkoot | 0.001 | 0.001 | 0.000 | 0.004 | 0.004 |
| 2018 | 0.3 | Other | 0.017 | 0.003 | 0.013 | 0.022 | 0.000 |
| 2018 | 1.2 | Chilkat Lake | 0.007 | 0.003 | 0.003 | 0.012 | 0.000 |
| 2018 | 1.2 | Chilkat Mainstem | 0.000 | 0.000 | 0.000 | 0.001 | 0.179 |
| 2018 | 1.2 | Chilkoot | 0.089 | 0.009 | 0.075 | 0.103 | 0.000 |
| 2018 | 1.2 | Other | 0.167 | 0.009 | 0.152 | 0.183 | 0.000 |
| 2018 | 1.3 | Chilkat Lake | 0.071 | 0.008 | 0.059 | 0.084 | 0.000 |
| 2018 | 1.3 | Chilkat Mainstem | 0.002 | 0.002 | 0.000 | 0.006 | 0.019 |
| 2018 | 1.3 | Chilkoot | 0.303 | 0.013 | 0.282 | 0.324 | 0.000 |
| 2018 | 1.3 | Other | 0.133 | 0.010 | 0.117 | 0.149 | 0.000 |
| 2018 | 2.2 | Chilkat Lake | 0.096 | 0.007 | 0.084 | 0.108 | 0.000 |
| 2018 | 2.2 | Chilkat Mainstem | 0.000 | 0.000 | 0.000 | 0.000 | 0.773 |

-continued-

Appendix R.-Page 2 of 3.

| Year | Age | Reporting group | Mean | SD | CI 5\% | CI 95\% | P0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2018 | 2.2 | Chilkoot | 0.000 | 0.000 | 0.000 | 0.000 | 0.742 |
| 2018 | 2.2 | Other | 0.004 | 0.002 | 0.002 | 0.007 | 0.000 |
| 2018 | 2.3 | Chilkat Lake | 0.056 | 0.006 | 0.046 | 0.066 | 0.000 |
| 2018 | 2.3 | Chilkat Mainstem | 0.000 | 0.000 | 0.000 | 0.000 | 0.793 |
| 2018 | 2.3 | Chilkoot | 0.022 | 0.005 | 0.014 | 0.030 | 0.000 |
| 2018 | 2.3 | Other | 0.010 | 0.003 | 0.006 | 0.015 | 0.000 |
| 2018 | Other | Chilkat Lake | 0.005 | 0.002 | 0.002 | 0.008 | 0.000 |
| 2018 | Other | Chilkat Mainstem | 0.002 | 0.001 | 0.001 | 0.004 | 0.000 |
| 2018 | Other | Chilkoot | 0.001 | 0.001 | 0.000 | 0.003 | 0.001 |
| 2018 | Other | Other | 0.010 | 0.002 | 0.007 | 0.014 | 0.000 |
| 2019 | 0.3 | Chilkat Lake | $0.005$ | 0.003 | 0.000 | 0.010 | 0.003 |
| 2019 | 0.3 | Chilkat Mainstem | 0.036 | 0.005 | 0.028 | 0.045 | 0.000 |
| 2019 | 0.3 | Chilkoot | $0.005$ | 0.002 | 0.002 | 0.008 | 0.000 |
| 2019 | 0.3 | Other | 0.057 | 0.005 | 0.049 | 0.066 | 0.000 |
| 2019 | 1.2 | Chilkat Lake | $0.002$ | 0.001 | 0.000 | 0.004 | 0.003 |
| 2019 | 1.2 | Chilkat Mainstem | $0.001$ | 0.001 | 0.000 | 0.003 | 0.037 |
| 2019 | 1.2 | Chilkoot | $0.052$ | 0.006 | 0.043 | 0.061 | 0.000 |
| 2019 | 1.2 | Other | $0.019$ | 0.004 | 0.014 | 0.026 | 0.000 |
| 2019 | 1.3 | Chilkat Lake | 0.119 | 0.010 | 0.103 | 0.137 | 0.000 |
| 2019 | 1.3 | Chilkat Mainstem | 0.009 | 0.003 | 0.005 | 0.014 | 0.000 |
| 2019 | 1.3 | Chilkoot | 0.559 | 0.013 | 0.537 | 0.580 | 0.000 |
| 2019 | 1.3 | Other | 0.073 | 0.008 | 0.061 | 0.087 | 0.000 |
| 2019 | 2.2 | Chilkat Lake | $0.013$ | 0.002 | 0.009 | 0.016 | 0.000 |
| 2019 | 2.2 | Chilkat Mainstem | 0.000 | 0.000 | 0.000 | 0.001 | 0.554 |
| 2019 | 2.2 | Chilkoot | 0.000 | 0.000 | 0.000 | 0.000 | 0.693 |
| 2019 | 2.2 | Other | 0.002 | 0.001 | 0.000 | 0.005 | 0.000 |
| 2019 | 2.3 | Chilkat Lake | 0.030 | 0.003 | 0.025 | 0.036 | 0.000 |
| 2019 | 2.3 | Chilkat Mainstem | 0.001 | 0.001 | 0.000 | 0.003 | 0.289 |
| 2019 | 2.3 | Chilkoot | 0.004 | 0.002 | 0.001 | 0.008 | 0.000 |
| 2019 | 2.3 | Other | 0.007 | 0.002 | 0.004 | 0.011 | 0.000 |
| 2019 | Other | Chilkat Lake | 0.001 | 0.001 | 0.000 | 0.002 | 0.000 |
| 2019 | Other | Chilkat Mainstem | 0.001 | 0.001 | 0.001 | 0.003 | 0.000 |
| 2019 | Other | Chilkoot | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 |
| 2019 | Other | Other | 0.004 | 0.001 | 0.002 | 0.006 | 0.000 |
| 2020 | 0.3 | Chilkat Lake | 0.001 | 0.001 | 0.000 | 0.004 | 0.006 |
| 2020 | 0.3 | Chilkat Mainstem | 0.022 | 0.003 | 0.017 | 0.028 | 0.000 |
| 2020 | 0.3 | Chilkoot | 0.001 | 0.001 | 0.000 | 0.003 | 0.035 |
| 2020 | 0.3 | Other | 0.026 | 0.004 | 0.020 | 0.033 | 0.000 |
| 2020 | 1.2 | Chilkat Lake | 0.004 | 0.002 | 0.001 | 0.007 | 0.000 |

-continued-

Appendix R.-Page 3 of 3.

