
Regional Information Report No. 1J24-01 

A Simulation Study to Estimate the Unfished Biomass 
of Sitka Sound Pacific Herring 

by 

Christopher L. Roberts 

Sara E. Miller 

and  

Sherri C. Dressel 

September 2024 

Alaska Department of Fish and Game Division of Commercial Fisheries 



 
 

Symbols and Abbreviations 
The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used 
without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery 
Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, 
including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or 
footnotes of tables, and in figures or figure captions. 
Weights and measures (metric)  
centimeter cm 
deciliter  dL 
gram  g 
hectare ha 
kilogram kg 
kilometer km 
liter L 
meter m 
milliliter mL 
millimeter mm 
  
Weights and measures (English)  
cubic feet per second ft3/s 
foot ft 
gallon gal 
inch in 
mile mi 
nautical mile nmi 
ounce oz 
pound lb 
quart qt 
yard yd 
  
Time and temperature  
day d 
degrees Celsius °C 
degrees Fahrenheit °F 
degrees kelvin K 
hour  h 
minute min 
second s 
  
Physics and chemistry  
all atomic symbols  
alternating current AC 
ampere A 
calorie cal 
direct current DC 
hertz Hz 
horsepower hp 
hydrogen ion activity pH 
     (negative log of)  
parts per million ppm 
parts per thousand ppt, 
 ‰ 
volts V 
watts W 

General  
Alaska Administrative  
    Code AAC 
all commonly accepted  
    abbreviations e.g., Mr., Mrs., 

AM, PM, etc. 
all commonly accepted  
    professional titles e.g., Dr., Ph.D.,  
 R.N., etc. 
at @ 
compass directions:  

east E 
north N 
south S 
west W 

copyright  
corporate suffixes:  

Company Co. 
Corporation Corp. 
Incorporated Inc. 
Limited Ltd. 

District of Columbia D.C. 
et alii (and others)  et al. 
et cetera (and so forth) etc. 
exempli gratia  
    (for example) e.g. 
Federal Information  
    Code FIC 
id est (that is) i.e. 
latitude or longitude lat or long 
monetary symbols 
     (U.S.) $, ¢ 
months (tables and 
     figures): first three  
     letters Jan,...,Dec 
registered trademark  
trademark  
United States 
    (adjective) U.S. 
United States of  
    America (noun) USA 
U.S.C. United States 

Code 
U.S. state use two-letter 

abbreviations 
(e.g., AK, WA) 

Mathematics, statistics 
all standard mathematical 
    signs, symbols and  
    abbreviations  
alternate hypothesis HA 
base of natural logarithm e 
catch per unit effort CPUE 
coefficient of variation CV 
common test statistics (F, t, χ2, etc.) 
confidence interval CI 
correlation coefficient  
   (multiple) R  
correlation coefficient 
    (simple) r  
covariance cov 
degree (angular) ° 
degrees of freedom df 
expected value E 
greater than > 
greater than or equal to ≥ 
harvest per unit effort HPUE 
less than < 
less than or equal to ≤ 
logarithm (natural) ln 
logarithm (base 10) log 
logarithm (specify base) log2, etc. 
minute (angular) ′ 
not significant NS 
null hypothesis HO 
percent % 
probability P 
probability of a type I error  
   (rejection of the null 
    hypothesis when true) α 
probability of a type II error  
   (acceptance of the null  
    hypothesis when false) β 
second (angular) ″ 
standard deviation SD 
standard error SE 
variance  
     population Var 
     sample var 

 

 



 

REGIONAL INFORMATION REPORT NO. 1J24-01 

A SIMULATION STUDY TO ESTIMATE THE UNFISHED BIOMASS OF 
SITKA SOUND PACIFIC HERRING 

by 
Christopher L. Roberts, Sara E. Miller, and Sherri C. Dressel 

Alaska Department of Fish and Game, Division of Commercial Fisheries, Juneau 
 
 
 
 
 
 
 

 

Alaska Department of Fish and Game 
Division of Commercial Fisheries 

1255 W. 8th St., P.O. Box 115526, Juneau, Alaska, 99811-5526 

September 2024 



 

