Alaska Department of Fish and Game Division of Wildlife Conservation

Brown Bear Density on the Alaska Peninsula at Black Lake, Alaska.

A final report on completion of the 1989 density estimation objective and progress report on other objectives of cooperative interagency brown bear studies on the Alaska Peninsula supported by U.S. National Park Service, U.S. Fish and Wildlife Service, and Alaska Department of Fish and Game.
by
Sterling D. Miller
and
Richard A. Sellers
January 1992

STATE OF ALASKA
 Walter J. Hickel, Governor

DEPARTMENT OF FISH AND GAME
Carl L. Rosier, Commissioner

DIVISION OF WILDLIFE CONSERVATION
David G. Kelleyhouse, Director
Wayne L. Regelin, Deputy Director

Persons intending to cite this material should obtain permission from the author(s) and/or the Alaska Department of Fish and Game. Because most reports deal with preliminary results of continuing studies, conclusions are tentative and should be identified as such. Due credit will be appreciated.

Additional copies of this report and other Division of Wildlife Conservation publications may be obtained from:

Publications Specialist
ADF\&G, Wildlife Conservation
P.O. Box 22526
Juneau, AK 99802
(907) 465-4190

The Alaska Department of Fish and Game operates all of its public programs and activities free from discrimination on the basis of race, color, national origin, age, or handicap. Because the department receives federal funding, any person who believes she or he has been discriminated against should write to: O.E.O., U.S. Department of the Interior, Washington, DC 20240.

Abstract

Brown bear (Ursus arctos) density was estimated in a $469.31 \mathrm{mi}^{2}$ portion of the Alaska Peninsula near Chignik. The study area represented a cross-section of all bear habitats in an area receiving moderate hunting pressure. Six replicate searches were completed between 28 May and 6 June, 1989. Using a bear-days estimator described by Miller et al. (1987), estimated density for all bears was $2.03 \mathrm{mi}^{2} /$ bear (190 bears $/ 1,000 \mathrm{~km}^{2}$) with a 95% confidence interval (C.I.) of $1.77-2.30 \mathrm{mi}^{2} /$ bear ($172-209$ bears $/ 1,000 \mathrm{~km}^{2}$). Estimated density for independent bears (excluding offspring with their mothers) was 3.21 $\mathrm{mi}^{2} /$ bear $(95 \%$ C.I. $=2.68-3.75)$. Estimated density for bears more than 2 years old was $2.72 \mathrm{mi}^{2} /$ bear $(95 \%$ C.I. $=2.32-3.14)$. For data of this type, Eberhardt (in press) recommended using the mean of Lincoln-Petersen estimates from each replicate and confidence intervals based on the variance of this mean. With this approach, the density estimate for all bears was $2.08 \mathrm{mi}^{2} /$ bear (95% C.I. $=1.61-2.51$). For independent bears the estimate was $3.33 \mathrm{mi}^{2} /$ bear $(95 \%$ C.I. $=2.64-3.90)$, and for bears more than 2 years old the estimate was $2.85 \mathrm{mi}^{2} /$ bear $(95 \%$ C.I. $=2.21-3.45)$. Estimated density based on mean number of groups multiplied by mean group size was $2.25 \mathrm{mi}^{2} / \mathrm{bear}(95 \%$ C.I. $=$ 1.90-2.74). Using a maximum likelhood estimator, density for all bears was estimated as $2.02 \mathrm{mi}^{2}$ /bear $(95 \%$ C.I. $=1.82-2.21)$, or $3.86 \mathrm{mi}^{2} /$ independent bear $(95 \%$ C.I. $=3.37$ -4.35), or $2.86 \mathrm{mi}^{2}$ bear $\left.>2.0\right) 95 \%$ C.I. $=2.49-3.22$).

Study sample sizes were large (estimated total population was 239 bears and estimated number of independent bears was 149), sightability was high (43.2% for independent bears), and the estimated proportion of independent bears marked averaged 28%. Because of the large sample, the bias correction factor proposed by Eberhardt (in press) did not change from the original estimates.

As speculated elsewhere (Miller et al. 1987, Miller and Ballard 1982), Black Lake female bears accompanied by newborn cubs were thought to have lower sightability than other segments of the population. This bias, if present, would yield an underestimate of bear density. Based on the number of females with litters of yearlings, independent bear density may have been underestimated by 4%. Stream surveys suggest that the actual bias might be smaller than this so no corrections were made for potential bias based on low sightability of females with newborn cubs.

Bear density varied markedly between different quadrats in the search area. A spring bear density estimate for each quadrat was obtained independently using the estimated total bears present and data for each quadrat on search effort expended per bear seen. We estimated a quarter of the search area had an overall density of $1 \mathrm{mi}^{2} / \mathrm{bear}$ (361 bears $/ 1,000 \mathrm{~km}^{2}$) and a quarter of the area had a density less than $5 \mathrm{mi}^{2} /$ bear (71 bears $/ 1,000 \mathrm{~km}^{2}$).

We made preliminary population composition estimates using bears captured in 1988 and 1989. We compared this composition with estimates from captures in this area during
the early 1970s. At that time the population was thought to be declining because of heavy hunting. For both sexes, the present population is older. The current adult population has a higher proportion of males (39 males: 100 females).

Marked bears had high mortality rates in 1988 and 1989. Using modified Kaplan-Meier procedures, survivorship of newborn cubs with radio-marked females was 0.60 (95% C.I. $=0.30-0.90$). Survivorship from natural mortality for bears ≥ 3 was 0.90 for females $(95 \%$ C.I. $=0.83-0.98)$; radio marked males had no natural mortalities. Overall survivorship from hunting and natural mortality for both sexes ≥ 3 was 0.86 (95% C.I. $=0.77-0.94$). These survivorship rates are preliminary and will be refined with additional data.

We estimated the proportion of marked bears harvested by hunters. In 1989, this exploitation rate for the whole population was estimated at 7.7%. The exploitation rate in the counting areas that included Black Lake was estimated at $6.4-7.1 \%$ in 1989. Current harvest rate for bears ≥ 2 was estimated at 11.4%. This is in the middle range reported in the 1970s (8.5-17.1\% for bears ≥ 2).

Stream surveys conducted in 1989 indicated the population remains at high density and is a high producer of cubs. Comparing historical stream survey results with harvests and suspected population trends suggests that appropriately conducted stream surveys may reflect population trends. Salmon escapement data indicated that escapement nearly doubled between 1954-62 and 1963-70. We noted a relationship between years of high and low salmon escapement and percent of newborns in the population the following year. There was no relationship observed between escapement and litter size.

TABLE OF CONTENTS

Page

ABSTRACT i
LIST OF FIGURES iv
LIST OF TABLES iv
BACKGROUND AND OBJECTIVES 1
STUDY AREA AND METHODS 2
RESULTS AND DISCUSSION 5
Captures 5
Population and Density Estimation 6
Minimum Population Estimate 6
Capture-Recapture Estimates 5
Bear-Days Estimates, All Bears 6
Mean Lincoln-Petersen Estimates, All Bears 7
Estimates for Bears > 2.0 7
Estimates Based on Mean Group Size 7
Maximum Likelihood Estimator 9
Sources of Bias and Potential Corrections 10
Capture heterogeneity 10
Ad hoc evaluation of effects of capture heterogeneity based on reproductive status 10
Independent Observations 11
Density Characteristics of Study Area 12
Population Composition 12
Comparisons with 1970-1975 Studies 13
Status of Marked Bears 13
Movements of Marked Bears 14
Estimated Survivorship Rates 14
Exploitation Rates 15
Stream Surveys 16
1989 Survey Results 16
Stream Surveys as a Reflection of Population Size 17
Stream Surveys and Population Composition 19
Effects of Salmon Escapements on COY Production 19
ACKNOWLEDGMENTS 19
LITERATURE CITED 20
FIGURES 23
TABLES 28

LIST OF FIGURES

Figure 1. Location of the Black Lake density estimation study area. Glenn's 1970s study area and harvest reporting units 1201 and 2001 24
Figure 2. Location of quadrats used to estimate brown bear density in the Black Lake study area during spring 1989 25
Figure 3. Trend in bear density estimate and 95% binomial C.I. using the bear- days estimator of Miller et al. Estimate includes dependent offspring assumed to have been sighted independently of their mothers (1987) 26
Figure 4. Trend in bear density estimate and 95% binomial C.I. using the bear- days estimator of Miller et al 26
Figure 5. Trend in bear density estimate using the mean of Lincoln Petersen estimates and confidence interval based on sample variance of this mean 27
Figure 6. Trend in bear density estimate using the mean of Lincoln Petersen estimates and confidence interval based on the sampling variance of this mean 27
Figure 7. Salmon escapement trends in the Black Lake system, 1954-1989 28
LIST OF TABLES
Table 1. Brown bear capture records at Black Lake, Alaska during 1988 and 1989 29
Table 2. Status of marked brown bears during density estimation study at Black Lake during spring 1989. Table updated 2/8/90 32
Table 3. Summary of observations of brown bears during spring 1989 brown bear density estimate at Black Lake, Alaska 34
Table 4. Bear population and density estimates in a 469.31 square mile study area at Black Lake, Alaska based on bear-days estimator of Miller et al. (1987) 35
Table 5. Brown bear population, density and bias correction estimates at Black Lake, Alaska using estimator and 95% C.I. proposed by Eberhardt 36
Table 6. Raw data for estimating number of groups of brown bears at Black Lake Alaska during spring 1989 37
Table 7. Estimate of population size based on mean group size at Black Lake, Alaska, spring 1989 39
Table 8. Number of groups of brown bears seen during density estimation at Black Lake, Alaska, spring 1989 40
Table 9. Search effort during 1989 brown bear density estimate at Black Lake, Alaska 41
Table 10. Number of bears seen during brown bear density estimate at Black Lake, Alaska sorted in order of increasing number of independent bears seen/minute of search effort 42
Table 11. Estimated density in each quadrat of search area based on total estimated population size using the mean of the daily Lincoln-Petersen estimates (239 bears) and a constant calculated from mean number of minutes searched to find a bear in each quadrat 43
Table 12. Sex and age composition of brown bears captured near Black Lake, Alaska 44
Table 13. Current (1990) status of brown bears marked near Black Lake 1988-89 45
Table 14. Survivorship of radio-marked brown bears at Black Lake, Alaska during 1988 and 1989 47
Table 15. Minimum and maximum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1970 50
Table 16. Minimum and maximum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1971-72 50
Table 17. Minimum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1972-73 51
Table 18. Minimum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1973-74 51
Table 19. Minimum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1974-75 52
Table 20. Minimum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1975-76 52
Table 21. Minimum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1988-89 53
Table 22. Exploitation rates for marked brown bears 2 years or older captured 1 or 2 years prior to being harvested 54
Table 23. Black Lake stream survey results. 1982-89 55
Table 24. Number of brown bears counted on each stream survey, at Black Lake, Alaska, 1962-89 57
Table 25. Mean number of brown bears per survey for 6 time periods, 1962-89 58
Table 26. Relationship between cub-of-the-year (COY) production and sockeye salmon escapement the previous year into Black Lake, 1982-89 58

BACKGROUND AND OBJECTIVES

Effective bear management depends on good information on bear population status, trends, and harvests. Accurate information on population size and trend is seldom available because of the expense and technical difficulties in gathering information on the Alaskan Peninsula. Important brown bear populations on the Alaska Peninsula are subject to intensive harvest pressure (Sellers and McNay 1984). During the late 1980s, pressures increased to expand bear seasons in this area (Game Management Unit (GMU) 9). We require information on population size, sustainable harvest levels, and the effects of past and current harvest levels on the numbers and composition of the Alaska Peninsuia bear popuiation to evaluate existing management strategies and formulate new strategies.

Development on the Alaska Peninsula increases with proposals for oil and gas development, a rise in commercial fishing, recreationai facility development, and everexpanding settlement and human presence in formerly remote areas. Similar developments have contributed to reducing grizzly bears to remnant levels in the Lower 48 (Servheen 1989). This study is designed to provide baseline population status information. This is necessary for documenting population trends that result from adverse impacts of development.

The importance of such baseline information was demonstrated by the Exxon Valdez oil spill in March 1989. The absence of baseline information on population density, movements, and reproductive rates make it difficult to fully evaluate the impacts of this oil spill. The information obtained in this study can be used as surrogate baseline information to measure probable changes in bear populations in spill-affected areas. Such comparisons are ongoing in companion studies in Katmai National Park.

Because data on bear populations are expensive to obtain, pooling of resources from several agencies will be more effective than several simultaneous, poorly funded studies. The Black Lake study area is the first of several potential study areas on the Alaska Peninsula where cooperative interagency brown bear studies would be worthwhile.

Research objectives for this study are as follows:

1. Estimate spring density of brown bears in a $500 \mathrm{mi}^{2}$ study area in the Black Lake vicinity (Job 1 and 2.1);
2. Estimate sex and age composition of brown bear inhabiting the study area;
3. Estimate productivity of Black Lake bears including: litter size, age at first reproduction, breeding interval, and offspring mortality rates;
4. Estimate mortality rates with special emphasis on mortality resulting from exploitation by hunters. When possible, determine causes of natural mortalities of post-weaning age classes;
5. Compare and evaluate changes in density, popuiation composition, reproductive rates, recruitment rates, and mortality rates that have occurred in the study area since the early 1970 s ;
6. Document the timing and intensity of use of habitats of special importance to bears such as denning areas, salmon fishing areas, berry and vegetation foraging areas, ungulate calving areas, and others that may become evident through monitoring. Determine if different bear subpopulations use these areas:
7. Evaluate the efficacy of aerial stream surveys in estimating trends in bear population numbers and composition; and
8. Estimate bear numbers (with probable upper and lower bounds) for GMU subunits 9 E and 9 D , by extrapolating from the study density estimate.

These objectives will be accomplished in 6 jobs identified as follows:
Job 1. Density estimate,
Job 2. Monitoring for density estimates, reproductive status and movements,
Job 3. Stream surveys and evaluation,
Job 4. Monitor and analyze harvests,
Job 5. Recompilation of data from past studies, and
Job 6. Data analysis and report writing.

STUDY AREA AND METHODS

Bears were captured and marked during 21-24 May 1989 following procedures outlined by Miller and Sellers (1988). We captured bears in the order they were spotted from a fixed-wing aircraft. During the first days of the capture operation, 4 previously radiomarked bears were still in dens, 2 of these were subsequently determined to have litters of newborn cubs. All bears captured in 1989 were in the density estimation area, herein termed the "census" area (Figure 1). In spring 1988, all bears were in the census area except for bear numbers $49,50,51$, and 52 that were on the West Fork of the Chignik River.