| Year | Age | Reporting group | Mean | SD | CI $5 \%$ | CI $95 \%$ | P0 |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 2020 | 1.2 | Chilkat Mainstem | 0.000 | 0.001 | 0.000 | 0.003 | 0.584 |
| 2020 | 1.2 | Chilkoot | 0.052 | 0.007 | 0.042 | 0.063 | 0.000 |
| 2020 | 1.2 | Other | 0.114 | 0.007 | 0.102 | 0.126 | 0.000 |
| 2020 | 1.3 | Chilkat Lake | 0.044 | 0.006 | 0.035 | 0.055 | 0.000 |
| 2020 | 1.3 | Chilkat Mainstem | 0.001 | 0.002 | 0.000 | 0.006 | 0.467 |
| 2020 | 1.3 | Chilkoot | 0.418 | 0.012 | 0.398 | 0.437 | 0.000 |
| 2020 | 1.3 | Other | 0.139 | 0.009 | 0.124 | 0.155 | 0.000 |
| 2020 | 2.2 | Chilkat Lake | 0.056 | 0.006 | 0.047 | 0.065 | 0.000 |
| 2020 | 2.2 | Chilkat Mainstem | 0.000 | 0.000 | 0.000 | 0.000 | 0.837 |
| 2020 | 2.2 | Chilkoot | 0.001 | 0.002 | 0.000 | 0.005 | 0.359 |
| 2020 | 2.2 | Other | 0.008 | 0.003 | 0.004 | 0.013 | 0.000 |
| 2020 | 2.3 | Chilkat Lake | 0.067 | 0.006 | 0.058 | 0.077 | 0.000 |
| 2020 | 2.3 | Chilkat Mainstem | 0.000 | 0.000 | 0.000 | 0.000 | 0.839 |
| 2020 | 2.3 | Chilkoot | 0.015 | 0.004 | 0.009 | 0.022 | 0.000 |
| 2020 | 2.3 | Other | 0.005 | 0.003 | 0.002 | 0.010 | 0.000 |
| 2020 | Other | Chilkat Lake | 0.002 | 0.001 | 0.001 | 0.004 | 0.000 |
| 2020 | Other | Chilkat Mainstem | 0.003 | 0.001 | 0.001 | 0.005 | 0.000 |
| 2020 | Other | Chilkoot | 0.008 | 0.002 | 0.004 | 0.011 | 0.000 |
| 2020 | Other | Other | 0.011 | 0.002 | 0.007 | 0.015 | 0.000 |

Appendix S.-Historical age composition of the Chilkat Lake sockeye salmon escapement weighted by statistical week, 1982-2020.

| Year ${ }^{\text {a }}$ | Weighted by statistical week | Age class |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.1 | 0.3 | 1.2 | 2.1 | 1.3 | 2.2 | 1.4 | 2.3 | 3.2 | 2.4 | 3.3 | Other |
| 1982 | Proportion by age class | 0.62\% | 0.06\% | 2.19\% | 1.65\% | 12.05\% | 47.69\% | 0.00\% | 33.99\% | 1.58\% | 0.00\% | 0.08\% | 0.08\% |
|  | SE of \% | 0.36\% | 0.06\% | 0.43\% | 0.25\% | 0.64\% | 1.79\% | 0.00\% | 1.75\% | 0.56\% | 0.00\% | 0.06\% | --- |
|  | $n$ (sample size) | 6 | 1 | 38 | 43 | 210 | 739 | 0 | 568 | 21 | 0 | 2 | 2 |
| 1983 | Proportion by age class | 0.63\% | 0.00\% | 2.94\% | 3.28\% | 32.26\% | 32.45\% | 0.02\% | 28.17\% | 0.18\% | 0.02\% | 0.04\% | 0.00\% |
|  | SE of \% | 0.15\% | 0.00\% | 0.32\% | 0.37\% | 0.65\% | 0.87\% | 0.02\% | 0.88\% | 0.09\% | 0.02\% | 0.04\% | --- |
|  | $n$ (sample size) | 21 | 0 | 92 | 78 | 1,083 | 795 | 1 | 772 | 4 | 1 | 1 | 0 |
| 1984 | Proportion by age class | 0.12\% | 0.04\% | 1.61\% | 1.51\% | 22.57\% | 53.54\% | 0.03\% | 20.28\% | 0.22\% | 0.03\% | 0.05\% | 0.00\% |
|  | SE of \% | 0.09\% | 0.04\% | 0.27\% | 0.25\% | 0.71\% | 0.90\% | 0.03\% | 0.81\% | 0.10\% | 0.03\% | 0.05\% | --- |
|  | $n$ (sample size) | 2 | 1 | 41 | 42 | 621 | 1,463 | 1 | 550 | 5 | 1 | 1 | 0 |
| 1985 | Proportion by age class | 0.88\% | 0.00\% | 0.66\% | 3.48\% | 10.00\% | 39.25\% | 0.41\% | 44.77\% | 0.37\% | 0.00\% | 0.00\% | 0.17\% |
|  | SE of \% | 0.32\% | 0.00\% | 0.24\% | 0.54\% | 0.77\% | 1.36\% | 0.23\% | 1.44\% | 0.16\% | 0.00\% | 0.00\% | --- |
|  | $n$ (sample size) | 8 | 0 | 9 | 44 | 123 | 529 | 3 | 609 | 6 | 0 | 0 | 2 |
| 1986 | Proportion by age class | 0.00\% | 0.00\% | 3.77\% | 0.99\% | 2.58\% | 26.71\% | 0.00\% | 63.32\% | 2.32\% | 0.00\% | 0.30\% | 0.00\% |
|  | SE of \% | 0.00\% | 0.00\% | 0.75\% | 0.48\% | 0.79\% | 2.16\% | 0.00\% | 2.29\% | 0.73\% | 0.00\% | 0.27\% | --- |
|  | $n$ (sample size) | 0 | 0 | 16 | 5 | 15 | 194 | 0 | 687 | 18 | 0 | 5 | 0 |
| 1987 | Proportion by age class | 1.26\% | 0.00\% | 1.78\% | 3.36\% | 24.20\% | 34.77\% | 0.00\% | 33.70\% | 0.78\% | 0.00\% | 0.14\% | 0.00\% |
|  | SE of \% | $0.38 \%$ | $0.00 \%$ | $0.42 \%$ | 0.66\% | 1.14\% | 1.51\% | 0.00\% | 1.59\% | 0.31\% | 0.00\% | 0.08\% |  |
|  | $n$ (sample size) | 13 | 0 | 27 | 40 | 358 | 499 | 0 | 512 | 8 | 1 | 3 | 0 |
| 1988 | Proportion by age class | 0.00\% | 0.06\% | 0.55\% | 0.00\% | 25.04\% | 12.75\% | 0.08\% | 61.18\% | 0.07\% | 0.02\% | 0.24\% | 0.00\% |
|  | SE of \% | 0.00\% | 0.04\% | 0.24\% | 0.00\% | 0.84\% | 1.46\% | 0.04\% | 1.65\% | 0.05\% | 0.02\% | 0.24\% | --- |
|  | $n$ (sample size) | 0 | 2 | 16 | 0 | 908 | 151 | 4 | 833 | 2 | 1 | 1 | 0 |
| 1989 | Proportion by age class | 0.00\% | 0.00\% | 0.73\% | 0.00\% | 36.44\% | 34.95\% | 0.10\% | 27.50\% | 0.14\% | 0.00\% | 0.10\% | 0.05\% |
|  | SE of \% | 0.00\% | 0.00\% | 0.19\% | 0.00\% | 0.78\% | 0.87\% | 0.06\% | 0.92\% | 0.14\% | 0.00\% | 0.07\% | --- |
|  | $n$ (sample size) | 0 | 0 | 28 | 0 | 1,660 | 1,119 | 4 | 1,059 | 1 | 0 | 2 | 1 |
| 1990 | Proportion by age class | 0.00\% | 0.09\% | 2.04\% | 0.00\% | 14.62\% | 26.96\% | 0.38\% | 55.27\% | 0.63\% | 0.01\% | 0.01\% | 0.00\% |
|  | SE of \% | 0.00\% | 0.06\% | 0.40\% | 0.00\% | 0.81\% | 0.98\% | 0.11\% | 1.16\% | 0.19\% | 0.00\% | 0.01\% | --- |
|  | $n$ (sample size) | 0 | 2 | 47 | 0 | 368 | 653 | 13 | 1,529 | 20 | 2 | 1 | 0 |
| 1991 | Proportion by age class | 0.00\% | 0.00\% | 2.49\% | 0.00\% | 34.09\% | 20.85\% | 0.04\% | 42.25\% | 0.00\% | 0.15\% | 0.14\% | 0.00\% |
|  | SE of \% | 0.00\% | 0.00\% | 0.47\% | 0.00\% | 1.82\% | 1.07\% | 0.04\% | 1.89\% | 0.00\% | 0.07\% | 0.08\% | --- |
|  | $n$ (sample size) | 0 | 0 | 34 | 0 | 578 | 350 | 1 | 632 | 0 | 4 | 3 | 0 |