The Regional Information Report Series was established in 1987 and was redefined in 2007 to meet the Division of 
Commercial Fisheries regional need for publishing and archiving information such as area management plans, 
budgetary information, staff comments and opinions to Alaska Board of Fisheries proposals, interim or preliminary 
data and grant agency reports, special meeting or minor workshop results and other regional information not generally 
reported elsewhere. Reports in this series may contain raw data and preliminary results. Reports in this series receive 
varying degrees of regional, biometric, and editorial review; information in this series may be subsequently finalized 
and published in a different department reporting series or in the formal literature. Please contact the author or the 
Division of Commercial Fisheries if in doubt of the level of review or preliminary nature of the data reported. Regional 
Information Reports are available through the Alaska State Library and on the Internet at: 
http://www.adfg.alaska.gov/sf/publications/. 

Product names used in this publication are included for completeness and do not constitute product endorsement. The 
Alaska Department of Fish and Game does not endorse or recommend any specific company or their products. 

Christopher L. Roberts, Sara E. Miller, and Sherri C. Dressel 
Alaska Department of Fish and Game, Division of Commercial Fisheries, 

1255 W. 8th St., P.O. Box 115526, Juneau, Alaska, 99811-5526, USA 
 

 
This document should be cited as follows: 
Roberts, C. L., S. E. Miller, and S. C. Dressel. 2024. A simulation study to estimate the unfished biomass of Sitka 

Sound Pacific herring. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional 
Information Report No. 1J24-01, Juneau. 

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination 
based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department 
administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the 
Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 
1975, and Title IX of the Education Amendments of 1972.  

If you believe you have been discriminated against in any program, activity, or facility please write: 
ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526 

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 
Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240 

The department’s ADA Coordinator can be reached via phone at the following numbers: 
(VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, 

(Juneau TDD) 907-465-3646, or (FAX) 907-465-6078 
For information on alternative formats and questions on this publication, please contact: 

ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2517 

 

http://www.adfg.alaska.gov/sf/publications/


 

 i 

TABLE OF CONTENTS 
Page 

LIST OF TABLES .......................................................................................................................................................... i 
LIST OF FIGURES ....................................................................................................................................................... ii 
LIST OF APPENDICES ............................................................................................................................................... ii 
ABSTRACT .................................................................................................................................................................. 1 
INTRODUCTION ......................................................................................................................................................... 1 
OBJECTIVES ................................................................................................................................................................ 4 
METHODS .................................................................................................................................................................... 4 
Statistical Catch-at-Age (SCAA) Model ....................................................................................................................... 4 
Average Unfished Spawning Biomass Simulations ...................................................................................................... 5 

Data ........................................................................................................................................................................... 5 
Algorithms ................................................................................................................................................................ 6 

Sensitivity Analysis ....................................................................................................................................................... 8 
RESULTS ...................................................................................................................................................................... 9 
Unfished Spawning Biomass Simulations ..................................................................................................................... 9 
Sensitivity Analysis ....................................................................................................................................................... 9 
DISCUSSION ................................................................................................................................................................ 9 
ACKNOWLEDGMENTS ........................................................................................................................................... 13 
REFERENCES CITED ............................................................................................................................................... 13 
TABLES AND FIGURES ........................................................................................................................................... 19 
APPENDIX A.–DESCRIPTION OF THE PACIFIC DECADAL OSCILLATION AND THE SEQUENTIAL T-
TEST ANALYSIS OF REGIME SHIFTS .................................................................................................................. 29 
APPENDIX B.–PSEUDOCODE IMPLEMENTATION OF NUMBERS-AT-AGE MATRIX INITIALIZATION . 35 
APPENDIX C.–PSEUDOCODE IMPLEMENTATION OF SIMULATION ALGORITHM ................................... 37 
APPENDIX D.–RECRUITMENT SIMULATION METHOD COMPARISON ........................................................ 39 

 

LIST OF TABLES 
Table Page 
 1. Inputs to unfished biomass simulations. ........................................................................................................ 20 
 2. Annual outputs from the 2023-forecast statistical catch-at-age model for Sitka Sound herring 1980–

2022, including spawning biomass and the number of age-3 recruits ........................................................... 21 
 3. Selected quantiles for the combined distribution of all unfished spawning biomass simulations of Sitka 

Sound herring. ............................................................................................................................................... 22 
 