The census area represented a cross-section of habitat on the Alaska Peninsula from the Pacific coast to the Bristol Bay coast (Figure 1). The border of this wedge-shaped area were drawn to benefit from natural barriers to movement. The total census area circumference was approximately 165.3 km . Large bodies of water comprised 32% of
the circumference (Chignik Lagoon [20.5 km], Bristol Bay [9.8 km], Black Lake [10.6 km] and Chignik Lake [11.6 km) . The Chignik River (18.8 km) represented 11%, and high mountain ridges represented $14 \%(23.3 \mathrm{~km}$). Except for the relatively minor barrier represented by the Chignik River these were very effective movement barriers. The remaining 43% of the periphery (70.7 km) represented no barrier to bear movements. Most of this area was on the Bristol Bay flatlands where there were few bears to challenge the census area boundaries.

The study encompassed a 2-dimensional area of $469.31 \mathrm{mi}^{2}\left(1,214.5 \mathrm{~km}^{2}\right)$ which was divided into 11 quadrats (Figure 2). Following procedures described by Miller et al. (1987), we searched each quadrat during each replicate by 1 or 4 search planes. We determined which radio-marked bears were present within the total search area during each survey. We made no effort was made to determine in which quadrat marked bears occurred. Six replicate searches were accomplished during the period 28 May-4 June. Replicates 3 and 4 were both completed on 31 May. The western portion of replicate 5 was done on 1 June and the eastern portion on 3 June. All other replicates were completed in 1 day. Weather conditions precluded complete searches of some quadrat portions on some days. We missed cloudy, high elevation areas and places where wind conditions precluded safe flying. Radio-marked bears seen were classified as "recaptures" of marked animals, bears seen that were not radio-marked were classified as unmarked animals. Following procedures used by investigators in other high bear density areas (Barnes et al. 1988, Schoen 1988), unmarked bears seen during searches were not captured and marked.

We searched in planes at an intensity of approximately 2 minutes $/ \mathrm{mi}^{2}$ on the Bristol Bay flats where bears are highly visible (quadrats $1-3$) and at approximately 3 minutes $/ \mathrm{mi}^{2}$ in the more mountainous terrain (quadrats 4-11). We estimated these different search intensities would make the probability of seeing any individual bear more nearly equal between these different habitats. Considering the 3 -dimensional nature of the mountainous terrain, the search intensities were more nearly equal between quadrats.

In calculating estimates of total population size, we classified offspring accompanying their mothers as "marked" or "unmarked" depending on whether their mother was marked or unmarked. This procedure violates the basic assumption that observations are independent. Simulation studies indicate that violation of this assumption results in a slight tendency to overestimate population size and in an underestimation of variance associated with the estimate (Miller 1990a). The degree to which the variance is underestimated is directly related to the degree to which the independence assumption is violated. To avoid this bias, an additional estimate was calculated for "independent" bears (Barnes et al. 1988). This estimate excluded dependent offspring. To compare with densities in other areas where bears may separate from their mothers at different ages, a third density estimate was calculated for bears 2 years old or older. This eliminates the dependence problem with cubs and yearlings but has more dependence problems than the
estimate of independent bears since some 2-and 3-year-olds are still with their mothers.

We analyzed data using the bear-days estimator described by Miller et al. (1987) and using the mean of Lincoln-Petersen estimates from each replicate as recommended by Eberhardt (1990). The sample estimate of variance for this estimate described by Eberhardt (1990) was:

$$
s^{2}=\frac{\sum\left(N_{i}-\bar{N}\right)^{2}}{(k-1)}
$$

where k is the number of replicate estimates available, and $\overline{\mathrm{N}}$ is the mean of the estimates from each replication. The confidence interval for this estimate described by Eberhardt (1990) is:

$$
\pm \frac{(s) *(t)}{(\sqrt{k})}
$$

where (t) has ($\mathrm{k}-1$) degrees of freedom and is read from a table of t statistics for the alpha level desired (95% and 80% C.I. are reported here).

Eberhardt (in press, equation 13) also proposed a correction factor which corrects for bias that results from low sample size and low number of resighted marks. This correction factor was applied to the data collected.

We calculated sightability as the proportion of bears present seen. Proportion of the population marked was calculated as the mean of the daily values based on the number of marks present divided by the Lincoln-Petersen estimate for that day. We also estimated the number of groups of bears present and multiplied this estimate by mean group size to obtain population estimates.

Survivorship for radio-marked bears was estimated for 1988 and 1989 using modified Kaplan-Meier procedures (Pollock et al. 1989). We assigned time of death as the midpoint between the last radio-location flight when the animal was verified alive and the first flight when it was verified as dead. In a few cases this period was more than several months, and the animal probably died or should have been censored earlier than calculated.

For estimating the impacts of one source of mortality, such as hunting, we treated mortalities from other causes as censored observations following procedures recommended by Pollock et al. (1989). For cubs of the year (COY) and yearling offspring (none of which were radio-marked), mortality was assumed when they disappeared from litters of radio-marked females unless their survival was subsequently verified, in which case they were censored. Disappearance of unmarked offspring aged 2 years or older from litters
was assumed to represent weaning rather than mortality. These animals were censored at the time of separation. Capture related mortalities were not included. We made our observations until den entrance in 1989.

For survivorship estimation, we divided the year into 48 "weeks," with 4 "weeks" per month. The weeks began on the lst, 8th, 16th and 24th of each month. The number of days of the last "week" of each month varied.

During 1989, we monitored bears on April 30, May 12, May 19-June : (periodically). June 22. July 19. August 9-14 (periodically), August 30. September 23. October 5. October 25, November 6, and December 18. Additional locations were monitored during the density estimation phase of this work.

The slight differences between density results reported here and a preliminary report on this work occurred because 1 bear ($\# 43$) was originally classified as present but never seen. This bear was later determined to have shed its collar near its den site and was reclassified as unavailable to be recaptured as a marked bear. Differences in ages reported represent differences between ages estimated in the field and cementum ages estimated by G. Mattson.

RESULTS AND DISCUSSION

Captures

Fifty-nine bears were captured in 1988 (38 females and 21 males). Before the 1989 density estimate, 40 bears were captured (19 females and 21 males); 4 males and 3 females were recaptures of bears first captured in 1988 . We saw an additional 6 radiomarked bears (Nos. 11, 23, 37, 40, 46, and 48) during the 1989 capture operation but they were not recaptured. One female (no. 90, age 19) captured in 1989 was originally marked in 1970 and recaptured in 1974. Records of all bears captured during this study are presented in Table 1. One capture mortality occurred in 1989 when a partially drugged 2.5 -year-old male (No. 62) fell off a cliff. This bear was in bear no. 51 's litter along with 2 siblings. In 1989, transmitters were placed on 39 animals; 12 standard collars, 7 collars with canvas spacers designed to rot through within 2 years, 4 collars with surgical rubber spacers designed to drop off within 1 year, and 14 small glue-on transmitters designed to drop off during summer molt (Table 1). Unfortunately only one of the glue-on transmitters remained on a bear more than 2 weeks, many were scraped off within 1 or 2 days.

When the density estimation began there were 38 radio-collared females in the Black Lake area; 33 of these were present at least once in the area during the density estimation phase. These were bear nos. $1,11,12,13,16,17,18,23,26,30,34,37,38,40,46,51$, $53,55,57,58,59,60,65,67,69,70,76,77,82,87,88,90$, and 92 (Table 2). These 33
females had 15 litters with 30 offspring. Two litters and 4 offspring were COY, 12 offspring in 5 litters were yearlings, and 14 offspring in 8 litters were aged 2 or greater. The 5 radio-marked females that never entered the census area during the census period (nos. 8, 50, 52, 75, and 80) had no offspring (Table 2). There were 11 radio-marked males in the Black Lake area in spring 1989 (nos. 31, 48, 49, 66, 71, 78, 81, 83, 88, 86, and 91). All were present at least once in the density estimation area (Table 2). The total number of marked bears available for capture based on their presence in the density estimation area was 44 plus 30 offspring in litters with radio-marked females.

Population and Density Estimation

The resuits for each replicate flight are presented in Tabie 2. Natural barriers to movements provided the study area with a high level of natural closure (88.7%) (Table 2). Sightability of bears was high, marked bears were seen on 43% of the occasions they were present. Signtability of marked bears varied from 29% during replication i to 58% during replication 2 (Table 3). The proportion of the daily estimated population marked averaged 28%. Data on observations of marked and unmarked bears seen during each replicate are summarized in Table 3.

Minimum Population Estimate

We calculated a minimum number of bears known to be present as the sum of marked bears present and unmarked bears seen. For bears of all ages, this minimum number averaged 137.2 bears (range $=123-161$) (Table 3). A density estimate based on the largest value for the minimum number of bears known to be present (161) was 2.9 mi^{2} /bear. This was the number of known bears present during replication 4 (Table 3).

Capture-Recapture Estimates

Capture-recapture estimates were calculated in three ways. The first way was the "beardays" estimator described by Miller et al. (1987). The second was the mean of the daily Lincoln-Petersen estimates and confidence intervals based on the sampling variance of this mean as described by Eberhardt (in press). The third estimate used Lincoln-Petersen procedures to estimate number of groups. This was multiplied by mean group size to derive the total population estimate. This last estimator was based on suggestions made to V. Barnes (USFWS-Kodiak) by T. Drummer (Michigan Technological University, Houghton, Michigan).

Bear-Days Estimates, All Bears. Using the bear-days estimator, the mean number of bears in the study area was 231.1 . The calculated 95% C.I. on this estimate based on the normal approximation to the binomial was 203.9 to 265.6 bears or -11.8% to $+14.9 \%$. The corresponding density estimate was $2.0 \mathrm{mi}^{2} /$ bear (95% C.I. $=1.77-2.30$). Because of violation of the independent observation assumption, the true 95% C.I. would be larger than this calculated interval (Miller 1990a). The number of independent bears was
estimated at 146.4 (95\% C.I. $=125.2-175.1$) (Table 4). Estimates for all bears and for independent bears based on the bear-days estimator are provided in Table 4 and illustrated in Figures 3 and 4. The bear-days estimator is equivalent to using the means of each of the 3 Lincoln-Petersen parameters (number of marks present, marks seen, and total number of bears seen). This estimator performed well in simulation studies (Eberhardt 1990).

Mean Lincoln-Petersen Estimates, All Bears. The population estimate for all bears based on the mean of Lincoln-Petersen estimates obtained for each replicate was $239.0,3.3 \%$ higher than the bear-days estimate. The 95% C.I. for the mean Lincoln-Petersen estimate based on the sampling variance was ± 51.7 bears or $\pm 21.6 \%$ of the point estimate (Table 5). The lower limit for this estimate was 190.7 bears; this value is larger than the minimum number of bears known to have been present on one day during the search period (161 bears), so the lower limit was not truncated at this minimum value. The range of this C.I. encompassed 103 bears compared to 61.7 bears encompassed by the range of the 95% C.I. based on the bear-days estimate and the binomial approximation to the normal. The population estimate for independent bears based on the mean of Lincoln-Petersen estimates was 149 bears with a 95% C.I. of ± 28.6 bears (Table 5). Changes in the estimates based on the mean of Lincoln-Petersen estimates during the study are presented in Table 5 and illustrated in Figures 5 and 6. The C.I. for this estimate was very broad until replication 4 (Figures 5 and 6). This supports the Eberhardt's assertion (1990) that at least 3 replications are necessary.

Estimates for Bears >2.0. Population estimates for bears aged 2.0 and older are presented in Table 4 using the bear-days estimator and in Table 5 using Eberhardt's approach. As expected, this estimate (174 bears) was between that for the whole population (239) and that for the population of independent bears (149) for the bear-days estimate (Table 4).

Each of these 3 estimates for differing portions of the population has a distinct utility. The estimate of the number of independent bears (excluding dependent young) is the most valid in a statistical sense since the problem of dependent observations is reduced. For comparisons of trend within an area, this estimate has fewer problems. For management purposes the other estimates, even with their larger statistical flaws, may be more useful. Estimates of total population or population older than 2.0 may be more useful in comparisons of density between areas when age at independence is different in each area. Extrapolating the estimate of bears older than 2.0 is useful to obtain a population estimate of bears that can legally be hunted. The total population estimate may be most useful where the harvest rate is expressed as a function of total population.

Estimates Based on Mean Group Size. One potentially useful way to limit bias from nonindependent observations of animals in groups is to estimate number of groups and multiply this by mean group size.

Number of groups and mean group size for bears in this study are presented in Table 6. For analyses based on mean group size, we defined a group as a female with dependent offspring, a breeding aggregation of 2 or more bears, or a group of 2 or more recently separated siblings. A group was "marked" if any individual in the group was radiomarked. Following Drummer (pers. comm.), we defined the following terms:
$\mathrm{n}_{1 i}=$ number of marked groups present in the area at the start of the i th survey (i $=1,2, \ldots 6$).
$\mathrm{n}_{2 i}=$ total number of groups captured in the i th survey.
$\mathrm{m}_{i}=$ total number of marked groups captured in the i th survey.
$\mathrm{T}_{i}=$ total number of individuals captured in the i th survey.

$$
\bar{G}_{1}=\text { average group size in the } i \text { th survey: }=\mathrm{T}_{i} / \mathrm{n} 2_{2 i}
$$

$\hat{N}_{G i}=$ estimated number of groups present in the study area for the ith survey, as calculated with the usual Lincoln-Petersen estimator:

$$
N_{G i}=\frac{\left(n_{1 i}+1\right)\left(n_{2 i}+1\right)}{\left(m_{i}+1\right)}-1
$$

$\hat{N}_{1 i}=$ estimated total number of individuals present in the study area at the time of the i th survey:

$$
\left(\hat{N}_{G i}\right)\left(\bar{G}_{i}\right)
$$

The final estimate was the mean of all $\hat{N}_{1 i}$. The variance was calculated as the sampling variance of this mean (Eberhardt 1990).

We also estimated the number of groups present but not seen. For groups of females with offspring we assumed that group size was unchanged whether that group was seen or not. This is not a reasonable assumption for other bears, termed potential "single" bears. During one replication a marked "single" bear could be seen in a breeding pair with
another bear and treated as a capture of a marked group of 2 . If this bear was not seen during the next replicate flight, its group size would be unknown. Treating such unseen marked bears as groups of 1 would inflate estimates of number of groups present. For "single" bears we calculated the number of marked groups present, but not seen, as:

$$
\frac{x_{i}}{b} \quad \text { where }
$$

$x_{i}=$ number of marked individuals present but not seen on the ith survey, and
$b=$ mean group size for marked "singles" (excludes females with offspring) that were seen during all replications (1.45 for this study).

As a result of these calculations, the value for $\left(\mathrm{n}_{10}\right)$ was not an integer. This value included an estimated group size, but the variance associated with this estimate was not incorporated into the variance of $N_{G i}$. The calculated variance underrepresents the true variance.