[^2]Appendix S.-Page 2 of 4.

| Year | Weighted by statistical week | Age class |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.1 | 0.3 | 1.2 | 2.1 | 1.3 | 2.2 | 1.4 | 2.3 | 3.2 | 2.4 | 3.3 | Other |
| 1992 | Proportion by age class | 0.00\% | 0.05\% | 0.68\% | 0.00\% | 21.57\% | 20.92\% | 0.18\% | 56.38\% | 0.07\% | 0.05\% | 0.07\% | 0.04\% |
|  | SE of \% | 0.00\% | 0.03\% | 0.15\% | 0.00\% | 0.66\% | 1.06\% | 0.08\% | 1.14\% | 0.07\% | 0.05\% | 0.05\% | --- |
|  | $n$ (sample size) | 0 | 3 | 27 | 0 | 1,021 | 424 | 5 | 1,019 | 1 | 1 | 2 | 2 |
| 1993 | Proportion by age class | 0.00\% | 0.04\% | 3.67\% | 0.00\% | 7.64\% | 32.98\% | 0.00\% | 51.06\% | 4.42\% | 0.00\% | 0.00\% | 0.19\% |
|  | SE of \% | 0.00\% | 0.03\% | 0.35\% | 0.00\% | 0.39\% | 1.21\% | 0.00\% | 1.26\% | 0.57\% | 0.00\% | 0.00\% | --- |
|  | $n$ (sample size) | 0 | 2 | 151 | 0 | 356 | 856 | 0 | 915 | 85 | 0 | 0 | 2 |
| 1994 | Proportion by age class | 0.00\% | 0.00\% | 1.95\% | 0.00\% | 40.22\% | 19.32\% | 0.06\% | 37.01\% | 0.17\% | 0.00\% | 1.28\% | 0.00\% |
|  | SE of \% | 0.00\% | 0.00\% | 0.35\% | 0.00\% | 1.19\% | 1.15\% | 0.05\% | 1.36\% | 0.10\% | 0.00\% | 0.35\% | --- |
|  | $n$ (sample size) | 0 | 0 | 57 | 0 | 1,281 | 249 | 2 | 581 | 3 | 0 | 14 | 0 |
| 1995 | Proportion by age class | 0.00\% | 0.01\% | 4.44\% | 0.00\% | 25.00\% | 21.40\% | 0.74\% | 48.17\% | 0.16\% | 0.08\% | 0.01\% | 0.00\% |
|  | SE of \% | 0.00\% | 0.01\% | 0.46\% | 0.00\% | 1.01\% | 0.99\% | 0.18\% | 1.20\% | 0.11\% | 0.08\% | 0.01\% | --- |
|  | $n$ (sample size) | 0 | 1 | 148 | 0 | 730 | 476 | 23 | 1,308 | 3 | 1 | 1 | 0 |
| 1996 | Proportion by age class | 0.00\% | 0.00\% | 10.39\% | 0.00\% | 67.53\% | 8.77\% | 0.00\% | 13.31\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |
|  | SE of \% | 0.00\% | 0.00\% | 1.74\% | 0.00\% | 2.67\% | 1.61\% | 0.00\% | 1.94\% | 0.00\% | 0.00\% | 0.00\% | --- |
|  | $n$ (sample size) | 0 | 0 | 32 | 0 | 208 | 27 | 0 | 41 | 0 | 0 | 0 | 0 |
| 1997 | Proportion by age class | 0.40\% | 0.00\% | 38.80\% | 1.33\% | 19.87\% | 14.00\% | 0.00\% | 25.60\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |
|  | SE of \% | 0.23\% | 0.00\% | 1.78\% | 0.42\% | 1.46\% | 1.27\% | 0.00\% | 1.59\% | 0.00\% | 0.00\% | 0.00\% | --- |
|  | $n$ (sample size) | 3 | 0 | 291 | 10 | 149 | 105 | 0 | 192 | 0 | 0 | 0 | 0 |
| 1998 | Proportion by age class | 0.08\% | 0.00\% | 4.92\% | 0.33\% | 69.45\% | 19.03\% | 0.00\% | 6.01\% | 0.00\% | 0.17\% | 0.00\% | 0.00\% |
|  | SE of \% | 0.08\% | 0.00\% | 0.63\% | 0.17\% | 1.33\% | 1.13\% | 0.00\% | 0.69\% | 0.00\% | 0.12\% | 0.00\% | --- |
|  | $n$ (sample size) | 1 | 0 | 59 | 4 | 832 | 228 | 0 | 72 | 0 | 2 | 0 | 0 |
| 1999 | Proportion by age class | 0.00\% | 0.00\% | 1.34\% | 0.00\% | 22.88\% | 16.99\% | 0.08\% | 58.48\% | 0.03\% | 0.19\% | 0.00\% | 0.00\% |
|  | SE of \% | 0.00\% | 0.00\% | 0.23\% | 0.00\% | 0.68\% | 0.97\% | 0.05\% | 1.10\% | 0.03\% | 0.10\% | 0.00\% | --- |
|  | $n$ (sample size) | 0 | 0 | 43 | 0 | 806 | 365 | 3 | 1,325 | 1 | 5 | 0 | 0 |
| 2000 | Proportion by age class | 0.00\% | 0.07\% | 1.77\% | 0.00\% | 5.52\% | 8.89\% | 0.25\% | 80.00\% | 3.45\% | 0.03\% | 0.02\% | 0.00\% |
|  | SE of \% | 0.00\% | 0.07\% | 0.31\% | 0.00\% | 0.53\% | 0.74\% | 0.14\% | 1.00\% | 0.48\% | 0.02\% | 0.02\% | --- |
|  | $n$ (sample size) | 0 | 1 | 56 | 0 | 119 | 180 | 6 | 1,886 | 65 | 2 | 1 | 0 |
| 2001 | Proportion by age class | 0.00\% | 0.00\% | 2.94\% | 0.00\% | 71.39\% | 7.61\% | 0.19\% | 15.37\% | 0.05\% | 0.26\% | 2.11\% | 0.08\% |
|  | SE of \% | 0.00\% | 0.00\% | 0.38\% | 0.00\% | 0.88\% | 0.52\% | 0.11\% | 0.72\% | 0.04\% | 0.13\% | 0.26\% | --- |
|  | $n$ (sample size) | 0 | 0 | 71 | 0 | 1,335 | 289 | 3 | 631 | 2 | 4 | 101 | 5 |

Appendix S.-Page 3 of 4 .