  



 

 ii 

LIST OF FIGURES 
Figure Page 
 1. Spawning biomass estimates from the 2023-forecast statistical catch-at-age model for Sitka Sound 

herring 1980–2022 ........................................................................................................................................ 22 
 2. A flowchart representing the algorithm used to estimate the average unfished spawning biomass .............. 23 
 3. Estimates of age-3 recruits for 1980–2022 and the biomass from which they were spawned ...................... 24 
 4. Combined distribution of 30,000,000 iterations of the 1,000 simulations of Sitka Sound herring 

unfished spawning biomass. .......................................................................................................................... 25 
 5. An example of one Sitka Sound herring unfished spawning biomass simulation, an implementation of 

the procedure shown in Figure 2. .................................................................................................................. 26 
 6. Distribution of the single 30,000-year simulation of Sitka Sound herring spawning biomass shown in 

Figure 5 ......................................................................................................................................................... 26 
 7. Combined distribution of 30,000,000 iterations from the 1,000 Sitka Sound herring unfished spawning 

biomass simulations when the large 2016 year-class (2019 recruitment) was omitted ................................. 27 
 

LIST OF APPENDICES 
Appendix Page 
 A1. Description of the pacific decadal oscillation and the sequential t-test analysis of regime shifts. ................ 30 
 B1. Pseudocode implementation of numbers-at-age matrix initialization. .......................................................... 36 
 C1. Pseudocode implementation of simulation algorithm. .................................................................................. 38 
 D1. Recruitment simulation method comparison. ................................................................................................ 40 
 



 

 1 

ABSTRACT 
Allowable harvest levels of Pacific herring in Sitka Sound are prescribed using a threshold management strategy, 
wherein the fishery is closed if the estimated biomass falls below a certain threshold level, and a variable harvest rate 
is used at and above the threshold. The department last calculated a threshold level for Sitka Sound herring (16,759 
short tons) in 1997 based on 25% of the estimated average unfished spawning biomass (𝐵𝐵0; 67,036 short tons) of the 
stock; although in response to subsistence concerns the threshold level in regulation was set at 20,000 short tons (1997) 
and later elevated to the current 25,000 short tons (2010 to present). The analysis contained in this report updates the 
estimate of average unfished spawning biomass of herring in Sitka Sound. In this report, data and parameter estimates 
from the integrated statistical catch-at-age 2023-forecast model are used to simulate the average biomass of the Sitka 
Sound Pacific herring stock under a no-fishing scenario with more rigorous statistical methods and a longer time series 
of data. Simulations were repeated 1,000 times and combined into a single nonparametric distribution of spawning 
biomass. The final estimate of average unfished spawning biomass of Sitka Sound herring based on the median 
simulated value is 85,576 short tons. 

Keywords: Clupea pallasii, Pacific herring, sac roe, Sitka Sound, simulation, threshold level, average unfished 
spawning biomass  