The estimated total number of groups was 110.24 (Table 7). For each replicate the estimated number of groups multiplied by the mean group size observed resulted in daily population estimates presented in Table 7. The mean of the 6 daily population estimates obtained in this way was 209.2 bears with a 95% C.I. based on the sampling variance of ± 38 bears (Table 7). We obtained a slightly higher estimate (222.3 bears) by adding an estimate based on mean group size for groups of females with dependent offspring (134.6 bears) and the estimate for all other bears (87.7 bears) (Table 7). Our estimates based on mean group size are $1-13 \%$ lower than the estimates based on the mean of daily LincolnPetersen estimates (239 bears) or the bear-days estimator (231 bears) (Tables 4 and 5).

Maximum Likelihood Estimator. While this manuscript was in press, G.B. White of Colorado State University developed a maximum likelihood estimator for use with data of the type collected in this study. This estimator is mathematically superior to the others discussed and will be used for further comparisons of these results to those in other studies. For this reason, these results are presented here.

Using this estimator, density was estimated as $2.02 \mathrm{mi}^{2} /$ bear of any age (95% C.I. $=2.21-$ $1.82), 3.86 \mathrm{mi}^{2} /$ independent bear (95% C.I. $=4.35-3.37$), and $2.86 \mathrm{mi}^{2} / \mathrm{bear}>2.0(95 \%$ C.I. $=3.22-2.49)$. These values are equivalent to 191.3 bears of all ages $/ 1,000 \mathrm{~km}^{2}(95 \%$ C.I. $=174.6-212.4), 121.6$ independent bears $/ 1,000 \mathrm{~km}^{2}(95 \%$ C.I. $=107.9-139.1)$, and 164.3 bears $>2.0 / 1,000 \mathrm{~km}^{2}(95 \%$ C.I. $=145.7-188.5)$.

Sources of Bias and Potential Corrections

The application of capture-recapture techniques to estimate bear density at Black Lake probably resulted in a more accurate and more precise estimate than has occurred in other applications of these procedures in Alaska. The Black Lake study benefited from high sample sizes compared to density estimates obtained in low-density populations in GMUs 13 and 23 (Miller 1988, Ballard et al. 1988). Compared to density estimates obtained in areas with high bear densities (GMUs 4 and 3) (Schoen in prep., Barnes et al. 1987), we conducted more repiicates during this study and included a larger search area with more bears and higher sightability. An application in GMU 20 (Reynolds et al. 1987) suffered from relatively small sample size. few replications, and low sightabiiity.

Capture heterogeneity. Unequal probability of capturing individual bears is a source of bias in all capture-recapture estimates. For bears, females accompanied by newborn cubs may have lower capture probability and lower sightability than other bears (Miller et al. 1987, Miller and Ballard 1982). This group's low sightability results from late emergence from dens, a tendency to remain at high elevation, an increased tendency to hide from spotting planes, and more sedentary behavior. These biases would result in an underestimate of population density unless females with newborn cubs had a disproportionately high number of the marks distributed in the population. This was not the case; only 2 females with newborn cubs were marked in the Black Lake study. Both were marked during the 1988 pre-marking phase. During the spring 1989 marking phase, we observed no females with newborn cubs and the 2 previously-marked females that had newborn cubs in spring 1989 were still in dens.

Females with newborn cubs were possibly underrepresented in the bear sample seen during the density estimation phase. We spotted 22 groups with newborn cubs but 45 and 44 groups were composed of a female with yearling or offspring older than yearling, respectively (Table 8). Of 29 adult, radio-marked females (age >5.0) that were present during the density estimation phase (Table 2), 14 were without offspring. Of the remaining females, only $2(13.3 \%)$ had newborn cubs, $5(33.3 \%)$ had yearlings, and 8 (53.3%) had offspring classified as "older than yearling." For 38 observations of unmarked bears accompanied by offspring, 34.2% were of groups with newborn cubs compared to 52.6% with "yearlings" and 13.2% with offspring "older" than yearlings (Table 3). These observations include numerous repeated sightings of the same group and the quotation marks indicate that the ages of the offspring were estimates. These observations support the hypothesis that females with newborn cubs were underrepresented both in the sample of marked bears and the sample of unmarked bears observed.

Ad hoc evaluation of effects of capture heterogeneity based on reproductive status. Bias will be introduced if females with newborn cubs have lower capture and resighting probabilities. This bias can be evaluated with separate estimates of the population size for bears except females with newborn cubs and their cubs as proposed by Miller et al.
(1987). Using the bear-days estimator, independent bear population was estimated at 136.1 bears (95% C.I. $=116.2-163.1$); the mean Lincoln-Petersen for this estimate was 137.8 bears. These estimates are only 13 bears less than the estimate for total independent bears (149) (Table 4).

There may have been more than 13 females with newborn cubs (COY) in the study area. Sample sizes were too small to estimate number of females with COY. However, samples were adequate to estimate the number of females with yearling offspring. Not counting environmental effects influencing cub production, we could reasonably assume that there were at least as many females with COY as there were females with yearling offspring (assuming no offspring older than yearlings were incorrectly aged as yearlings).

We derived an estimate of 17.1 females accompanied by yearlings using the bear-days estimator and the capture/recapture records listed in Table 2 (95% C.I. $=11.3-32.3$); an estimate of 18.9 females with yearlings was derived using the mean of the LincolnPetersen estimates. An estimate of the number of all independent bears would be 137.8 plus an estimated 17.1 females with newborn cubs -- a total of 155 bears. This adjusted estimate is only 4% higher than the original estimate of 149 independent bears (Table 4).

We similarly estimated total numbers of bears of all ages. Excluding females with COY and COY, the estimated population size was 204.4 bears (95% C.I. based on sampling variance $=159-249$). Adding 17.1 females with COY and 34.2 COY to this estimate yielded a population estimate of 255.7 . This is 7% higher than the direct population estimate for all bears (239) (Table 5).

These ad hoc efforts to evaluate the possible effect of underestimating the population because of capture bias against females with newborn cubs have obvious problems. At face value, they suggest this bias might have caused an underestimate of about 4% the number of independent bears and 7% of the total population. If fewer cubs were born in 1989 than in 1988, the assumption that there were at least as many females with COY as with yearlings would be wrong. Based on stream surveys discussed later in this report (see Table 23), the 1989 cub production seemed typically lower. If this is correct, the above ad hoc corrections would overestimate the population. Overestimates would also result from misclassifying offspring older than yearlings as yearlings. Because of these problems, we do not recommend adjusting the directly calculated population and density estimates to correct for this possible bias. These calculations are presented as an example of how such corrections could be made when evidence suggests they are necessary.

Independent Observations. During the density estimation phase of this study we observed 607 instances of bears in groups of from 1 to 4 individuals (Table 8). More bears occurred in groups (465) than alone (142). The mean group size, including groups of 1 , was 1.94 bears (Table 8). Of 102 observations of "groups" defined as "adults," single bears, and sibling groups, $53(26.2 \%$) were groups of "adults" (Table 8), as would be
expected during the breeding season when this study occurred. Treating bears in groups as independent sightings when, in fact, they were dependent sightings to some degree, is a source of bias. Simulation studies indicate this bias results in underestimating variance and causes only slight overestimation (Miller 1990).

Density Characteristics of Study Area

The above-described density estimates pertain to a study area where spring brown bear densities ranged from very high in some portions to very low in others. Bears concentrate in the mountains and foothills and on southern exposures in spring. There were relatively few bears on the flatlands between the mountains and Bristol Bay (quadrats 1-3) or on northern aspects of the mountains (quadrat 5). Table 10 provides the search effort in each quadrat during each replicate. The effort averaged 2.38 minutes $/ \mathrm{mi}^{2}$ (0.92 minutes $/ \mathrm{km}^{2}$).

In different quadrats the average search effort per independent bear seen (excluding dependent offspring) varied from 9 to 60 minutes (Table 10). A ranking of the different quadrats by this criterion resulted in almost the same ranking as would have been obtained using the number of bears seen per mi^{2} (Table 10). There was also little difference in this ranking and a ranking based on total number of bears seen, including dependent young (Table 10). Therefore, we used search effort per independent bear seen to obtain an approximation of the density of bears in each quadrat. This was done by calculating the number of bears seen/minute (the reciprocal of the mean number of minutes searched per bear seen in each quadrat) (x_{i}). These reciprocals were summed over all quadrats and the proportion of this sum for each quadrat was calculated as the value (P). Then (P)(239) was the estimated total number of bears in each quadrat where 239 was the estimated number of bears in the whole search area derived from the mean of the Lincoln-Petersen estimates (Table 4). This was converted to a density figure using the area of each quadrat (Table 11). We calculated that the highest density was in quadrat $10\left(0.86 \mathrm{mi}^{2} /\right.$ bear $)$ and the lowest in quadrat $2\left(7.28 \mathrm{mi}^{2} /\right.$ bear $)$ (Table 11). The 2 lowest density quadrats based on these calculations represented 24.4% of the search area and had a combined density of $5.47 \mathrm{mi}^{2} /$ bear (Table 11).

Density is also provided in units of bears $/ 1,000 \mathrm{~km}^{2}$ in Table 11. The highest and lowest density quadrats in the study area were numbers 10 and 2 with respective densities of 449 and 53 bears $/ 1,000 \mathrm{~km}^{2}$ (Table 11). Excluding the 2 lowest density quadrats on the Bristol Bay flats (numbers 10 and 7) which represented 16.2% of the study are, density was 361 bears $/ 1,000 \mathrm{~km}^{2}$ (Table 11). Inclusion or exclusion of high or low density quadrats in this study area may provide density estimates of use in making extrapolations to, or comparisons with, other study areas.

Population Composition

Sex ratio and reproductive status of bears captured in 1988 was not representative of the population. We were biased against females accompanied by COY because these
frequently occurred at high-elevations where capture operations were difficult or dangerous. Bears were very numerous, and with two spotter planes the tagging crews could not keep up with all the bears located. At one point a spotter plane located 9 separate family groups or individuals. This made it necessary to choose which bears to target and this, in turn, made the captures nonrepresentative of the population. We corrected for this possible bias in 1989 by using only one spotter plane and immobilizing bears in the order found.

We minimized the bias against capturing families with COY (Glenn and Miller 1980) by estimating the population composition over a two-year period. We adjusted the sample captured during the second year to reflect the age and status of these bears during the first year. For example, a 10 -year-oid female captured in 1989 with 2 yearings was ailied as a 9 -yr-old female with 2 COY during the 1988 sample. This made it possibie to compare the sex and age composition of bears tagged in the 1970s and in this study.

Compared to the early 1970s, the current population has older adults of both sexes and more males. Following a period of increasing harvests, the aduit sex ratio was 25 males: 100 females in 1970 and 17.4:100 in 1971. Harvests were curtailed in 1974-75 by emergency closure of spring seasons and the population's sex ratio increased to 20:100). The population grew during the next decade and harvest rates were lower than during the early 1970 s. Currently, the adult sex ratio is estimated at 39.4 males: 100 females.

Comparisons with 1970-1975 Studies

Alaska Department Fish and Game staff conducted an intensive tagging program in the Black Lake area from 1970-75, excluding 1973. This study occurred in a $2,800 \mathrm{mi}^{2}$ area surrounding the 1989 Black Lake census area (Figure 1) (Glenn 1980, Glenn and Miller 1980, Modafferi 1984). During Glenn's study, 344 bears were handled 489 times (including capture mortalities), and 136 of these bears were shot by hunters. Also, 376 unmarked bears harvested from 1970-89 were old enough to have been alive at least one year between 1970-75. These data will be used to estimate the population size, density, and exploitation rates during the early 1970s. Because the Glenn study area boundaries and harvest reporting units do not align with our study area (Fig. 1), some subjective extrapolations will be necessary. These analyses are in progress and will be offered in subsequent reports.

Status of Marked Bears

In December 1989, 32 bears wore functioning transmitters. At least 3 bears had failed transmitters or made long distance dispersals in 1989. Ten marked bears were killed by hunters, and 3 bears died of natural causes in 1989. Bear 69 was captured on 22 May 1989 and had 3 yearlings that were not captured. The family reunited after capture and was seen together 5 times through 22 June. On 9 August bear 69 was dead and the condition of the carcass suggested it had been dead for at least two weeks. Cause of
death could not be determined, but the carcass had been fed upon by another bear. There was no trace of her 3 yearlings.

Bear 75 was captured on 23 May and was seen alive on 24 and 27 May (12 km west of the capture site). On 3 June bear 75 was found dead and partially consumed by another bear 9.6 km further west.

Bear 88, a 19 year-old female, was captured on 24 May with an adult male (\#89) in attendance. She was seen six days later, also with a large male, 4 km southeast of where she had been captured. On 9 August her collar was retrieved from a pile of hair. about 5.6 km from where she was seen previously. A carcass of a female, later determined to be 5 years old, was found nearby with an inverted hide and broken zygomatic arches, suggesting predation by another bear. This younger bear was at first thought to be $\# 88$ so no thorough search was made for 88 's carcass. Bear 88 's collar could have been shed and this bear may still be alive, but it was treated as a mortality in mortaiity rate calculations. This classification may change when the site is reinspected next year.

The carcass of another bear was seen along Fan Creek during August stream surveys. No radio signal was heard from this bear and no additional information was obtained as to whether it was marked or unmarked.

Unlike 1988 when capture operations caused the separation of several family groups (Miller and Sellers 1989), the 1989 captures of maternal females caused no separations. Twelve adult females were captured in 1988 that did not have litters of COYs or yearlings. These bears were at least 4 years old and could have bred and had cubs in 1989. Two of these bears had litters of COY in 1989 (Nos. 12 and 38). Two others also could have had litters but their 1989 status was undetermined (Nos. 4 and 43).

Movements of Marked Bears

During 1989, 67 bears were located a total of 530 times including capture locations and general locations of bears killed by hunters (4 of which did not have transmitters). Current status of all marked bears is provided in Table 13. Analysis of movements and habitat use awaits digitizing of locations and mapping cover types.

Estimated Survivorship Rates

Survivorship results presented in this report are preliminary, based on data obtained in 1988 and 1989. Improved survivorship estimates will be obtained with additional study. Cub survivorship was 0.60 , lower than in south-central Alaska (0.69) (Miller in prep. 1987). Survivorship for females 3 or more years old was 0.83 , lower than in southcentral Alaska (Miller, unpublished data). Survival from hunting (0.95) was slightly higher than from natural mortality (0.91). Because relatively few males were radio-marked, and most collared males quickly shed their radios, little confidence can be placed on estimates of
male survival (0.83 for males 3 or more years old; 1 mortality from hunting). Calculated survival rates are provided in Table 14.