| Year | Weighted by statistical week | Age class |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.1 | 0.3 | 1.2 | 2.1 | 1.3 | 2.2 | 1.4 | 2.3 | 3.2 | 2.4 | 3.3 | Other |
| 2002 | Proportion by age class | 0.03\% | 0.00\% | 2.50\% | 0.20\% | 20.33\% | 25.01\% | 0.38\% | 51.42\% | 0.00\% | 0.01\% | 0.10\% | 0.03\% |
|  | SE of \% | 0.03\% | 0.00\% | 0.37\% | 0.14\% | 0.81\% | 1.08\% | 0.14\% | 1.22\% | 0.00\% | 0.00\% | 0.10\% | --- |
|  | $n$ (sample size) | 1 | 0 | 62 | 3 | 663 | 503 | 10 | 1,259 | 0 | 1 | 1 | 1 |
| 2003 | Proportion by age class | 0.05\% | 0.02\% | 2.51\% | 0.25\% | 10.83\% | 19.18\% | 0.11\% | 66.59\% | 0.25\% | 0.20\% | 0.00\% | 0.00\% |
|  | SE of \% | 0.03\% | 0.01\% | 0.25\% | 0.09\% | 0.51\% | 1.35\% | 0.05\% | 1.40\% | 0.12\% | 0.08\% | 0.00\% | --- |
|  | $n$ (sample size) | 4 | 3 | 110 | 8 | 456 | 322 | 4 | 1,248 | 7 | 7 | 0 | 0 |
| 2004 | Proportion by age class | 0.09\% | 0.08\% | 3.68\% | 0.26\% | 47.11\% | 18.11\% | 0.02\% | 29.90\% | 0.15\% | 0.23\% | 0.38\% | 0.00\% |
|  | SE of \% | 0.05\% | 0.06\% | 0.38\% | 0.11\% | 0.73\% | 0.75\% | 0.01\% | 0.82\% | 0.08\% | 0.11\% | 0.12\% | --- |
|  | $n$ (sample size) | 4 | 2 | 106 | 6 | 1,494 | 517 | 1 | 853 | 4 | 5 | 12 | 0 |
| 2005 | Proportion by age class | 0.06\% | 0.08\% | 3.44\% | 0.33\% | 28.55\% | 10.21\% | 0.59\% | 56.54\% | 0.08\% | 0.04\% | 0.08\% | 0.00\% |
|  | SE of \% | 0.04\% | 0.04\% | 0.38\% | 0.15\% | 0.84\% | 0.70\% | 0.16\% | 0.99\% | 0.08\% | 0.04\% | 0.08\% | --- |
|  | $n$ (sample size) | 2 | 3 | 89 | 6 | 759 | 215 | 15 | 1,172 | 1 | 1 | 1 | 0 |
| 2006 | Proportion by age class | 0.12\% | 0.05\% | 4.64\% | 0.57\% | 55.43\% | 6.49\% | 0.02\% | 32.32\% | 0.04\% | 0.00\% | 0.32\% | 0.00\% |
|  | SE of \% | 0.08\% | 0.03\% | 0.48\% | 0.17\% | 1.14\% | 0.54\% | 0.02\% | 1.09\% | 0.04\% | 0.00\% | 0.11\% | --- |
|  | $n$ (sample size) | 2 | 4 | 98 | 13 | 1,069 | 145 | 1 | 721 | 1 | 0 | 9 | 0 |
| 2007 | Proportion by age class | 0.31\% | 0.02\% | 4.57\% | 2.05\% | 22.45\% | 25.35\% | 0.40\% | 44.10\% | 0.33\% | 0.38\% | 0.00\% | 0.04\% |
|  | SE of \% | 0.12\% | 0.02\% | 0.63\% | 0.37\% | 1.11\% | 1.42\% | 0.15\% | 1.57\% | 0.21\% | 0.15\% | 0.00\% | --- |
|  | $n$ (sample size) | 10 | 1 | 99 | 35 | 470 | 318 | 9 | 613 | 5 | 8 | 0 | 2 |
| 2008 | Proportion by age class | 0.22\% | 1.42\% | 4.18\% | 0.39\% | 25.14\% | 56.35\% | 0.08\% | 12.11\% | 0.00\% | 0.05\% | 0.05\% | 0.02\% |
|  | SE of \% | 0.10\% | 0.23\% | 0.49\% | 0.19\% | 1.22\% | 1.85\% | 0.03\% | 1.65\% | 0.00\% | 0.04\% | 0.04\% | --- |
|  | $n$ (sample size) | 7 | 45 | 114 | 4 | 434 | 405 | 5 | 148 | 0 | 1 | 1 | 1 |
| 2009 | Proportion by age class | 0.23\% | 0.36\% | 2.32\% | 0.30\% | 51.26\% | 20.21\% | 0.00\% | 25.30\% | 0.00\% | 0.00\% | 0.03\% | 0.00\% |
|  | SE of \% | 0.10\% | 0.12\% | 0.32\% | 0.11\% | 0.69\% | 0.87\% | 0.00\% | 0.88\% | 0.00\% | 0.00\% | 0.02\% | --- |
|  | $n$ (sample size) | 6 | 10 | 56 | 8 | 1,280 | 468 | 0 | 486 | 0 | 0 | 1 | 0 |
| 2010 | Proportion by age class | 0.62\% | 0.00\% | 1.98\% | 1.25\% | 24.81\% | 12.32\% | 0.77\% | 58.01\% | 0.07\% | 0.08\% | 0.00\% | 0.08\% |
|  | SE of \% | 0.21\% | 0.00\% | 0.36\% | 0.36\% | 1.00\% | 1.11\% | 0.23\% | 1.36\% | 0.07\% | 0.08\% | 0.00\% | --- |
|  | $n$ (sample size) | 10 | 0 | 32 | 13 | 355 | 142 | 13 | 597 | 1 | 1 | 0 | 1 |
| 2011 | Proportion by Age Class | 0.22\% | 0.18\% | 6.25\% | 2.80\% | 26.57\% | 34.79\% | 0.04\% | 28.50\% | 0.43\% | 0.07\% | 0.16\% | 0.00\% |
|  | SE of \% | 0.18\% | 0.09\% | 0.70\% | 0.51\% | 1.17\% | 1.21\% | 0.02\% | 1.34\% | 0.18\% | 0.07\% | 0.10\% | --- |
|  | $n$ (sample size) | 2 | 4 | 107 | 39 | 444 | 523 | 2 | 391 | 6 | 1 | 3 | 0 |

[^3]Appendix S.-Page 4 of 4.

| Year | Weighted by statistical week | Age class |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.1 | 0.3 | 1.2 | 2.1 | 1.3 | 2.2 | 1.4 | 2.3 | 3.2 | 2.4 | 3.3 | Other |
| 2012 | Proportion by age class | 0.27\% | 1.14\% | 2.62\% | 0.56\% | 27.23\% | 50.32\% | 0.10\% | 16.29\% | 1.15\% | 0.09\% | 0.04\% | 0.19\% |
|  | SE of \% | 0.11\% | 0.28\% | 0.41\% | 0.18\% | 0.90\% | 1.27\% | 0.06\% | 1.11\% | 0.36\% | 0.07\% | 0.04\% | --- |
|  | $n$ (sample size) | 7 | 19 | 49 | 10 | 587 | 613 | 3 | 240 | 15 | 2 | 1 | 2 |
| 2013 | Proportion by age class | 0.19\% | 0.56\% | 7.07\% | 0.45\% | 16.36\% | 31.79\% | 0.44\% | 42.72\% | 0.27\% | 0.06\% | 0.08\% | 0.00\% |
|  | SE of \% | 0.08\% | 0.22\% | 1.41\% | 0.22\% | 0.85\% | 2.46\% | 0.16\% | 2.59\% | 0.13\% | 0.06\% | 0.08\% | --- |
|  | $n$ (sample size) | 6 | 8 | 110 | 7 | 321 | 277 | 8 | 533 | 5 | 1 | 1 | 0 |
| 2014 | Proportion by age class | 0.24\% | 0.00\% | 0.62\% | 1.36\% | 41.63\% | 29.99\% | 0.00\% | 24.64\% | 0.37\% | 0.10\% | 0.75\% | 0.29\% |
|  | SE of \% | 0.11\% | 0.00\% | 0.21\% | 0.33\% | 0.91\% | 1.90\% | 0.00\% | 1.86\% | 0.20\% | 0.06\% | 0.45\% | --- |
|  | $n$ (sample size) | 9 | 0 | 15 | 24 | 629 | 320 | 0 | 279 | 4 | 3 | 9 | 4 |
| 2015 | Proportion by age class | 0.15\% | 0.14\% | 3.70\% | 0.61\% | 11.69\% | 16.63\% | 0.44\% | 65.89\% | 0.72\% | 0.02\% | 0.00\% | 0.00\% |
|  | SE of \% | 0.06\% | 0.06\% | 0.34\% | 0.20\% | 0.92\% | 1.67\% | 0.35\% | 1.87\% | 0.38\% | 0.02\% | 0.00\% | --- |
|  | $n$ (sample size) | 6 | 5 | 129 | 11 | 280 | 190 | 5 | 881 | 7 | 1 | 0 | 0 |
| 2016 | Proportion by age class | 0.15\% | 0.00\% | 2.85\% | 1.09\% | 33.45\% | 26.75\% | 0.00\% | 35.71\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |
|  | SE of \% | 0.08\% | 0.00\% | 0.50\% | 0.44\% | 1.38\% | 1.63\% | 0.00\% | 1.92\% | 0.00\% | 0.00\% | 0.00\% | --- |
|  | $n$ (sample size) | 4 | 0 | 59 | 8 | 465 | 184 | 0 | 282 | 0 | 0 | 0 | 0 |
| 2017 | Proportion by age class | 0.16\% | 0.36\% | 2.00\% | 0.16\% | 51.32\% | 16.23\% | 0.52\% | 29.26\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |
|  | SE of \% | 0.15\% | 0.20\% | 0.50\% | 0.15\% | 2.47\% | $3.21 \%$ | 0.26\% | 3.49\% | 0.00\% | 0.00\% | 0.00\% | --- |
|  | $n$ (sample size) | 1 | 3 | 16 | 1 | 371 | 49 | 4 | 94 | 0 | 0 | 0 | 0 |
| 2018 | Proportion by age class | 0.29\% | 0.21\% | 3.50\% | 2.03\% | 28.71\% | 42.22\% | 0.28\% | 21.97\% | 0.00\% | 0.58\% | 0.21\% | 0.00\% |
|  | SE of \% | 0.17\% | 0.13\% | 0.79\% | 0.94\% | 2.00\% | 2.70\% | 0.17\% | 2.45\% | 0.00\% | 0.58\% | 0.21\% | --- |
|  | $n$ (sample size) | 3 | 3 | 32 | 9 | 236 | 136 | 3 | 119 | 0 | 1 | 1 | 0 |
| 2019 | Proportion by age class | 0.00\% | 0.07\% | 0.86\% | 0.24\% | 65.54\% | 14.64\% | 0.00\% | 18.62\% | 0.00\% | 0.00\% | 0.00\% | 0.02\% |
|  | SE of \% | 0.00\% | 0.04\% | 0.36\% | 0.13\% | 1.37\% | 1.17\% | 0.00\% | 1.21\% | 0.00\% | 0.00\% | 0.00\% | --- |
|  | $n$ (sample size) | 0 | 3 | 10 | 4 | 482 | 142 | 0 | 175 | 0 | 0 | 0 | 1 |
| 2020 | Proportion by age class | 1.59\% | 1.25\% | 4.38\% | 1.64\% | 27.04\% | 34.75\% | 0.95\% | 28.27\% | 0.00\% | 0.00\% | 0.00\% | 0.12\% |
|  | SE of \% | 0.75\% | 0.37\% | 1.03\% | 0.63\% | 2.61\% | 2.42\% | 0.37\% | 2.68\% | 0.00\% | 0.00\% | 0.00\% | --- |
|  | $n$ (sample size) | 9 | 11 | 26 | 7 | 169 | 222 | 7 | 167 | 0 | 0 | 0 | 1 |

[^4]Appendix T.-Average lengths (mid eye to tail fork in mm) of male sockeye salmon in the Chilkat Lake escapement by major age class, 1982-2020.

|  | Age 1.2 |  |  | Age 1.3 |  |  | Age 2.2 |  |  | Age 2.3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Mean | SE | $n$ |
| 1982 | 528 | 10.0 | 18 | 619 | 2.4 | 120 | 547 | 2.3 | 293 | 627 | 1.3 | 335 |
| 1983 | 491 | 5.7 | 54 | 604 | 1.6 | 528 | 545 | 1.9 | 405 | 609 | 1.9 | 392 |
| 1984 | 513 | 11.7 | 27 | 606 | 1.4 | 350 | 522 | 1.6 | 750 | 603 | 1.7 | 317 |
| 1985 | 502 | 7.7 | 6 | 607 | 2.5 | 76 | 512 | 2.6 | 252 | 610 | 1.4 | 315 |
| 1986 | 473 | 14.9 | 10 | 617 | 8.9 | 10 | 555 | 4.0 | 83 | 621 | 1.3 | 428 |
| 1987 | 507 | 11.5 | 20 | 604 | 2.1 | 198 | 538 | 2.5 | 246 | 606 | 2.1 | 314 |
| 1988 | 550 | 4.9 | 13 | 627 | 0.9 | 717 | 567 | 3.1 | 107 | 632 | 1.1 | 594 |
| 1989 | 537 | 9.4 | 22 | 605 | 1.2 | 1,050 | 547 | 1.2 | 574 | 596 | 1.8 | 526 |
| 1990 | 510 | 7.8 | 33 | 585 | 2.9 | 179 | 536 | 1.8 | 358 | 580 | 1.7 | 879 |
| 1991 | 520 | 6.8 | 25 | 596 | 1.7 | 297 | 529 | 1.7 | 227 | 592 | 2.0 | 318 |
| 1992 | 520 | 5.3 | 15 | 594 | 1.3 | 545 | 528 | 2.0 | 278 | 593 | 1.5 | 609 |
| 1993 | 505 | 3.9 | 103 | 582 | 2.2 | 186 | 524 | 1.6 | 516 | 582 | 1.6 | 535 |
| 1994 | 547 | 7.9 | 44 | 582 | 1.2 | 892 | 547 | 3.3 | 173 | 583 | 1.9 | 344 |
| 1995 | 514 | 3.8 | 127 | 579 | 1.6 | 433 | 524 | 2.2 | 290 | 577 | 1.5 | 793 |
| 1996 | 525 | 3.1 | 21 | 598 | 2.6 | 99 | 510 | 6.8 | 19 | 582 | 7.1 | 16 |
| 1997 | 470 | 2.6 | 193 | 587 | 3.3 | 64 | 516 | 5.1 | 45 | 582 | 4.1 | 73 |
| 1998 | 479 | 2.5 | 56 | 545 | 1.8 | 401 | 473 | 2.5 | 112 | 552 | 4.2 | 38 |
| 1999 | 553 | 8.6 | 32 | 602 | 1.5 | 483 | 536 | 2.5 | 226 | 591 | 1.3 | 701 |
| 2000 | 482 | 5.3 | 52 | 583 | 6.2 | 56 | 500 | 3.7 | 111 | 580 | 1.6 | 858 |
| 2001 | 525 | 7.3 | 51 | 596 | 1.5 | 617 | 536 | 2.9 | 174 | 597 | 1.6 | 359 |
| 2002 | 499 | 9.7 | 27 | 616 | 2.0 | 309 | 524 | 3.1 | 232 | 615 | 1.5 | 634 |
| 2003 | 515 | 5.1 | 68 | 591 | 2.3 | 207 | 541 | 3.2 | 158 | 604 | 1.1 | 617 |
| 2004 | 513 | 5.2 | 57 | 597 | 0.9 | 744 | 509 | 2.2 | 250 | 598 | 1.2 | 467 |
| 2005 | 489 | 5.5 | 66 | 576 | 1.8 | 309 | 519 | 3.4 | 103 | 585 | 1.3 | 542 |
| 2006 | 533 | 5.1 | 64 | 592 | 1.1 | 560 | 530 | 4.9 | 88 | 581 | 1.6 | 365 |
| 2007 | 522 | 5.3 | 59 | 598 | 1.9 | 240 | 540 | 3.3 | 168 | 598 | 1.5 | 296 |
| 2008 | 518 | 6.6 | 69 | 605 | 2.3 | 183 | 554 | 2.6 | 216 | 603 | 4.3 | 61 |
| 2009 | 483 | 6.6 | 41 | 595 | 1.5 | 536 | 536 | 3.2 | 181 | 595 | 2.2 | 196 |
| 2010 | 490 | 12.2 | 22 | 585 | 2.9 | 130 | 547 | 5.3 | 62 | 596 | 1.7 | 298 |
| 2011 | 496 | 5.0 | 78 | 602 | 2.5 | 177 | 554 | 2.5 | 202 | 606 | 2.2 | 146 |
| 2012 | 510 | 8.8 | 26 | 620 | 1.8 | 223 | 554 | 2.5 | 227 | 626 | 2.6 | 120 |
| 2013 | 518 | 5.4 | 65 | 618 | 2.6 | 134 | 559 | 3.5 | 115 | 613 | 2.5 | 202 |
| 2014 | 592 | 6.0 | 3 | 625 | 1.9 | 274 | 546 | 4.0 | 109 | 625 | 2.1 | 111 |
| 2015 | 502 | 3.4 | 59 | 581 | 2.9 | 106 | 534 | 3.8 | 56 | 574 | 1.9 | 345 |
| 2016 | 521 | 5.1 | 35 | 592 | 1.3 | 196 | 522 | 4.1 | 68 | 593 | 2.1 | 117 |
| 2017 | 529 | 9.0 | 9 | 591 | 1.7 | 210 | 541 | 6.3 | 17 | 586 | 4.6 | 40 |
| 2018 | 484 | 6.4 | 26 | 581 | 2.8 | 110 | 536 | 4.8 | 56 | 592 | 3.4 | 72 |
| 2019 | 503 | 28.2 | 4 | 571 | 1.9 | 218 | 504 | 5.6 | 54 | 566 | 3.0 | 91 |
| 2020 | 485 | 8.7 | 13 | 559 | 4.2 | 73 | 496 | 4.0 | 76 | 568 | 3.5 | 73 |
| Average $(1982-2016)$ | 513 |  |  | 597 |  |  | 533 |  |  | 597 |  |  |
| $\begin{gathered} \text { Average } \\ (2017-2020) \end{gathered}$ | 500 |  |  | 575 |  |  | 519 |  |  | 578 |  |  |