It is too early to draw conclusions from the survivorship estimates obtained so far. However, the relatively high mortality from natural causes suggests that this population may have relatively high levels of intra-specific stress and mortality. This hypothesis will be further tested with data obtained in future years. Useful comparisons will also be made with data from bears radio-marked in Katmai National Park where the population density and the proportion of adult males seems higher.

Exploitation Rates

In addition to estimating survivorship, we calculated the proportion of marked bears that were harvested by hunters to compare exploitation rates with earlier studies. A maximum of 83 marked bears 2.5 years or older were alive at the start of the October 1989 hunting season. During the 3 week hunting season, 10 marked bears (6 males and 4 females) were killed, for a 12.3% exploitation rate for bears older than 2 years. According to stream surveys, COY and yearling bears comprised 37% of the population (assuming 20% of the "older offspring" are 2.5 years old). If the number of marked bears is adjusted upwards by this percentage to account for young bears, the exploitation rate for the whole population was 7.7%. This exploitation rate underestimates the actual exploitation rate as it was based on marked bears, assumed no unknown mortality, and assumed complete detection of marks by sealers.

We also estimated the exploitation rate by extrapolating the density estimate to Uniform Coding Units (harvest areas) 1201 and 2001 and expressing harvest in these areas as a percentage of this population (Miller 1988 and in press). This extrapolation was accomplished by subjective stratification of this larger area based on the densities estimated for each quadrat (Table 11). In 1989, hunters in harvest areas 1201 and 2001 (includes census area) (Figure 1) killed 31 bears. Extrapolation from the census area density resulted in an estimated population of 450-500 bears in these harvest areas. The harvest from this estimated population yielded an estimated exploitation rate of 6.4 to 7.1%. This is slightly lower than the estimate of 7.7% based on harvests of marked bears. The population estimate for these harvest areas is possibly inflated because overall bear density could be lower than in the census area.

One of the most important comparisons for management purposes is to contrast exploitation rates during the early 1970s with current rates. Radio collars were not a significant part of marking effort during the earlier study. Therefore, we cannot derive comparable estimates of survival rates. Instead, we will have to assume that during this earlier study survivorship rates from natural mortality will be similar to those that will be obtained in the current study. Until adequate data are available, calculations of exploitation rates must be based on the maximum number of marked bears that could have been alive during the harvest period (i.e. a minimum harvest rate for bears 2 or more
years old). These calculations are shown in Tables 15-21. We calculated exploitation rates for the 1970-71 and 1971-72 regulatory years based only on marked bears that were verified alive at these times (i.e. a maximum exploitation rate for bears 2 or more years old) (Tables 15 and 16).

These were also compared with minimum exploitation rates from 1970 through 1975. These estimates used only bears marked within 2 years of the harvest period (Table 22). Comparison data for 1989 exploitation rates were obtained by including 5 natural mortalities, detected with the use of radio telemetry, as bears still available for harvest. This made calculations comparable with data from the early 1970s when natural mortalities of marked bears were undetectable. The minimum exploitation rates for bears 2 or more years old ranged from 8.5% in regulatory year 1970-71 to 17.1% in 1972-73. The 1973-74 and 1974-75 harvests were curtailed by emergency orders which eliminated the spring hunting season. By 1975, hunting was allowed in alternate regulatory years. Exploitation rates for bears ≥ 2 in fall 1975 and spring 1976 harvests were 9.5% and 8.8%, respectively (Table 22). This was followed by closed seasons until fall 1977. The adjusted 1989 exploitation rate was 11.4% for bears ≥ 2 (Table 22). This is in the midrange of exploitation rates calculated for the early 1970 s. If accurate, the 1989 estimated exploitation rate is probably higher than is sustainable without causing a change in the population structure and a decline in population size. The effects of these harvest rates, once they are more precisely estimated, will be evaluated further in subsequent reports.

Stream Surveys

1989 Survey Results. We flew 5 replicate surveys (2.6-2.9 hrs each) during 9-12 August 1989 (Table 23). The third survey (10 August) was aborted because of turbulence when approximately 75% completed. Only the West Fork of the Chignik River was not surveyed. Not counting the West Fork, the counts for the other 4 surveys were 164, 172, 149 and 164 . On the incomplete third survey, 154 bears were counted when the flight ended. To include the information from this flight, this value was increased by the average number of bears seen during the other 4 counts of the West Fork (20 bears, range 17-26). This artificially reduced the 1989 variance, but is preferable to throwing out the entire survey or to dropping the West Fork from the other 4 surveys.

Survey counts in 1989 ranged from 175 to 192 (mean $=181, S D=6.3$) (Table 23). Bear population was comprised of a relatively low proportion of COY, but a very high proportion of yearlings and older cubs. This indicates good cub production in the previous two years. The percent of single bears was within the range of the previous 7 years.

We used visual collar flags to estimate overall sightability during 1988 stream counts. Lack of adequate sample sizes for males and families with COY hindered determining sightability bias by sex or age cohort. In 1988 and 1989, the high number of radio-marked bears congregated on several short stretches of streams precluded use of radio telemetry
techniques (Barnes 1986). The condition of collar flags affixed to bears in 1988 was not known for every bear in 1989. Consequently, no additional analysis of the accuracy of streams surveys could be made. The discussion that follows addresses this technique's usefulness for detecting major changes in population size and composition.

Stream Survevs as a Retlection of Population Size. Various types of aerial surveys were used to find a practical way to monitor brown bear populations. Erickson and Siniff (1963) identified variables that significantly effected brown bear derial survey resuits along saimon spawning streams. Variables included observer experience, time of day, time relative to peak saimon spawning, and wind speed. Simuitaneous air and ground counts were made 10 times. On the average, aeriai counts tallied 47% of the bears known to be present from ground observations. Several distinctly notable bears were not seen on replicate counts. From these results Erickson and Siniff (1963) concluded that aerial stream counts were incomplete. This conclusion is supported by our study resuits where overall sightability was $30-40 \%$. Even when the exact location of a bear was known from radio signals and several passes were made to spot the bear, only 68% ($n=443$) of the bears were seen.

Despite the number of factors that can influence the stream survey resuits, Erickson and Siniff (1963) did not rule out this technique: "The findings do not negate the use of aerial surveys, but show that with attention to standardization of controllable variables and with awareness of the limitations in the use of aircraft, aerial observations provide perhaps the only feasible means for extensive population assessments." Since resuming aerial surveys in 1982, we have used experienced observers ($\mathrm{n}=3$, with D . Sellers as observer on 22 of 27 surveys), have flown surveys only during the first 12 days of August, and have conducted approximately even numbers of morning (13) and evening (14) surveys. This is important since slightly fewer bears are seen in the moming (mean $=135.7$) than in the evening (mean $=144.3$).

Aerial surveys of alpine habitat were conducted in Southeast Alaska (Schoen and Beier, 1988) and on Kodiak Island (Atwell et al. 1980). Troyer and Hensel (1969) and Troyer (NPS files) also conducted aerial surveys of bears on salmon spawning streams in southern Kodiak Island and within Katmai National Park, respectively. Barnes (1986) explored whether visibility biases exist towards particular cohorts of bears, and how interdrainage movements of bears between salmon spawning streams and differences in vegetative cover on individual streams affects the proportion of bears spotted on aerial surveys.

Despite the amount effort applied to brown bear aerial surveys, there has not been an evaluation of this technique to monitor trends in population size when survey methodology is standardized to minimize the variables. From 1962-1989, 46 surveys were conducted at the peak of sockeye salmon (Oncorhynchus nerka) spawning in the Chignik River/Black Lake area. Surveys were flown in the early morning or evening
hours with acceptable weather conditions. Although several biologists ($\mathrm{n}=5$) and pilots ($\mathrm{n} \geq 8$) were involved over the years, all were judged as experienced. For 1962, this analysis included early morning and evening surveys made by experienced observers ("A" and "B") before 13 August (when bears appeared to disperse). One survey was excluded because of an unrealistically low count of 34 bears (Erickson and Siniff 1963). During one survey in 1974, 1984, and 1989, severe winds prohibited counting in the West Fork drainage of the Chignik River. In 1974, the count was completed the following morning and 9 bears were added. On 8 August 1984, the morning flight after we saw 99 bears. The portion not covered contributed an average of 17 bears (range $14-21$) or 12% (range $8-14 \%$) to the counts for the other 3 flights made that year. Thus 17 bears were added to this survey. The nearly completed 10 August 1989 survey was "completed" by adding 20 bears (the average count for this drainage during the 4 other 1989 surveys) (Table 24).

These survey results are grouped into 6 time periods for comparison (Tables 24 and 25). The 1962 -surveys reflect a population under very light hunting pressure (Unit 9 harvests reportedly averaged less than 100 before 1961 and 120 were killed in 1961). During 7 surveys in 1962, an average of 91.6 (range $81-113 ; S D=10.2$) bears were seen.

During 1965-70, 9 comparable replicate surveys tallied an average of 111.3 bears (range $92-123, S D=8.8$). Within this period there was no detectable trend in number of bears seen per survey. Significantly more bears were seen compared to the 1962 surveys (Mann-Whitney U test, $\underline{P}<0.001$) despite greatly increased harvests (1963-70 Unit 9 harvests averaged 172 bears). Within harvest areas 1201 and 2001 (Fig. 1), the average number of bears killed increased from $14(1961-1962)$ to $22(1963-70)$.

Trends in salmon escapement during this period may be pertinent to this trend. Average sockeye salmon escapements into the Black Lake system increased from 179,800 (195462) to 341,700 (1963-70). This near doubling of an important food source could have increased bear productivity and survival and attracted more bears to survey streams. During this period escapements into adjacent streams remained relatively stable (Fig. 7). It is improbably that bears accustomed to fishing in other streams would switch to the Black Lake system.

During the early 1970s, harvests again increased dramatically and it was believed that the population structure and size changed. Only a few stream surveys were completed in the 1970s. Two counts (77 and 104 bears) were made in 1974, a key year based on previous high harvests and the emergency closure of the spring 1974 hunting season. Because of the small number of replicates, the 1974 totals are not statistically different than the average counts made in the 1960 s . Nevertheless, these data suggest that fewer bears were present following the record harvests of 1972 and 1973. Unfavorable weather in 1975 prevented surveys from being completed. By 1976, following two years of restricted hunting seasons, 115 bears were counted on the one survey completed.

Ten surveys from $1982-84$ showed an average of 149.7 (range $110-173, \mathrm{SD}=18.9$), while 17 surveys from 1985-89 averaged 178.8 (range $147-217, \mathrm{SD}=46.9$). These surveys suggest a finite increase rate of 1.066 from 1974 through 1985.

Stream Surveys and Population Composition. The evaluation of population composition recorded by different observers is clouded by an unclear definition of "yearlings". Erickson and Siniff (1963) classified all offspring older than COY as "yearlings." Midsummer observations of 94 known-age families consisting of young older than COY has demonstrated that 20% of them were litters of 2 or 3 year olds (this study and ADF\&G unpublished data from McNeil River). In our opinion it is not always possible to classify these older litters accurately during aerial surveys. We made distinctions only between COY and "older offspring."

It is clear that protected bear populations such as those within Katmai National Park and McNeil River State Game Sanctuary are proportionately higher in "single" bears than heavily hunted populations (NPS and ADF\&G, unpublished data). Subsequent reports will examine the proportion of single bears seen during aerial stream surveys at Black Lake in relation to exploitation rates to see if a relationship exists that may provide a rough index to harvest intensity.

Effects of Salmon Escapements on COY Production

Bear productivity is influenced by abundance of staple food items such as berries (Rogers 1976, Reynolds et al. 1987, Smith and VanDaele 1988) or garbage (Craighead et al. 1974). Changes in nutritional condition could influence many parameters including age at first litter, conception rate, COY survival, litter size, and interval between litters. These parameters may be influenced by factors such as spring weather and availability of alternate foods.

If the number of salmon available to bears affects productivity, high productivity would be expected following years of high escapement and low productivity following years of low escapement. Bear population composition data for Black Lake since 1982 indicate that COY production was high in 1983 (27\%) and low in 1986 (13\%) and 1989 (12\%). During all other years, COY constituted $18-22 \%$ of the population (Table 26). The large 1983 COY crop followed a year with very high escapement of 616,117 salmon. The two low COY production years followed the two lowest escapements (377,516 in 1985 and 420,577 in 1988). COY litter size could be another measure of the effect of salmon abundance on bear productivity. However, a regression of COY litter size on salmon escapements the previous year from 1982-89 indicated no relationship.

ACKNOWLEDGMENTS

D. Manski, D. Taylor and R. Squibb (Natl. Park Service), R. Poetter, D. Mumma, and R. Wilk (Fish and Wildlife Service), and K. Taylor, B. Taylor, D. McAllister, and L. Van

Daele (ADF\&G) provided field assistance in spring of 1988 and 1989. Special thanks to D. McAllister who organized the equipment, and B. Taylor for supervising the immobilization procedures. Additional support for field activities was provided by K. Schneider, J. Trent, and D. Johnson (ADF\&G), P. Schmidt and R. Hood (USFWS), and J. Meldrum (NPS). J. Swiss kindly allowed us to use his cabins. G. Bos (ADF\&G) and L. Adams (NPS) merit special recognition for their efforts in getting this project approved and K. Schneider for nurturing it along. Our special thanks to M. Thompson, R. Probosco, J. Fox, and others in the Division of Commercial Fisheries (ADF\&G) at Chignik Lagoon who provided important logistic support. Our very special thanks to fixed-wing pilots H. McMahon, C. Mahon, Jerry Lee, L. Nichols, G. Windell, K. Boy, G. Seifert, and J. Collins and to helicopter pilots C. Soloy and B. Lofstedt. This project was funded with equal financial contributions from the National Park Service, the Fish and Wildlife Service, and the Alaska Dept. of Fish and Game.

LITERATURE CITED

Atwell, G., D.L. Boone, J. Gustafson, and V.D. Berns. 1980. Brown bear summer use of alpine habitat on the Kodiak National Wildlife Refuge. Intl. Conf. Bear Res. and Manage. 4: 297-305.

Ballard, Warren B., K.E. Roney, D.N. Larsen, and L.A. Ayres. 1988. Demography of Noatak grizzly bears in relation to human exploitation and mining development. Fed. Aid in Wildl. Restoration Research Progress Report Project W-22-5 and W-22-6, Job 4.20. Alaska Dept. of Fish and Game. 100pp.

Bames, Victor G., R.B. Smith, and L.G. VanDaele. 1988. Density estimates and estimated population of brown bears on Kodiak and adjacent islands, 1987. Draft report to the Kodiak Bear Research and Habitat Maintenance Trust, 15 April, 1988. 34pp.

Craighead, J.J., J.R. Varney, and F.C. Craighead Jr. 1974. A population analysis of the Yellowstone grizzly bear. Mont. Forest and Consv. Expt. Sta., School of Forestry, Univ. of Montana, Missoula, Bull. 40. 20pp.