Appendix U.-Average lengths (mid eye to tail fork in mm) of female sockeye salmon in the Chilkat Lake escapement by major age class, 1982-2020.

| Year | Age 1.2 |  |  | Age 1.3 |  |  | Age 2.2 |  |  | Age 2.3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean | SE | $n$ |
| 1982 | 509 | 5.7 | 20 | 594 | 2.8 | 90 | 536 | 1.4 | 444 | 600 | 1.7 | 233 |
| 1983 | 522 | 4.6 | 38 | 589 | 1.1 | 529 | 539 | 1.3 | 384 | 594 | 1.3 | 367 |
| 1984 | 516 | 11.7 | 14 | 583 | 1.4 | 270 | 522 | 1.1 | 710 | 583 | 1.9 | 231 |
| 1985 | 508 | 20.4 | 3 | 582 | 3.3 | 47 | 524 | 1.3 | 277 | 582 | 1.5 | 293 |
| 1986 | 521 | 15.6 | 6 | 575 | 10.8 | 5 | 542 | 2.5 | 110 | 599 | 1.7 | 259 |
| 1987 | 514 | 12.4 | 7 | 590 | 1.9 | 160 | 530 | 1.8 | 252 | 589 | 1.8 | 198 |
| 1988 | 500 | 40.4 | 3 | 598 | 1.6 | 189 | 553 | 4.6 | 44 | 607 | 1.7 | 237 |
| 1989 | 534 | 20.0 | 6 | 588 | 1.0 | 607 | 540 | 1.0 | 524 | 585 | 1.1 | 526 |
| 1990 | 520 | 7.7 | 14 | 578 | 1.8 | 189 | 525 | 1.5 | 294 | 579 | 1.1 | 648 |
| 1991 | 518 | 8.0 | 9 | 572 | 1.4 | 281 | 527 | 1.8 | 123 | 576 | 1.4 | 314 |
| 1992 | 512 | 8.0 | 11 | 573 | 1.1 | 475 | 524 | 2.0 | 146 | 575 | 1.3 | 410 |
| 1993 | 516 | 3.2 | 48 | 566 | 1.8 | 170 | 518 | 1.3 | 340 | 565 | 1.5 | 379 |
| 1994 | 538 | 8.7 | 13 | 561 | 1.3 | 386 | 520 | 3.4 | 76 | 564 | 1.9 | 236 |
| 1995 | 505 | 9.0 | 21 | 566 | 1.4 | 296 | 517 | 2.0 | 185 | 566 | 1.2 | 514 |
| 1996 | 530 | 4.0 | 11 | 578 | 2.2 | 109 | 526 | 4.3 | 8 | 574 | 4.0 | 25 |
| 1997 | 502 | 3.2 | 82 | 566 | 3.2 | 83 | 522 | 3.6 | 51 | 567 | 2.7 | 115 |
| 1998 | 465 | 7.6 | 3 | 542 | 1.2 | 430 | 478 | 1.8 | 116 | 532 | 4.4 | 34 |
| 1999 | 520 | 10.8 | 11 | 580 | 1.4 | 323 | 529 | 2.1 | 138 | 574 | 1.0 | 623 |
| 2000 | 500 | 33.3 | 3 | 578 | 3.8 | 62 | 524 | 3.5 | 68 | 580 | 0.9 | 1,012 |
| 2001 | 556 | 7.7 | 20 | 586 | 0.9 | 714 | 529 | 2.5 | 115 | 581 | 1.7 | 272 |
| 2002 | 525 | 5.7 | 34 | 598 | 1.4 | 345 | 532 | 1.8 | 270 | 597 | 1.1 | 598 |
| 2003 | 528 | 4.5 | 41 | 578 | 1.5 | 248 | 532 | 2.1 | 160 | 582 | 1.0 | 630 |
| 2004 | 519 | 2.8 | 49 | 579 | 0.8 | 750 | 513 | 1.3 | 267 | 578 | 1.2 | 386 |
| 2005 | 505 | 6.7 | 22 | 570 | 1.0 | 448 | 523 | 2.2 | 109 | 574 | 0.9 | 628 |
| 2006 | 517 | 3.1 | 34 | 573 | 0.9 | 509 | 515 | 3.7 | 57 | 568 | 1.2 | 355 |
| 2007 | 521 | 4.1 | 40 | 582 | 1.7 | 230 | 532 | 1.9 | 150 | 581 | 1.3 | 317 |
| 2008 | 533 | 4.6 | 45 | 582 | 1.5 | 251 | 536 | 1.9 | 189 | 587 | 2.2 | 86 |
| 2009 | 525 | 5.3 | 15 | 581 | 0.9 | 744 | 535 | 1.5 | 287 | 581 | 1.4 | 290 |
| 2010 | 561 | 8.1 | 10 | 579 | 1.6 | 225 | 538 | 2.5 | 80 | 581 | 1.4 | 297 |
| 2011 | 532 | 5.1 | 29 | 585 | 1.4 | 266 | 538 | 1.4 | 321 | 589 | 1.3 | 245 |
| 2012 | 529 | 4.2 | 23 | 594 | 1.4 | 363 | 541 | 1.4 | 386 | 596 | 2.4 | 120 |
| 2013 | 534 | 4.8 | 45 | 593 | 2.0 | 187 | 547 | 1.9 | 162 | 596 | 1.3 | 331 |
| 2014 | 533 | 6.8 | 12 | 597 | 1.5 | 352 | 532 | 2.1 | 211 | 598 | 2.1 | 168 |
| 2015 | 517 | 3.1 | 69 | 571 | 1.6 | 174 | 527 | 1.8 | 134 | 564 | 1.1 | 533 |
| 2016 | 523 | 3.9 | 24 | 572 | 1.3 | 269 | 522 | 2.2 | 115 | 575 | 1.6 | 165 |
| 2017 | 520 | 12.0 | 7 | 570 | 1.6 | 158 | 527 | 4.4 | 32 | 572 | 3.6 | 54 |
| 2018 | 514 | 9.5 | 6 | 572 | 2.0 | 125 | 521 | 2.4 | 82 | 576 | 3.4 | 49 |
| 2019 | 483 | 14.1 | 6 | 551 | 1.5 | 256 | 508 | 3.0 | 87 | 547 | 2.6 | 84 |
| 2020 | 494 | 5.2 | 13 | 545 | 2.3 | 95 | 497 | 1.9 | 145 | 550 | 2.6 | 94 |
| $\begin{gathered} \hline \text { Average } \\ (1982-2016) \\ \hline \end{gathered}$ | 520 |  |  | 579 |  |  | 528 |  |  | 580 |  |  |
| Average $(2017-2020)$ | 503 |  |  | 559 |  |  | 513 |  |  | 561 |  |  |