Eberhardt, L.L. 1990. Using radiotelemetry for mark-recapture studies with edge effects. J. Applied Ecology. 27:259-271.

Erickson, A.W., and D.B. Sniff. 1963. A statistical evaluation of factors influencing aerial survey results on brown bears. N. Am. Wildl. Conf. 28:391-409.

Glenn, L.P. 1980. Morphometric characteristics of brown bear on the central Alaska Peninsula. Intl. Assoc. Bear Res. and Manage. 4:321-330.
\qquad , and L.H. Miller. 1980. Seasonal movements of an Alaska Peninsula brown bear population. Intl. Assoc. Bear Res. and Manage. 4:307-312.

Miller, Sterling D. and W.B. Ballard. 1982. Density and biomass estimates for an interior Alaskan brown bear, Ursus arctos, population. Canadian Field-Naturalist 96(4):448-454.
\qquad , E.F. Becker, and W.B. Ballard. 1987. Density estimates using modified capturerecapture techniques for black and brown bear populations in Alaska. int. Conf. Bear Res. and Manage. 7:23-35.
\qquad . 1987. Susitna Hydroelectric Project Final Report, big game studies, Vol. VI. Black bear and brown bear. Alaska Power Authority and Alaska Dep. of Fish and Game. 276pp.
\qquad . 1988. Impacts of increased hunting pressure on the density, structure, and dynamics of brown bear populations in Alaska's Game Management Unit 13. Fed. Aid in Wildl. Restoration Research Progress Report Project W-22-6, Job 4.21. Alaska Dept. of Fish and Game. 151pp.
\qquad and R.A. Sellers. 1989. Density and structure of a hunted population of brown bears at Black Lake, Alaska: A cooperative interagency study. First annual progress report covering period from July 1987 to December 1988. Alaska Dept. of Fish and Game. 26pp.
. 1990a. Impacts of increased hunting pressure on the density, structure, and dynamics of brown bear populations in Alaska's Game Management Unit 13. Fed. Aid in Wildl. Restoration Research Progress Report Project W-23-2, Job 4.18. Alaska Dept. of Fish and Game. 54pp.
__ 1990b. Detection of differences in brown bear density and population composition caused by hunting. Intl. Assoc. Bear Res. and Manage. 8:393-404.

Modafferi, R. D. 1984. Review of Alaska Peninsula brown bear investigations. Final Report, Fed. Aid in Wildl. Res. Proj. W-17-10, W-17-11, W-2I-1, and W-21-2. Job 4.12R. 43pp.

Pollock, K.H., S.R. Winterstein, C.M. Munck, and P.D. Curtis. Survival analysis in telemetry studies: the staggered entry design. J. Wildl. Manage. 53:7-15.

Reynoids, Harry V., J.L. Hechtel, and D.J. Reed. 1987. Population dynamics of a hunted grizzly bear population in the northcentral Alaska Range. Fed. Aid in WildI. Restoration Research Progress Report Project W-22-5, Job 4.19R. Alaska Dept. of Fish and Game. Juneau. 59pp.

Rogers, L. 1976. Effects of mast and berry crop failures on survival, growth, and reproductive success of black bears. N. Am. Wildl. Conf. Trans. 41:431-438.

Schoen, John W. and L.R. Beier. 1988. Brown bear habitat preferences and brown bear logging and mining relationships in southeast Alaska. Fed. Aid in Wildl. Restoration Research Progress Report Project W-22-6, Job 4.17. Alaska Dept. of Fish and Game. 27pp.

Sellers, Richard A.. and M. McNay. 1984. Population status and management considerations of brown bear, caribou, moose, and wolves on the Alaska Peninsula. Report to the Alaska Board of Game, March 1984. 53 pp .

Servheen, Christopher. 1989. The status and conservation of the bears of the worid. Intl. Conf. Bear Res. and Manage. Monog. Ser. \#2. 32pp.

Smith, R.B., and L.J. VanDaele. 1988. Terror Lake Hydroelectric Project Kodiak Island, Alaska--Final report on Brown Bear Studies (1982-1986). Alaska Dep. of Fish and Game, Kodiak. 201pp.

Troyer, W.A., and R.J. Hensel. 1969. The brown bear of Kodiak Island. U.S. Fish and Wildl. Service, Kodiak Natl. Wildl. Refuge Unpubl. Rep. 233pp.

Figure 1. Location of the Black Lake density estimation study area, Glenn's 1970s study area and harvest reporting units 1201 and 2001.

Figure 2. Location of quadrats used to estimate brown bear density in the Black Lake study area during spring 1989.

Figure 3. Trend in bear density estimate and 95% binomial C.I. using the bear-days estimator of Miller et al. Estimate includes dependent offspring assumed to have been sighted independently of their mothers (1987).

Figure 4. Trend in bear density estimate and 95% binomial C.I. using the bear-days estimator of Miller et al. (1987). Estimate is for number of independent bears, excluding dependent offspring.

Figure 5. Trend in bear density estimate using the mean of Lincoln Petersen estimates and confidence interval based on sample variance of this mean (Eberhardt in press). Estimate includes dependent offspring who were assumed to have been sighted independently of their mothers.

Figure 6. Trend in bear density estimate using the mean of Lincoln Petersen estimates and confidence interval based on the sampling variance of this mean (Eberhardt in press). Estimate excludes dependent offspring still associated with their mothers.

Figure 7. Salmon escapement trends in the Black Lake system, 1954-1989.
Table 1. Brown bear capture records at Black Lake, Alaska during 1988 and 1989. Cementum ages represent readings by G. Mattson.

ID	Sex	Age	Wt. (lbs)	Capture Date	Ear tag		S.N.	Radio Type	Collar Flags	Skull			\% HB	\%PCV	Comments	
										Size	m)					
					L.	R.				Lgth	Width	Cond.				
1	F	11	415	6/1/88	23	24		29739	Y	CF	392	227	2	14.5	42.0	W/2@1, captured
2	F	1	125	6/1/88	60	59	NA			271	147	NA	17.0	45.0	W/ \# \& sibling \#3	
3	M	1	136	6/1/88	59	60	NA			282	151	NA	18.0	45.0	W/ \#1 \& sibling \#2	
4	F	12	425	6/1/88	86	85	29740	W	CF	370	222	4	16.0	45.0	W/ male \#5 and dead ylg.	
5	M	14	850*	6/1/88	80	79	29743			444	259	4	17.0	44.5	W/female \#4 \& dead ylg.	
6	F	4	340	6/1/88	58	57	29719	C.S.	W CF	375	206	3	16.0	45.5	W/male \#7	
7	M	4	385	6/1/88	31	32	-.			371	197	3	15.0	43.5	W/female \#6	
8	F	4	300*	6/1/88	1	2	29732	Y	CF	351	186	4	17.5	49.0	Alone	
9	M	3	475*	6/2/88	21	22	29730	C.S.	R CF	384	209	3	14.6	42.0	W?/male \#10	
10	M	3	290	6/2/88	69	70	17??		R RtE	374	201	NA	14.0	38.5	w?/male \#9	
11	F	25	580	6/2/88	92	91	29737	Y	CF	406	242	4	14.3	41.0	Alone	
12	F	9	370	6/2/88	74	73	29736	W	CF	371	208	NA	15.5	47.0	W/ 1@2 (\#13)	
13	F	2	150	6/2/88	83	84	NA			299	166	NA	15.0	39.0	W/ mom \#12	
14	M	8	485	6/2/88	17	18	NA			436	240	4	14.5	43.0	W/ male \#15	
15	M	16	1100*	6/2/88	75	76	27852	G R	Bk	419	300	5	NA	NA	W/ male \#14	
16	F	4	275*	6/2/88	20	19	29734	C.S.		350	196	NA	14.8	44.0	Alone	
17	F	18	500*	6/2/88	13	14	29745	W	CF	373	246	5	14.4	47.0	W/ big male, not captured	
18	F	11	400*	6/2/88	82	81	29733	Y	CF	394	238	2	16.3	45.0	W/ 2@1 (\#19 \& 20)	
19	F	1	110*	6/2/88	89	90	NA			249	148	3	14.2	43.0	W/ mom \#18	
20	F	1	90*	6/2/88	65	66	NA			261	154	2	13.5	41.0	W/ mom \#18 \& sib (\#19)	
21	F	3	175*	6/2/88	51	52	1022	G W	RtE	300	170	4	14.5	40.0	Alone	
22	F	9	375*	6/2/88	NA	NA	NA			379	239	NA	NA	NA	Capture mortality, drowned	
A	?	1	100*	6/2/88	NA	NA	NA					NA	NA	NA	Darted but not handled, recovered	
B	?	1	100*	6/2/88	NA	NA	NA					NA	NA	NA	Darted but nut handled, recovered	
25	M	16	1000*	6/2/88	7	NA	NA			446	296	4	NA	NA	Alone, Rt. ear missing	
26	F	11	380	6/2/88	5	6	29746	Y	CF	386	231	3	14.4	38.0	W/3@2 (\#27-29)	
27	F	2	170	6/2/88	67	68	27829	G W	LfE	300	167	NA	15.0	40.0	W/ \#26 \& sibs	
28	M	2	160	6/2/88	16	15	NA			307	170	NA	13.8	43.0	W/ \#26 \& sibs	
29	M	2	155	6/2/88	97	98	NA	R	LfE	295	165	NA	13.9	41.0	W/ \#26 \& sibs	
30	F	9	385	6/3/88	9	10	29724	W	CF	377	226	3	16.0	43.0	W/1@ 2* (\#31)	
31	M	2	140	6/3/88***	99	NA				289	157	3	19.0	45.0	W/ mom \#30	
23	F	18	380	6/3/88	76	75	29754			375	228	4	16.0	44.0	W/3@1 (only \#24 captured)	
24	M	1	40*	6/3/88	86	85	NA			239	128	2	13.0	39.5	W/ mom \#23 \& 2 siblings	
32	F	14	400*	6/3/88	61	62	29729			377	239	3	NA	NA	Capture mont, w/2@3* (\#33 captured)	
33	M	2	230	6/3/88	35	36	NA			330	180	3	14.0	42.0	W/ mom \#32 \& 2 siblings	

Table 1. (continued)

ID	Skull															
		Age	Wt. (lbs)	Capture Date	Ear tag L.		S.N.	Radio Type	Collar Flags	Lgth	Size(mm)		\% HB	\%PCV	Comments	
	Sex						Width				Cond.					
34	F	12	475*	6/3/88	95	96	29728	W	CF	405	245	4	20.0	47.0	W/3@0, not captured	
36	F	10	285	6/3/88	45	46	29721	W	CF	360	235	2	17.0	45.6	W/ 2@0, captured	
A	F	0	24	6/3/88	B20		NA			NA	NA	NA	NA	NA	Rototags, w/mom \#36, drugged by hand	
B	F	0	22.5	6/3/88	B19		NA			NA	NA	NA	NA	NA	Rototags, w/mom \#36, drugged by hand	
37	F	5	340	6/3/88	98	18	29718	W	CF	363	200	4	16.0	44.0	W/1@1*(${ }^{\text {(}}$ 5 lbs), not captured	
38	F	16	450*	6/3/88	22	50	:29738	W	CF	373	234	3	13.0	40.0	W/1@2*(\#39)	
39	M	3	215	6/3/88	43	44	1703	G		350	192	3	16.0	40.5	W/ mom \#38	
40	F	4	340	6/3/88	71	72	29757	W	CF	364	189	1	15.0	42.5	Weighed wet, w/ male \#41	
41	M	13	850*	6/3/88	34	33	29751	R	RtE	410	269	NA	16.5	44.5	W/ female \#40	
42	M	4	425*	6/3/88	25	26	29742	C.S. 0		387	209	3	18.5	45.5	W/ female \#43	
43	F	5	275*	6/3/88	79	80	29750	C.S. Y		352	199	2	13.5	37.0	W/ male \#42	
44	F	20	425*	6/3/88	97	70	29735	W	CF	411	231	3	17.5	41.0	W/1@2 (\#45)	
45	F	2	225*	6/3/88	77	78	29756	C.S.		340	181	3	14.0	42.0	Wi \#44(mom)	
46	F	10	320*	6/4/88	7	8	29722	W	CF	384	225	2	16.3	44.0	W/ 3@0, not captured	
47	M	4	250*	6/4/88	96	5	29749	SURG		364	195	5	16.0	45.0	Alone	
48	M	3	340	6/4/88	23	24	29720	C.S. R		359	192	3	15.5	43.0	Alone	
49	M	6	800*	6/4/88	11	12	NA			475	260	3	NA	NA	W/ female \#50	
50	F	4	270*	6/4/88	29^{\prime}	30	29731	C.S.		371	212	1	17.3	46.0	W/ male \#49	
51	F	12	400	6/4/88	56	55	29741	W	CF	381	242	3	14.6	41.0	W/ 3@1 (not captured, age certain)	
52	F	3	345	6/4/88	35	36	29753			360	189	3	15.0	43.0	Alone	
53	F	3	250*	6/5/88	63	64	29727	C.S.		336	175	2	13.0	37.5	Alone	
54	M	3	265	6/5/88	37	38	29752	SURG	R CF	334	193	2	15.0	48.0	Alone	
55	F	9	450*	6/5/88	26	99	29747	W	CF	372	211	3	15.5	42.0	W/ adult male(?)	
56	M	2	187	6/5/88	88	87	NA			312	163	2	13.5	38.5	W/ larger adult (mom?)	
57	F	8	365	6/5/88	27	28	29748	Y	CF	377	217	3	14.0	43.0	W/ large male(?)	
58	F	18	450*	6/5/88	92	93	29755	W	CF	378	241	3	14.5	41.0	W/ 2@1, not captured	
59	F	6	450*	5/21/89	304		29723	W	CF	377	207		15	42		
5	M	15	800*	5/21/89			32235	G O	HUMP	437	268	4				
58	F	19	400*	5/21/89	093			W	CF						W/ 2@2, Old collar	
51	F	13	375*	5/21/89	056			W	CF			3	13	41	Old collar	
60	F	9	450*	5/21/89	306		34069	W	CF	388	220	4	16.5	46		
61	F	4	200*	5/21/89	302		32234	G		306	175	3	8	26		
62	M	2*	170*	5/21/89											Capture mortality	
49	M	7	850*	5/21/89	011		32236	G G	BACK	401	269					
64	M	10	1200*	5/22/89	264		34071	G		433	270		16.5	44		

Table 1. (continued)

[^0]Table 2．Status of marked brown bears during density estimation study at Black Lake during spring 1989．Table updated 2／8／90．Bear \＃66，a collared 2 year－old with \＃65，is treated as an independent bear when not with \＃65（replication 2）．Data on group size refers to females with dependent young，other types of groups are not indicated．