Appendix V.-Monthly and seasonal mean euphotic zone depths (EZD) and water temperatures at Chilkat Lake. All entries are averages of data from stations 1A and 2A. Annual averages were not included for years missing more than 1 month of data.

| Year | EZD (m) |  |  |  |  |  | Water temperature ( ${ }^{\circ} \mathrm{C}$ ) at 1.0 m depth |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | June | July | Aug | Sept | Oct | Mean | June | July | Aug | Sept | Oct | Mean |
| 1987 | 15.3 | 14.9 | 20.2 | 17.9 | 14.6 | 16.6 | 9.6 | 14.5 | 15.7 | 11.6 | 7.5 | 11.8 |
| 1988 | 11.7 | 16.6 | 16.8 | 22.6 | 22.5 | 18.0 | 13.3 | 14.3 | 14.2 | 12.5 | 10.9 | 13.0 |
| 1989 | 16.7 | 12.9 | 18.9 | 19.9 | 19.4 | 17.6 | 11.8 | 17.0 | 17.3 | 13.9 | 9.3 | 13.9 |
| 1990 | 13.6 | 16.5 | 19.1 | 14.4 | 8.0 | 14.3 | 13.0 | 14.9 | 15.5 | 14.8 | 10.8 | 13.8 |
| 1991 | 13.0 | 14.4 | 16.0 | 19.8 | 14.6 | 15.6 | 10.6 | 14.3 | 15.3 | 12.2 | 8.2 | 12.1 |
| --- |  |  |  |  |  |  |  |  |  |  |  |  |
| 1995 | 11.5 | 16.8 | 14.3 | 19.4 | 21.3 | 16.7 | 13.3 | 16.0 | 16.0 | 13.7 | 9.9 | 13.8 |
| --- |  |  |  |  |  |  |  |  |  |  |  |  |
| 1999 | 10.0 | 17.8 | 21.1 | 20.7 | 22.2 | 18.4 | 14.3 | 14.7 | 16.2 | 12.7 | 7.9 | 13.2 |
| 2000 | 15.7 | 19.9 | 23.2 | 20.3 | 20.8 | 20.0 | 12.1 | 14.3 | 14.8 | 12.0 | 7.9 | 12.2 |
| 2001 | 28.4 | 23.5 | 16.5 | 16.7 | 18.2 | 20.7 | 14.0 | 14.5 | 17.2 | 12.7 | 9.4 | 13.6 |
| 2002 | ND | 18.5 | 18.0 | 25.2 | 33.1 | 23.7 | 13.4 | 13.6 | 15.5 | 12.3 | 9.9 | 12.9 |
| 2003 | 19.5 | 20.5 | 23.7 | 22.1 | 33.9 | 23.9 | 12.8 | 17.3 | 16.4 | 13.4 | 10.3 | 14.0 |
| 2004 | 21.9 | ND | 19.7 | 13.9 | ND | ND | ND | ND | ND | 17.0 | ND | 17.0 |
| 2005 | 23.0 | ND | 23.6 | ND | 21.7 | ND | 14.3 | 16.2 | 17.3 | ND | 10.3 | 14.5 |
| --- |  |  |  |  |  |  |  |  |  |  |  |  |
| 2007 | 28.3 | 16.2 | 25.0 | 22.3 | 22.7 | 22.9 | 12.7 | 16.2 | 15.6 | 13.1 | 8.3 | 13.2 |
| 2008 | ND | 21.5 | 18.1 | 16.1 | ND | ND | ND | 13.0 | 14.8 | 11.6 | ND | 13.1 |
| --- |  |  |  |  |  |  |  |  |  |  |  |  |
| 2010 | 13.4 | 22.4 | 14.8 | 21.1 | ND | 17.9 | 12.4 | 15.0 | 15.2 | 14.6 | ND | 14.3 |
| 2011 | 18.0 | 35.8 | 28.8 | 19.9 | 26.2 | 25.7 | 13.1 | 14.8 | 13.9 | 11.6 | 9.8 | 12.6 |
| 2012 | ND | 28.1 | 25.5 | 31.9 | ND | ND | ND | 11.6 | 16.2 | 12.6 | ND | 13.5 |
| 2013 | 13.9 | 28.9 | 17.3 | ND | 26.5 | 21.7 | 16.8 | 19.9 | 15.8 | ND | 11.1 | 15.9 |
| 2014 | 19.9 | 17.0 | 21.6 | 18.9 | 17.1 | 18.9 | 8.2 | 14.0 | 15.3 | ND | ND | 12.5 |
| 2015 | 28.0 | 19.8 | 16.0 | ND | 14.1 | 19.5 | 16.1 | 16.1 | 15.1 | ND | 10.8 | 14.5 |
| 2016 | 15.6 | 17.5 | 16.5 | 16.9 | ND | 16.6 | 12.2 | 15.8 | 16.5 | 15.8 | 11.5 | 14.4 |
| 2017 | 18.0 | 21.9 | 19.3 | 19.2 | 34.2 | 22.5 | 12.3 | 14.6 | 18.0 | 14.6 | 11.5 | 14.2 |
| 2018 | 16.2 | 25.5 | 17.2 | 19.9 | ND | 19.7 | 10.9 | 15.4 | 16.7 | 16.0 | ND | 14.8 |
| 2019 | ND | 16.6 | 17.4 | 39.0 | 17.6 | 22.7 | 13.4 | 20.0 | 17.2 | 15.8 | 12.3 | 15.7 |
| 2020 | 24.5 | 17.9 | 17.2 | 19.9 | 19.4 | 19.8 | 10.2 | 14.0 | 16.6 | 14.0 | 12.5 | 13.5 |
| $\begin{gathered} \text { Average } \\ (1987-2016) \end{gathered}$ | 17.8 | 20.0 | 19.8 | 20.0 | 21.7 | 19.4 | 12.6 | 15.3 | 15.9 | 13.2 | 9.6 | 13.6 |
| $\begin{gathered} \text { Average } \\ (2017-2020) \\ \hline \end{gathered}$ | 19.6 | 20.5 | 17.8 | 24.5 | 23.7 | 21.2 | 11.7 | 16.0 | 17.1 | 15.1 | 12.1 | 14.5 |

Source: Data from 1987 to 1991 are from Barto (1996).
Note: ND = no data collected.