かっ泡 かっ． 宅 zis 宅	 00000000000000 n ，000000000よ．m00000000000

Table 2. (continued)

ID	Young		$\begin{array}{lll} \text { Int } & \text { Est } \\ \text { No. } & \text { Age } \end{array}$		Rep. 1 (5/28)			Rep. 2 (5/30)			Rep. 3 (5/31 am)			Rep. 4 ($5 / 31 \mathrm{pm}$)			Rep. 5 (6/1-3)			Rep. 6 (6/4)			No. out	No. in	No.seen	$\begin{aligned} & \% \\ & \text { in } \end{aligned}$	$\begin{gathered} \% \\ \text { seen } \end{gathered}$
	Sex	Age			Star.	Group Size	Seen?	Stat.	Group Size	Seen?	Stal.	Group Size	Seen?	Stat.	Group Size	Seen?	Star.	Group Size	Seen?	Star.	Group Size	Seen?					
92	F	3			in	1		in.	1		in	1		0	6	0	100	0.0									
5	M	15			shed																		-	-	-	ERR	ERR
31	M	3			in	1		in	1		in	1	yes	in	1	yes	in	1	yes	in	1		0	6	3	100	50.0
48	M	4			in	1			1	yes	in	1			1	yes	in	1		in	1	yes	0	6	3	100	50.0
49	M	7			shed																		.	-	-	ERR	ERR
66	M	2			w/65			in	1	yes	w/65			w/65			w/65			w/65			-	1	1		100.0
71	M	5			in	1	yes	in	1	.	in	1		in	1		in	1	yes	in	1	yes	0	6	3	100	50.0
73	M	2			shed																		-	-	-	ERR	ERR
78	M	4			in	1	yes	in		yes	in		yes	in	1		in	1		in	1		0	6	3	100	50.0
79	M	10			shed																		-	-	-	-	-
81	M	4			in	1		in	1	yes	in	1	yes	in	1	yes	in	1		in	,	yes	0	6	4	100	66.7
83	M	6			in	1	yes	in	1		in	1	yes	0	6	2	100	33.3									
84	M	3			in	1			1	yes		1	yes	in	1		fail?	1		fail?	,		0	4	2	100	50.0
85		12			shed																		-	-	-	-	-
86	M	5			in	1		in	1	yes	in		yes		1	yes	in	1		out	1.		1	5	3	83.3	60.0
89		11			shed																		-	-	-	-	-
91	M	4			in	1	yes	in	1		0	6	1	100	16.7												

Table 3. Summary of observations of brown bears during spring 1989 brown bear density estimate at Black Lake, Alaska. "Independent bears excludes offspring, of whatever age, still with their mothers.

Table 4. Bear population and density estimates in a 469.31 square mile study area at Black Lake, Alaska based on bear-days estimator of Miller et al. (1987). "L-P" is the Lincoln-Petersen estimate.
Bears of all ages, dependent young treated as independent sightings:

Rep	Date	n1 (marks present)	m2 (marks seen)	n2 (total seen)	$\begin{aligned} & \text { Daily } \\ & \text { L-P } \end{aligned}$	Sightability	N^{*} (Bear- Days Est)	Est. Density sq.mi/bear	95% Bi for no. lower	mial CI bears upper	95% B for m lower	mial CI ear upper	80% B for no lower	mial C ears upper	80\% for m lower	omial CI bear: upper
1	5/28	52	19	69	184.5	0.365	184.50	2.54	131.25	297.82	1.58	3.58	146.07	253.53	1.85	3.21
2	5/30	51	31	81	132.3	0.608	153.46	3.06	124.16	199.15	2.36	3.78	132.90	182.24	2.58	3.53
3	5/31	49	23	75	157.3	0.469	155.42	3.02	129.95	192.14	2.44	3.61	137.79	178.72	2.63	3.41
4	5/31	47	24	99	191.0	0.511	165.57	2.83	141.13	199.00	2.36	3.33	148.77	186.89	2.51	3.15
5	6/1-3	45	18	76	185.4	0.400	169.19	2.77	145.85	200.33	2.34	3.22	153.22	189.07	2.48	3.06
6	$6 / 4$	cumulative $\%=$ mean daily $\mathrm{L}-\mathrm{P}=$ SE=		66	195.5	$\begin{aligned} & 0.326 \\ & 44.948 \end{aligned}$	172.26	2.72	149.53	202.08	2.323 .14		156.78	191.41	$2.45 \quad 2.99$	
				$\begin{gathered} 174.34 \\ 9.15 \end{gathered}$	2.69											

used in making estimates presented in Table 4.
Estimate for bears of all ages, dependent young treated as independent sightings:

(k) Rep.	Mean L-P for (k) reps.	Density mi^{2} /bear	Cum. Mean Denominator for no. marks bias correction seen factor (eq. 13)		Sample variance (eq. 2)		95\% CI for no. of bears		$\begin{aligned} & \text { 95\% CI for } \\ & \mathrm{mi}^{2} \text { /bear } \end{aligned}$		$\begin{aligned} & \text { for } 80 \% \\ & t w / \\ & (\mathbf{k}-1) \text { d.f. } \end{aligned}$	80\% CI for no. of bears		$80 \% \mathrm{CI}$ for mi^{2} /bear:	
1	288.8	1.718524	19.00	1.00											
2	223.2	2.223279	30.00	1.00	8597.98	12.706	1056.3	-609.9	0.44	-0.77	3.078	425.0	21.4	1.10	21.91
3	218.7	2.268877	30.00	1.00	4359.37	4.303	382.8	54.7	1.23	8.58	1.886	290.6	146.9	1.61	3.20
4	224.6	2.209650	31.00	1.00	3043.76	3.182	312.4	136.8	1.50	3.43	1.638	269.8	179.4	1.74	2.62
5	236.4	2.099312	29.00	1.00	2979.64	2.776	304.2	168.6	1.54	2.78	1.533	273.8	199.0	1.71	2.36
6	239.0	2.076436	27.83	1.00	2424.41	2.571	290.7	187.3	1.61	2.51	1.440	268.0	210.1	1.75	2.23

Estimate for independent bears only, dependent offspring are not included:

(k) Rep.	Mean L-P for (k) reps.	Density mi^{2} /bear	Cum. Mean Denominator for no. marks bias correction seen factor (eq. 13)		Sample variance (eq. 2)		95\% CI for no. of bears		95\% CI for mi^{2} /bear		for 80% t w/ (k-1)d.f.	$80 \% \mathrm{CI}$ for no. of bears		80\% Cl for mi^{2} /bear:	
1	188.0	2.639946	11.00	1.00											
2	149.3	3.323219	18.00	1.00	2988.24	12.706	640.5	-341.8	0.73	-1.37	3.078	268.3	30.4	1.75	15.45
3	141.5	3.507141	18.33	1.00	1678.14	4.303	243.3	39.7	1.93	11.81	1.886	186.1	96.9	2.52	4.84
4	146.0	3.399931	19.00	1.00	1198.41	3.182	201.1	90.9	2.33	5.16	1.638	174.3	117.6	2.69	3.99
5	147.6	3.362962	18.20	1.00	911.69	2.776	185.1	110.1	2.54	4.26	1.533	168.3	126.9	2.79	3.70
6	149.0	3.331041	17.50	1.00	741.35	2.571	177.6	120.4	2.64	3.90	1.440	165.0	133.0	2.84	3.53

Estimate for bears older than 2.0 only, includes some dependent observations of 2-and 3-year-olds:

(k) Rep.	Mean L-P for (k) reps.	Density mi^{2} /bear	Cum. Mean Denominator for no. marks bias correction seen factor (eq. 13)		Sample variance (eq. 2)	for 95% t w/ (k-1)d.f.	95\% CI for no. of bears		95\% CI for mi^{2} /bear			80\% CI for no. of bears		80\% CI for mi^{2} /bear:	
1	184.5	2.690027	19.00	1.00											
2	158.4	3.133764	25.00	1.00	1365.03	12.706	490.3	-173.6	0.96	-2.70	3.078	238.8	78.0	1.97	6.02
3	158.0	3.140650	24.33	1.00	682.88	4.303	222.9	93.1	2.11	5.04	1.886	186.5	129.6	2.52	3.62
4	166.3	2.984949	24.25	1.00	727.04	3.182	209.2	123.4	2.24	3.80	1.638	188.4	144.2	2.49	3.25
5	170.1	2.917739	23.00	1.00	618.63	2.776	201.0	139.2	2.34	3.37	1.533	187.2	153.0	2.51	3.07
6	174.3	2.846799	21.50	1.00	602.70	2.571	200.1	148.6	2.35	3.10	1.440	188.8	159.9	2.49	2.93

Table 6. Raw data for estimating number of groups of brown bears at Black Lake Alaska during spring 1989. Note a group is considered "marked" if any individual in that group is radio-marked.

Table 6. (continued)

Group	Number of marked groups seen Replication \#						Number of marked groups present but not seen Replication \#						Number of unmarked groups seen Replication \#						Total number of groups seen Replication \#					No. groups seen on all replications
	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	45	6	
"Breeding" \& Sibling																								
Groups:																								
No. bears	4	10	8	16	13	12							8	2	4	15	6	14	12	12	12	3119	26	112
No. groups	2	5	4	7	6	6							3	1	2	7	3	6	5	6	6	149	12	52
Mean group size	2.0		2.0	2.3	2.2	2.0	*						2.7	2.0	2.0	2.1	2.0	2.3	2.4	2.0	2.0	2.22 .1	2.2	2.2
"Breeding", Sibling, and Groups of 1 :																								
No. bears	8	22	17	22	20	17	21	14	17	15	16	16	29	27	21	37	21	27	37	49	38	5941	44	268
No. groups**	6		13	13	13	11		489.6	11.72	10.3	11.0	11.03	24	26	19	29	18	19	30	43	32	4231	30	208
Mean group size		1.3	1.31		1.5	1.5		1.45	1.45	1.45	1.45	1.45	1.2	1.0	1.1	1.3	1.2	1.4	1.2	1.1	1.2	1.41 .3	1.5	1.3

[^1]Table 7. Estimate of population size based on mean group size at Black Lake, Alaska, spring 1989. Any marked bear in a group makes that group "marked". For breeding adults, siblings and single bears, the number of unseen marked groups was calculated based on the group size of marked bears that were seen.

For All Groups:																
Rep.	Group n1 (marks present	Group m2(marks seen)	Group n2(total seen	$\begin{gathered} \text { Est. no. } \\ \text { of } \\ \text { groups } \end{gathered}$	Observed Mean Group Size (All bears seen)	Daily est. no. bears	Cum. Mean est. no. bears	Sample variance	$\begin{gathered} \begin{array}{c} \mathrm{w} / \\ (\mathrm{k}-1) \mathrm{d} . \mathrm{f} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 95 \% \mathrm{CI}= \\ +1- \end{gathered}$	95\% CI for for no of bears		$\begin{aligned} & 95 \% \text { Cl for } \\ & \text { density (mi/frear) } \end{aligned}$		$\begin{gathered} 95 \% \mathrm{CI} \text { for } \\ \text { density (bears } / 1000 \mathrm{~km}^{2} \text {) } \end{gathered}$	
											Lower	Upper	Lower	Uррег	Lower	Upper
1	34.40	11	46	137.7	1.8	247.77	247.77									
2	38.60	25	59	90.4	1.64	148.23	198.00	4954.03	12.706	632.4	-434.37	830.37	-1.08	0.57	-357.63	683.67
3	36.70	19	51	97.0	1.94	188.22	194.74	2508.91	4.303	124.4	70.30	319.18	6.68	1.4	57.88	262.79
4	34.30	19	67	119.0	1.99	236.85	205.27	2115.92	3.182	73.2	132.08	278.45	3.55	1.69	108.75	229.26
5	34.00	15	51	112.8	1.96	220.99	208.41	1636.38	2.776	50.2	158.19	258.63	2.97	1.81	130.24	212.94
6	32.00	14	47	104.6	2.04	213.38	209.24	1313.22	2.571	38.0	171.20	247.28	2.74	1.90	140.96	203.59
	Avg. no. groups =			110.24		209.24										
			SE =	6.31		13.51										
For Maternal Groups Only:																
1	14	5	16	41.5	2.88	119.52	119.52									
2	12	8	16	23.6	3	70.67	95.09	1193.32	12.706	310.4	-215.27	105.46	-2.18	1.16	-177.24	333.83
3	12	6	19	36.1	3.21	116.02	102.07	742.62	4.303	67.7	34.37	169.77	13.66	2.76	28.30	139.78
4	11	6	25	43.6	2.96	128.97	- 108.79	676.02	3.182	41.4	67.43	150.16	6.96	3.13	55.52	123.63
5	10	2	20	76.0	2.95	224.20	131.88	3170.72	2.776	69.9	61.97	201.78	7.57	2.33	51.02	166.13
6	10		17	48.5	3.06	148.41	134.63	2582.14	2.571	53.3	81.30	187.97	5.77	2.50	66.93	154.76
		Avg. no. gr	ps $=$	44.88		134.63										
			SE =	6.51		18.94										
For Groups of breeding adults, siblings, and single bears:																
1	20.48	6	30	94.1	1.23	115.77	115.77									
2	26.65	17	43	66.6	1.14	75.91	95.84	794.54	12.706	253.3	-157.41	349.09	2.98	1.34	-129.60	287.42
3	24.72	13	32	59.6	1.19	70.95	87.55	603.75	+.303	61.0	26.50	148.59	17.71	3.16	21.82	122.34
4	23.34	13	42	73.8	1.4	103.26	91.48	464.24	3.182	34.3	57.20	125.76	8.21	3.73	47.09	103.54
5	24.03	13	31	56.2	1.32	74.20	88.02	407.88	2.776	25.1	62.95	113.09	7.46	+.15	51.83	93.11
6	22.03	11	30	58.5	1.47	85.99	87.68	326.99	2.571	19.0	68.70	106.66	6.83	4.40	56.56	87.82
		Avg. no. gr	pps =	68.13		87.68										
			SE =	5.32		6.74										

Table 8. Number of groups of brown bears seen during density estimation at Black Lake, Alaska, spring 1989. Note that many sightings are resightings of the same group(s).

	Group Size					
Classification	1	2	3	4	No. of Groups	Mean Size
Females with COY	0	8	9	5	22	2.86
Females with "ylgs"	0	4	26	15	45	3.24
Females with ">ylgs"	0	12	24	8	44	2.91
Groups of "adults"*	0	47	4	2	53	2.15
Single bears	142	0	0	0	142	1.00
Groups of "siblings"**	0	7	0	0	7	2.00
Totals	142	78	63	30	313	1.94
Percent of groups	45.3	24.9	20.1	9.58	100	
* Includes groups of adults (mostly breeding pairs, some with offspring hanging around), and some sibling						
(groups.						

Table 9. Search effort during 1989 brown bear density estimate at Black Lake, Alaska.

Quad	Area (mi2)	Search Effort (Minutes)						Search Time	Mean \min / mi^{2}	Mean Target $\mathrm{min} / \mathrm{mi}^{2}$	Search Team*					
		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6				Rep 1	Rep 2	$\begin{aligned} & \text { Rep } \\ & 3 \end{aligned}$	Rep 4	Rep 5	Rep 6
1	42.65	64	8	70	53	80	75	71.5	1.68	2	1	2	1	5	4	1
2	78.25	100	147	90	134	106	143	120.0	1.53	2	1	2	1	5	4	2
3	20.59	32	47	49	45	37	29	39.8	1.93	2	1	2	4	5	1	1
4	49.03	106	125	108	'77.	96	90	100.3	2.05	3	4	5	4	1	5	5
5	36.38	75	75	60	78	70	63	70.2	1.93	3	4	5	4	1	1	2
6	35.75	154	127	147	103	112	93	122.7	3.43	3	4	3	5	2	2	5
7	47.98	89	149	148	164	221	136	151.2	3.15	3	5	3	2	4	5	4
8	51.35	112	116	180	119	173	119	136.5	2.66	3	5	3	2	4	2	4
9	39.96	85	103	99	78	82	107	92.3	2.31	3	5	1	5	1	4	1
10	27.82	103	90	73	85	92	61	84.0	3.02	3	2	5	2	4	1	4
11	39.55	136	116	130	100	103	177	127.0	3.21	3	2	1	5	2	4	5
Total	469.31	1,056	1,182	1,154	1,036	1,172	1,093	1,115.5	2.38							
Min/m		2.25	2.51	2.45	2.20	2.49	2.33	2.38								

${ }^{*} 1=\mathrm{DM} / \mathrm{JC} \quad 2=\mathrm{SM} / \mathrm{JL} \quad 3=\mathrm{KT} / \mathrm{HM} \quad 4=\mathrm{LV} / \mathrm{HM} \quad 5=\mathrm{BT} / \mathrm{CM}$

Table 11. Estimated density in each quadrat of search area based on total estimated population size using the mean of the daily Lincoln-Petersen estimates (239 bears) and a constant calculated from mean number of minutes searched to find a bear in each quadrat.

Quad	$\begin{aligned} & \text { Area } \\ & \text { (mi2) } \end{aligned}$	In each quadrat:										
		Mean Min/bear (xi)	$\begin{aligned} & \text { Bears/ } \\ & \text { min. } \\ & 1 /(x i) \end{aligned}$	$\begin{gathered} (\mathrm{P})= \\ \text { Proportion of } \\ 0.56 \end{gathered}$	Estimated No. bears (239*P)	Estimated density (mi ${ }^{2}$ /bear)	Cum. density (down)		Cumulative Area (\%) (down)	Cum. density (up)		Cumulative Area (\%) (up)
								bear/ $1000 \mathrm{~km}^{2}$		$\begin{aligned} & \mathrm{mi} 2 / \\ & \text { bear } \end{aligned}$	bear/ $1000 \mathrm{~km}^{2}$	
10	27.82	13.26	0.08	0.136	32.41	0.86	0.86	449	5.9	1.96	197	100.0
7	47.98	8.89	0.11	0.202	48.33	0.99	0.94	411	16.2	2.14	181	94.1
11	39.55	15.88	0.06	0.113	'27.07	1.46	1.07	361	24.6	2.49	155	83.8
6	35.75	18.40	0.05	0.098	23.36	1.53	1.15	336	32.2	2.70	143	75.4
8	51.35	16.71	0.06	0.108	25.71	2.00	1.29	300	43.1	2.95	131	67.8
4	49.03	20.07	0.05	0.090	21.42	2.29	1.41	274	53.6	3.25	119	56.9
1	42.65	25.24	0.04	0.071	17.03	2.50	1.51	256	62.7	3.59	108	46.4
9	39.96	27.70	0.04	0.065	15.52	2.58	1.58	245	71.2	4.01	96	37.3
3	20.59	59.75	0.02	0.030	7.19	2.86	1.63	237	75.6	4.80	81	28.8
5	36.38	42.10	0.02	0.043	10.21	3.56	1.71	226	83.3	5.47	71	24.4
2	78.25	40.00	0.03	0.045	10.74	7.28	1.96	197	100.0	7.28	53	16.7
Sum $=$	469.31		0.56	1.000	239.0	1.96						

Table 12. Sex and age composition of brown bears captured near Black Lake, Alaska, using capture samples from consecutive years with status adjusted for the first year listed.

Category	1970-71		1971-72		1974-75		1988-89	
	Number	(\%)	Number	(\%)	Number		Num	(\%)
Adult Females								
Single	15	9	12	6	14	8	9	7
With coy	5	3	17	9	7	4	7	5
With 1-yr-olds	18	11	6	3	11	7	10	8
With 2-yr-olds	2	1	9	4	8	5	7	5
Total	40	24	44	23	40	25	33	27
Offspring with females								
Cubs	13	7	34	18	14	8	17	14
Yearlings	34	20	14	7	24	15	19	15
2 -yr-olds	7	4	15	8	19	12	11	9
Subadult Females	33	20	38	20	18	11	12	9
Subadult Males	26	15	33	17	33	21	16	13
Adult Males	10	6	8	4	8	5	13	10
Total Bears	163		186		156		121	
Ad. Males:100 Ad. Females	25.0		17.4		20.0		39.4	
Mean age of adult males	6.6		7.9		7.2		9.9	
Mean age of adult females	9.0		9.0		10.6		12.2	

Table 13. Current (1990) status of brown bears marked near Black Lake 1988-89.

Bear No.	Sex	Age at last contact	Date last location	Current status
001	F	12	12/18/89	Alive, lost 1 of 2 yearlings from 1988 capture Still with \#2 on 11/06/89
002	F	2	11/06/89	Still with mother (\#1)
003	M	2	10/20/89	Separated from mother at 1.5 , hunter kill at 2.8
004	F	13	06/22/89	Collar shed after den emergence
005	M	15	05/25/89	Unk, recapt. in 1989 but glue-on radio shed
006	F	5	05/12/89	Unk, collar shed in den
007	M	4	06/01/88	Unk, no radio
008	F	5	10/15/89	Hunter kill
009	M	3	12/31/88	Unk, collar shed before den entrance
010	M	3	09/08/88	Glue-on radio shed as of 9/8/88
011	F	26	12/18/89	Alive, denned
012	F	10	12/18/89	Alive, denned presumed w/2 COY
013	F	3	12/18/89	Alive, denned
014	M	8	06/02/88	Unk, no radio
015	M	16	06/06/88	Glue-on radio shed
016	F	5	10/05/89	Radio shed
017	F	19	12/18/89	Alive, denned
018	F	12	12/18/89	Alive, denned
019	F	1	06/02/88	Separated from mother (\#18) at capture, presumed dead
020	F	1	06/02/88	Separated from mother (\#18) at capture, presumed dead
021	F	3	09/22/88	Unk, glue-on shed before den entrance
022	F	10	06/02/88	Capture mortality
023	F	19	12/18/89	Alive, denned
024	M	2	05/31/89	Unk, separated from mother, no radio
025	M	16	06/02/88	Unk, no radio
026	F	12	12/18/89	Alive, denned
027	F	2	06/06/88	Unk, glue-on radio nonfunctional
028	M	2	06/02/88	Unk, no radio
029	M	2	06/02/88	Unk, no radio
030	F	10	12/18/89	Alive, denned
031	M	3	10/25/89	Unk, collar shed
032	F	14	06/03/88	Capture mortality
033	M	3	10/16/89	Hunter kill
034	F	13	12/18/89	Alive, denned w/3 yrlg
036	F	10	06/26/88	Natural mortality
A	F	0		Mother (\#36) dead, presumed dead
B	F	0		Mother (\#36) dead, presumed dead
037	F	6	12/18/89	Alive, denned
038	F	17	12/18/89	Alive, denned
039	M	3	10/05/89	Hunter kill
040	F	5	12/18/89	Alive, denned
041	M	14	10/06/89	Hunter kill
042	M	5	05/22/89	Unk, glue-on shed
043	F	6	05/12/89	Unk, collar shed after den emergence

Table 13. (continued)

Bear No.	Sex	Age at last contact	Date last location	Current status
044	F	20	10/20/88	Natural mortality
045	F	3	05/24/89	Unk, collar shed
046	F	11	12/18/89	Alive, denned
047	M	4	12/05/88	Unk, collar shed before den entrance
048	M	4	12/18/89	Alive, denned
049	M	7	05/25/89	Unk, glue-on shed
050	F	5	12/18/89	Alive, denned
051	F	13	12/18/89	Alive, denned w/2 2.8 possibly
052	F	4	12/18/89	Alive, denned
053	F	4	10/12/89	Hunter kill
054	M	3	09/08/88	Unk, radio failure
055	F	10	12/18/89	Alive, denned
056	M	2	06/05/88	Unk, no radio
057	F	9	12/18/89	Alive, denned
058	F	19	12/18/89	Alive. denned
059	F	6	11/06/89	Alive, denned
060	F	9	12/18/89	Alive, denned
061	F	4	05/24/89	Unk, glue-on shed
062	M	2	05/21/89	Capture mortality
064	M	10	05/23/89	Unk, glue-on shed
065	F	10	12/18/89	Alive, denned
066	M	2	06/22/89	Unk, glue-on shed
067	F	3	10/18/89	Hunter kill
068	M	6	10/08/89	Hunter kill
069	F	19	08/09/89	Natural mortality, presumed 3 yrlgs lost
070	F	7	12/18/89	Alive, denned w/2 yrlg
071	M	5	05/24/89	Unk, glue-on shed
072	M	8	05/23/89	Unk, glue-on shed
073	M	2	06/04/89	Unk, glue-on shed
074	M	3	05/23/89	Unk, glue-on shed
075	F	4	06/03/89	Natural mortality
076	F	14	12/18/89	Alive, denned
077	F	3	10/08/89	Hunter kill
078	M	4	06/22/89	Unk, Radio failure
079	M	10	05/24/89	Unk, glue-on shed
080	F	13	05/30/89	Unk, collar shed
081	M	4	08/30/89	Unk, radio failure or dispersal
082	F	14	12/18/89	Alive, denned
083	M	6	10/25/89	Alive
084	M	3	10/05/89	Hunter kill
085	M	12	06/04/89	Unk, glue-on shed
086	M	5	06/04/89	Unk, glue-on shed
087	F	12	12/18/89	Alive, denned w/3 yrigs
088	F	19	08/08/89	Natural mortality
089	M	11	05/24/89	Unk, glue-on shed
090	F	19	12/18/89	Alive, denned w/1 yrig
091	M	4	12/18/89	Alive, denned
092	F	3	12/18/89	Alive

Table 14. Survivorship of radio-marked brown bears at Black Lake, Alaska during 1988 and 1989 calculated using modified Kaplan-Meier procedures (Pollock et al. 1989).

	No.@	No.	Survival	No.	No.	Lower	Upper
Dates	Risk	Deaths	Rate	Censored	Added	CL	CL

Cubs with radiocollared mothers. In period 4,3 deachs were from same litter, not independent.							
$5 / 1-5 / 15$	4	0	1.00	0	0	1.00	1.00
$5 / 16-5 / 23$	4	0	1.00	0	0	1.00	1.00
$5 / 24-5 / 31$	4	0	1.00	0	0	1.00	1.00
$6 / 1-6 / 7$	4	0	1.00	0	6	1.00	1.00
$6 / 8-6 / 15$	10	3	0.70	0	0	0.46	0.94
$6 / 16-6 / 23$	7	0	0.70	0	0	0.42	0.98
$6 / 24-6 / 30$	7	0	0.70	0	0	0.42	0.98
$7 / 1-7 / 31$	7	1	0.60	0	0	0.32	0.88
$8 / 1-8 / 31$	6	0	0.60	0	0	0.30	0.90
$9 / 1-9 / 30$	6	0	0.60	0	0	0.30	0.90
$10 / 1-10 / 3$	6	0	0.60	0	0	0.30	0.90
$11 / 1-4 / 30$	6		0.60	3			

Females $>=3$ all types of mortality:

$5 / 1-5 / 15$	25	0	1.00	0	0	1.00	1.00
$5 / 16-5 / 23$	25	0	1.00	2	9	1.00	1.00
$5 / 24-5 / 31$	25	1	0.96		3	0.88	1.04
$6 / 1-6 / 7$	27		0.96		27	0.89	1.03
$6 / 8-6 / 15$	54	1	0.94			0.88	1.00
$6 / 16-6 / 23$	53		0.94		0.88	1.00	
$6 / 24-6 / 30$	53		0.94		0.88	1.00	
$7 / 1-7 / 31$	53	2	0.91		0.83	0.98	
$8 / 1-8 / 31$	51		0.91		0.83	0.98	
$9 / 1-9 / 30$	51		0.91	2		0.83	0.98
$10 / 1-10 / 3$	49	4	0.83		0.74	0.93	
$11 / 1-4 / 30$	45		0.83	2		0.73	0.93

Females $>=3$, hunting mortality only:

$5 / 1-5 / 15$	25	0	1.00	0	0	1.00	1.00
$5 / 16-5 / 23$	25	0	1.00	2	9	1.00	1.00
$5 / 24-5 / 31$	32	0	1.00	1	3	1.00	1.00
$6 / 1-6 / 7$	34	0	1.00	0	27	1.00	1.00
$6 / 8-6 / 15$	61	0	1.00	1		1.00	1.00
$6 / 16-6 / 23$	60	0	1.00	0		1.00	1.00
$6 / 24-6 / 30$	60	0	1.00	0		1.00	1.00
$7 / 1-7 / 31$	60	0	1.00	2		1.00	1.00
$8 / 1-8 / 31$	58	0	1.00	0		1.00	1.00
$9 / 1-9 / 30$	58	0	1.00	2		1.00	1.00
$10 / 1-10 / 3$	56	3	0.95	1	0.89	1.00	
$11 / 1-4 / 30$	52		0.95	2		0.89	1.01

Table 14. (continued)

	No.@ Risk	No. Deaths	Survival Rate	No. Censored	No. Added	Lower CL	Upper CL
Females $>=\mathbf{3}$,	natural mortality only:						
$5 / 1-5 / 15$	25	0	1.00	0	0	1.00	1.00
$5 / 16-5 / 23$	25	0	1.00	2	9	1.00	1.00
$5 / 24-5 / 31$	32	1	0.97	0	3	0.91	1.03
$6 / 1-6 / 7$	34	0	0.97	0	27	0.91	1.03
$6 / 8-6 / 15$	61	1	0.95	0		0.90	1.00
$6 / 16-6 / 23$	60	0	0.95	0		0.90	1.01
$6 / 24-6 / 30$	60	0	0.95	0	0.90	1.01	
$7 / 1-7 / 31$	60	2	0.92	0		0.86	0.99
$8 / 1-8 / 31$	58	0	0.92	0	0.85	0.99	
$9 / 1-9 / 30$	58	0	0.92	2		0.85	0.99
$10 / 1-10 / 3$	56	1	0.90	3		0.83	0.98
$11 / 1-4 / 30$	52		0.90	2		0.83	0.98

Males $>=3$, all mortalities. Same result for hunting mortality as there was no natural mortality.