Appendix W.-Estimated monthly and seasonal mean zooplankton density and biomass at Chilkat Lake, 1987-2020. All stations were averaged and species combined.

| Year | Lab. | Stations sampled | Monthly mean density (no. $/ \mathrm{m}^{2} / 1000$ ) |  |  |  |  | Seasonal mean density (no. $/ \mathrm{m}^{2} / 1000$ ) |  |  | Weighted mean biomass ( $\mathrm{mg} / \mathrm{m}^{2} / 1000$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | June | July | Aug. | Sep. | Oct. | Cladoceran | Copepod | Total | Cladoceran | Copepod | Total |
| 1987 | Soldotna | 2 | 1,227 | 705 | 621 | 201 | 119 | 108 | 466 | 492 | 0.21 | 1.12 | 1.34 |
| 1988 | Soldotna | 2 | 1,196 | 841 | 782 | 513 | 249 | 211 | 505 | 716 | 0.42 | 1.17 | 1.59 |
| 1989 | Soldotna | 2 | 733 | 985 | 687 | 161 | 229 | 152 | 407 | 559 | 0.28 | 0.95 | 1.23 |
| 1990 | Soldotna | 2 | 946 | 640 | 481 | 298 | 139 | 140 | 361 | 501 | 0.31 | 0.84 | 1.16 |
| 1991 | Soldotna | 2 | 805 | 106 | 396 | 49 | 86 | 51 | 237 | 288 | 0.12 | 0.65 | 0.77 |
| 1994 | Soldotna | 4 | 931 | 750 | 696 | 287 | 171 | 149 | 418 | 567 | 0.31 | 1.73 | 2.04 |
| 1995 | Soldotna | 4 | 1,248 | 1,157 | 841 | 423 | 39 | 230 | 512 | 741 | 0.46 | 1.52 | 1.98 |
| 1996 | Soldotna | 4 | 88 | 413 | 258 | 278 | 113 | 192 | 38 | 230 | 0.45 | 0.20 | 0.66 |
| 1997 | Soldotna | 4 | 55 | 233 | 186 | 229 | 70 | 136 | 18 | 155 | 0.43 | 0.08 | 0.51 |
| 1998 | Soldotna | 4 | 201 | 244 | 155 | 77 | 75 | 150 | 0 | 150 | 0.31 | 0.00 | 0.31 |
| 1999 | Soldotna | 4 | 18 | 66 | 147 | 123 | 160 | 94 | 9 | 103 | 0.21 | 0.04 | 0.25 |
| 2000 | Soldotna | 4 | 34 | 177 | 234 | 240 | 61 | 146 | 3 | 149 | 0.45 | 0.01 | 0.47 |
| 2001 | Soldotna | 4 | 25 | 150 | 92 | 18 | 24 | 61 | 1 | 62 | 0.07 | 0.00 | 0.07 |
| 2002 | Soldotna | 4 | 3 | 15 | 110 | 127 | 16 | 52 | 2 | 54 | 0.13 | 0.01 | 0.14 |
| 2003 | Soldotna | 4 | 8 | 33 | 98 | 98 | 89 | 65 | ND | 65 | 0.09 | 0.00 | 0.09 |
| 2004 | Kodiak | 4 | ND | 230 | ND | 588 | ND |
| 2005 | Kodiak | 4 | 99 | 364 | 204 | ND | 35 | 170 | 15 | 176 | 0.50 | 0.07 | 0.56 |
| 2006 | Kodiak | 4 | ND | ND | 208 | ND | 37 | ND | ND | ND | ND | ND | ND |
| 2007 | Kodiak | 4 | 29 | 80 | 131 | 121 | 37 | 80 | 6 | 80 | 0.20 | 0.02 | 0.23 |
| 2008 | Kodiak | 2 | 137 | 454 | 416 | 148 | 65 | 184 | 78 | 244 | 0.35 | 0.41 | 0.76 |
| 2009 | Kodiak | 2 | 66 | 215 | 109 | ND | 110 | 121 | 26 | 125 | 0.16 | 0.13 | 0.30 |
| 2010 | Kodiak | 2 | 94 | 206 | 620 | 253 | 124 | 63 | 210 | 259 | 0.14 | 0.45 | 0.59 |
| 2011 | Kodiak | 2 | 136 | 475 | 436 | 167 | 92 | 189 | 86 | 261 | 0.94 | 0.39 | 1.33 |
| 2012 | Kodiak | 2 | 292 | 486 | ND | 208 | ND |
| 2013 | Kodiak | 2 | 541 | 330 | ND | 248 | 95 | 153 | 155 | 303 | 0.34 | 0.82 | 1.16 |
| 2014 | Kodiak | 2 | 530 | 801 | 328 | 229 | 79 | 191 | 222 | 394 | 0.46 | 0.78 | 1.24 |
| 2015 | Kodiak | 2 | 448 | 335 | 121 | 106 | ND | 108 | 154 | 253 | 0.36 | 0.50 | 0.86 |
| 2016 | Kodiak | 2 | 291 | 363 | 173 | 99 | 72 | 66 | 139 | 200 | 0.36 | 0.51 | 0.73 |
| 2017 | Kodiak | 2 | 509 | 392 | 304 | 374 | 108 | 123 | 226 | 337 | 0.37 | 0.78 | 1.15 |
| 2018 | Kodiak | 2 | 1,069 | 701 | 313 | 222 | ND | 159 | 433 | 576 | 0.72 | 1.48 | 2.20 |
| 2019 | Kodiak | 2 | 604 | 862 | 560 | 576 | 495 | 302 | 323 | 619 | 0.82 | 0.97 | 1.79 |
| 2020 | Kodiak | 2 | 1,202 | 672 | 841 | 599 | 343 | 156 | 579 | 731 | 0.41 | 1.65 | 2.06 |

[^5]were not calculated for 2004, 2006, and 2012 because more than one month of sampling was missing.


[^0]:    1 Reynolds Manney, A. M. Lynn Canal sockeye stock identification. Saltonstall-Kennedy final performance report, July 1, 2015 through June 30, 2017, NOAA Cooperative Agreement No. NA15NMF4270274, September 22, 2017.

[^1]:    2 R Development Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

[^2]:    -continued-

[^3]:    -continued-

[^4]:    a Age composition estimates from 1996 to 1998 were not weighted by statistical week since the weir was not operated in those years.

[^5]:    Notes: ND = no data. Copepod nauplii and immature cladocerans were not included, because they were not enumerated in laboratory samples until 2002 and 2004. Seasonal means