5/1-5/15	1		1.00		0	1.00	1.00
5/16-5/23	1		1.00		4	1.00	1.00
5/24-5/31	5		1.00	1	3	1.00	1.00
6/1-6/7	7		1.00		3	1.00	1.00
6/8-6/15	10		1.00	1		1.00	1.00
6/16-6/23	9		1.00			1.00	1.00
6/24-6/30	9		1.00	1		1.00	1.00
7/1-7/31	8		1.00			1.00	1.00
8/1-8/31	8		1.00	1		1.00	1.00
9/1-9/30	7		1.00	1		1.00	1.00
10/1-10/3	6	1	0.83	2		0.56	1.11
11/1-4/30	3		0.83	4		0.45	1.22

Both sexes $>=3$, all mortalities:

$5 / 1-5 / 15$	26	0	1.00	0	0	1.00	1.00
$5 / 16-5 / 23$	26	0	1.00	2	13	1.00	1.00
$5 / 24-5 / 31$	37	1	0.97	1	6	0.92	1.02
$6 / 1-6 / 7$	41	0	0.97	0	30	0.92	1.02
$6 / 8-6 / 15$	71	-1	0.96	1	0	0.91	1.00
$6 / 16-6 / 23$	69	0	0.96	0	0	0.91	1.00
$6 / 24-6 / 30$	69	0	0.96	1	0	0.91	1.00
$7 / 1-7 / 31$	68	2	0.93	0	0	0.87	0.99
$8 / 1-8 / 31$	66	0	0.93	1	0	0.87	0.99
$9 / 1-9 / 30$	65	0	0.93	3	0	0.87	0.99
$10 / 1-10 / 3$	62	5	0.86	2	0	0.78	0.94
$11 / 1-4 / 30$	55	0	0.86	6	0	0.77	0.94

Table 14. (continued)

Dates	No.@ Risk	No. Deaths	Survival Rate	No. Censored	No. Added	Lower CL	Upper CL
All yearlings, all mortalities (Includes 3 assumed mortalities):							
$5 / 1-5 / 15$	3	1.00			1.00	1.00	
$5 / 16-5 / 23$	3		1.00		3	1.00	1.00
$5 / 24-5 / 31$	6		1.00		3	1.00	1.00
$6 / 1-6 / 7$	9		1.00		9	1.00	1.00
$6 / 8-6 / 15$	18		1.00			1.00	1.00
$6 / 16-6 / 23$	18		1.00			1.00	1.00
$6 / 24-6 / 30$	18		1.00			1.00	1.00
$7 / 1-7 / 31$	18	3	0.83		0.68	0.99	
$8 / 1-8 / 31$	15		0.83	3		0.66	1.01
$9 / 1-9 / 30$	12		0.83			0.64	1.03
$10 / 1-10 / 3$	12		0.83	3		0.64	1.03
$.11 / 1-4 / 30$	9		0.83			0.61	1.06

All 2-year-olds, all mortalities:

$5 / 1-5 / 15$	8	1.00	0	0	1.00	1.00
$5 / 16-5 / 23$	8	1.00	0	2	1.00	1.00
$5 / 24-5 / 31$	10	1.00	0	1	1.00	1.00
$6 / 1-6 / 7$	11	1.00	1	6	1.00	1.00
$6 / 8-6 / 15$	16	1.00	0	0	1.00	1.00
$6 / 16-6 / 23$	16	1.00	2	0	1.00	1.00
$6 / 24-6 / 30$	14	1.00	0	0	1.00	1.00
$7 / 1-7 / 31$	14	1.00	4	0	1.00	1.00
$8 / 1-8 / 31$	10	1.00	2	0	1.00	1.00
$9 / 1-9 / 30$	8		1.00	1	0	1.00
$10 / 1-10 / 3$	7		1.00	1	0	1.00
$11 / 1-4 / 30$	6	0	1.00	3	0	1.00
				0	1.00	

All bears except cubs, all mortalities:

$5 / 1-5 / 15$	37	0	1.00	0	0	1.00	1.00
$5 / 16-5 / 23$	37	0	1.00	2	18	1.00	1.00
$5 / 24-5 / 31$	53	1	0.98	1	10	0.94	1.02
$6 / 1-6 / 7$	61	0	0.98	1	45	0.95	1.01
$6 / 8-6 / 15$	105	1	0.97	1	0	0.94	1.00
$6 / 16-6 / 23$	103	0	0.97	2	0	0.94	1.00
$6 / 24-6 / 30$	101	0	0.97	1	0	0.94	1.00
$7 / 1-7 / 31$	100	5	0.92	4	0	0.87	0.97
$8 / 1-8 / 31$	91	0	0.92	6	0	0.87	0.98
$9 / 1-9 / 30$	85	0	0.92	4	0	0.87	0.98
$10 / 1-10 / 3$	81	5	0.87	6	0	0.80	0.94
$11 / 1-4 / 30$	70	0	0.87	9	0	0.79	0.94

Table 15. Minimum and maximum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1970.

Sex/age category in 1970	Maximum no. alive	Minimum no. alive	1970 fall harvest	1971 spring harvest
$\left.\begin{array}{lcc}\text { Adult male } & 7 & 6 \\ \text { Adult female } & 28 & 22 \\ \text { Immature male } & 17 & 12 \\ \text { Immature female } & 19 & 15\end{array}\right) 0$	1			
Total	71	55	1	0
Exploitation	$8.5 \% *$	$10.9 \% * *$	4	1

* Assumes no natural mortality to marked bears.
** Includes only those marked bears that were verified to be alive during the harvest period.

Table 16. Minimum and maximum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1971-72.

Sex/age category in 1971	Maximum no. alive	Minimum no. alive	$\begin{aligned} & 1970 \\ & \text { fall } \\ & \text { harvest } \end{aligned}$	1971 spring harvest
Adult male	8	6	1	1
Adult female	43	31	2	2
Immature male	42	29	6	1
Immature female	45	26	4	0
Total	138	92	13	4
Exploitation	12.3\%*	18.5\%**		

* Assumes no naturai mortality to marked bears.
** Includes only those marked bears that were verified to be alive during the harvest period.

Table 17. Minimum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1972-73.

Sex/age category in 1972	Maximum no. alive	1972 fall harvest	1973 spring harvest
Adult male	17	2	2
Aduit female	67	4	0
Immature male	45	10	6
Immature female	46	7	0
Total	175	23	8
Expioitation	$17.7 \% *$		

* Assumes no natural mortality to marked bears.

Table 18. Minimum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1973-74.

Sex/age category in 1973	Maximum no. alive	1973 fall harvest	1974 spring harvest
Adult male 24 3 1 Adult female 74 2 Immature male 44 3 Immature female 43 4 1 Total 185 12 * Assumes no natural mortality to marked bears. ** The spring 1974 season was closed by Emergency Order; one bear was killed illegally.			

Table 19. Minimum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1974-75.

Sex/age category in 1974	Maximum no. alive	1974 fall harvest	1975 spring harvest**
Adult male	37	1	
Adult female	100	3	
Immature male	50	5	
Immature female	37	2	
Unknown sex/age		14	
Total	224		
Exploitation	$6.2 \% *$		

* Assumes no natural mortality to marked bears.
** The spring 1975 season was closed by Emergency Order.

Table 20. Minimum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1975-76.

Sex/age category in 1974	Maximum no. alive	1975 fall harvest	1976 spring harvest**
Adult male	48	1	4
Adult female	106	4	2
Immature male	60	4	5
Immature female	38	4	2
Total	252	13	13
Exploitation	$10.3 \% \%^{*}$		

[^2]Table 21. Minimum exploitation rates for brown bears 2 or more years old marked near Black Lake, Alaska, 1988-89.

Sex/age category in 1989	Maximum no. alive*	1989 fall harvest	1990 spring harvest ${ }^{* *}$
Adult male	17	2	--
Adult female	36	1	--
Immature male	21	4	--
Immature female	14	3	--
Total	88	10	-
Exploitation	11.4%		

* Confirmed natural mortalities were included to make data comparable to 1970-75 samples.

Table 22. Exploitation rates for marked brown bears 2 years or older captured 1 or 2 years prior to being harvested.

Sex/age category	Maximum no. alive	Fall harvest	Spring harvest
1970			
Adult Male	7	0	1
Adult Female	28	0	0
Immature Male	17	3	1
Immature Female	19	1	0
Total	71	4	2
Exploitation 8.5\%			
1971			
Adult Male	8	1	1
Adult Female	43	2	2
Immature Male	42	6	1
Immature Female	45	4	0
Total	138	13	4
Exploitation 12.3\%			
. 1972			
Adult Male	10	1	1
Adult Female	42	3	0
Immature Male	36	9	3
Immature Female	35	4	0
Total	123	17	4
Exploitation 17.1\%			
1973			
Adult Male	8	3	The Spring 1974 season
Adult Female	34	2	was closed by
Immature Male	30	2	Emergency Order.
Immature Female	24	2	
Total	96	9	
Exploitation 9.4\%*			
* This exploitation rate is biased low because bears were not marked in 1973, thus all marked bears were subject to 15 months of natural mortality.			
1975			
Adult Male	14	0	2
Adult Female	41	4	1
Immature Male	44	4	5
Immature Female	27	4	2
Total	126	12	10
Exploitation		9.5\%	8.8\%
1989			
Adult Male	17	2	
Adult Female	36	1	
Immature Male	21	4	
Immature Female	14	3	
Total	88	10	
Exploitation		11.4\%	

Table 23. Black Lake stream survey results. 1982-89.

* Includes the mean number of bears seen 3 other 1984 surveys for the portion not covered.
Table 23. (continued)

Date	Females w/young		COY		$>\mathrm{COY}$		Single bears		Total sample	Bears per hour	Comments
	no.	$\%$	no.	\%	no.	\%	no.	$\%$			
1987											
$8 / 7 \mathrm{pm}$	3	11	2	7	5	18	18	64	28		aborted,
8/12 pm	27	18	34	23	28	19	58	39	147	51.88	turbulence
1988											late in run
8/8 pm	40	25	34	22	47	30	37	23	158	45.14	
8/9 am	51	24	49	23	65	30	50	23	217	62.00	
8/10 am	31	20	23	15	43	28	57	37	154	48.13	
$8 / 10 \mathrm{pm}$	38	24	31	20	50	32	38	24	157	49.58	
Mean	40	23	34	20	51	30	46	27	172	51.21	
1989											
$8 / 9 \mathrm{am}$	37	20	26	14	53	29	65	36	181	62.06	
$8 / 9 \mathrm{pm}$	40	21	25	13	55	29	72	38	192	66.59	
8/10 am*32	18	20	11	54	31	70	40	175	62.32		
8/12 am	34	19	20	11	56	32	65	37	175	66.88	
$8 / 12 \mathrm{pm}$	39	22	19	10	64	35	59	33	181	65.03	
Mean	36	20	22	12	56	31	66	37	181	64.58	

** This survey includes the mean number of bears seen in the West Fork drainage on the other 1989 surveys.
Table 24. Number of brown bears counted on each stream survey, at Black Lake, Alaska, 1962-89.

1962		1965-70		1974		1975		1982-84		1985-89	
Date	No. bears	Date No.	bears	Date	No. bears						
31 Jul am	94	6 Aug 1965 pm	123	5 Aug am	77	5 Aug pm	115	8 Aug 1982 am	134	5 Aug 1985 pm	206
3 Aug am	81	7 Aug 1965 am	113	6 Aug am	104			8 Aug 1982 pm	148	6 Aug 1985 am	178
4 Aug pm	91	23 Jul 1969 pm	110					9 Aug 1983 pm	140	8 Aug 1985 am	215
5 Aug am	81	26 Jul 1969 am	122					10 Aug 1983 am		6 Aug 1986 pm	173
5 Aug pm	95	26 Jul 1969 pm	107					10 Aug 1983 pm		7 Aug 1986 am	163
6 Aug pm	113	27 Jul 1969 am	114					12 Aug 1983 am		7 Aug 1986 pm	202
7 Aug am	86	3 Aug 1969 am	92					7 Aug 1984 am	110	8 Aug 1986 pm	166
		3 Aug 1969 pm	115					7 Aug 1984 pm	171	12 Aug 1987 pm	147
		27 Jul 1970 pm	106					8 Aug 1984 an	116^{*}	8 Aug 1988 pm	158
								8 Aug 1984 pm	153	9 Aug 1988 am	217
										10 Aug 1988 am	154
										10 Aug 1988 pm	157
										9 Aug 1989 am	181
										9 Aug 1989 pm	192
										10 Aug 1989 am	175^{*}
										12 Aug 1989 am	175
										12 Aug 1989 pm	181

- Totals adjusted to correct for incomplete survey.

Table 25. Mean number of brown bears per survey for 6 time periods, 1962-89.

Time period	No. surveys	Mean no. bears	SD	95% CI
1962	7	91.6	10.2	$84-99$
$1965-70$	9	111.3^{a}	8.8	$106-117$
1974	2	90.5	13.5	$72-109$
1976	1	115	$\mathrm{~N} / \mathrm{A}$	
$1982-84$	10	146.3^{a}	20.6	$133-159$
$1985-89$	17	178.8^{a}	20.6	$169-189$

${ }^{a}$ Means greater $(\mathrm{P}<.001)$ than previous surveys.

Table 26. Relationship between cub-of-the-year (COY) production and sockeye salmon escapement the previous year into Black Lake, 1982-89.

Salmon escapement	\% COY in population	COY litter size	Year
377500	13.3	2.20	1986
420600	12.2	2.05	1989
426200	20.5	2.10	1984
438500	21.8	2.10	1982
566100	20.6	2.25	1987
589300	19.7	2.14	1988
597700	18.1	2.20	1985
616100	27	2.30	1983

[^0]: *Estimated
 Collar Types: C.S. $=\mathrm{w} /$ canvas spacer, $\mathbf{G}=$ glue-on, SURG. $=$ surgical rubber spacer.

[^1]: * Some sibling groups were doubtless included along with breeding groups
 ** For marked but unseen bears, number of groups was calculated as (No.bears/1.45)
 where 1.45 is mean group size of marked bears seen during over all replications (106/73).

[^2]: * Assumes no natural mortality to marked bears.