INTRODUCTION 
The Sitka Sound Pacific herring (Clupea pallasii) stock is one of the largest in the North Pacific. 
It is both culturally and economically important and supports subsistence, personal use, and 
commercial fisheries (Thornton 2015; Moss 2016; Hebert 2021). Herring has been a vital 
subsistence food item for Tlingit peoples in Sitka Sound for centuries and still is to this day 
(Thornton 2015). Commercial harvests in Sitka Sound historically included bait, wild spawn-on-
kelp, and sac roe fisheries (Davidson et al. 2013). Currently, the Sitka Sound commercial harvest 
is allocated to the purse seine sac roe fishery, with up to an additional 100 short tons (hereafter, all 
references to tons refer to short tons) provided for the bait pound fishery (5 AAC 27.160 (b) (2)). 
The Alaska Department of Fish and Game (ADF&G or department) manages the Sitka Sound 
herring fishery using a threshold management strategy, which requires the mature biomass forecast 
to exceed a minimum amount before commercial harvest is allowed. Additionally, the 
management of the Sitka Sound commercial sac-roe fishery must consider reasonable opportunity, 
quality, and quantity for the customary and traditional take (or use) of subsistence harvest spawn 
and sac roe (5 AAC 01.716 (b), 5 AAC 27.195 (a)(2), 5 AAC 27.195 (b)). Identifying an 
appropriate minimum mature biomass, or “threshold level”, is key to an effective threshold 
management strategy and may be defined as some fraction of the average unfished biomass of the 
stock. Average unfished spawning biomass (or equilibrium average unfished spawning biomass) 
refers to the long-term average of spawning biomass (𝐵𝐵0) under average environmental conditions, 
and in an unexploited fish population (Zheng et al. 1993). Estimating the average unfished 
spawning biomass of Sitka Sound herring is the objective of this report. 
Methods for estimating and forecasting the herring stock size in Sitka Sound to sustainably manage 
the stock, have improved over time. Prior to 1993, the Sitka Sound herring stock was assessed 
using visual estimates from depth sounders and sonar preceding spawning or during winter (prior 
to 1970), computer-assisted hydroacoustic estimates (1971–1983), and/or spawn deposition dive 
surveys (1976 onwards; ADF&G 1995). Beginning with the 1994 forecast, ADF&G started using 
an age-structured analysis (ASA) model for stock assessment and forecasting purposes (Larson et 
al. 1994; Carlile 1996; Carlile et al. 1999). Along with the spawn deposition survey, the ASA 
model incorporates a time series of commercial fishery age composition and weight-at-age data 
from samples of the purse seine sac-roe harvest of pre-spawning herring, fishery-independent 
spawning age composition data from cast net sampling of spawning herring, and fecundity 
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relationships. The ASA model currently incorporates data from 1976 onwards; hydroacoustic 
estimates are used from years when hydroacoustic surveys became operational (1976–1981; 
Blankenbeckler and Larson (1982, 1987)), and spawn deposition estimates are used from years 
when scuba surveys became operational (1982 on; Hebert 2020). Within a least squares procedure, 
deviations between the observed egg deposition, catch and spawning age compositions, and the 
model-based estimates of these variables are minimized. The model estimates initial abundance in 
1976, initial abundance of recruits, and the key parameters of annual survival, age-specific 
maturity, and age-specific gear selectivity. The model-based estimates of recruits (or recruitment), 
maturation, and survival are applied to the prior year’s spawning biomass to forecast the pre-
fishery (mature) biomass (Hulson et al. 2018). “Recruitment” in this report refers to the abundance 
of mature and immature age-3 herring. 
Mature biomass forecasts produced by the Sitka Sound herring stock assessment are used to set 
guideline harvest levels (GHLs) for the commercial sac roe fishery, which are currently determined 
using a 12-20% sliding scale harvest rate policy in concert with a 25,000-ton threshold level. Under 
this management regime, the commercial fishery is closed if the mature biomass is forecasted to 
be under the threshold level. Otherwise, if the mature biomass is forecasted at the threshold level 
or above, the GHL is set from 12% to 20% of the forecasted mature biomass, depending on the 
forecast size, with a maximum harvest rate of 20% (5 AAC 27.160 (g)). The department’s 
management strategy of herring in Sitka Sound has changed several times since the 1970’s. 
Beginning in 1977, the Sitka Sound herring sac roe fishery became limited entry with a minimum 
6,000-ton biomass threshold below which no commercial sac roe fishery would open (Davidson 
et al. 2013). A 10% harvest rate was established in 1979, and by 1983, the harvest rate policy had 
changed to a sliding scale of 10-20% with increments of 2% for each forecast multiple of a 7,500 
tons threshold level and with a maximum harvest rate of 20% (Davidson et al. 2013). A new 
harvest rate policy and threshold level were then established in 1997 by the Alaska Board of 
Fisheries (BOF): a 20,000-ton threshold level for a minimum 10% harvest rate increasing as a 
continuous linear function of the spawning biomass forecast (instead of 2% increments) to a 
maximum 20% harvest rate at 45,000 tons (Davidson et al. 2013). Finally, beginning in the 2010 
sac-roe fishery season, the threshold level and minimum percent harvest rate at the threshold level 
were increased to the current 25,000 tons and 12%, respectively, but using the same sliding scale 
rule and maximum harvest rate (20%) established in 1997 (Davidson et al. 2011; Dupuis et al. 
2022). 
Threshold management strategies have been used throughout the North Pacific to manage Pacific 
herring stocks. The current maximum harvest rate of Sitka Sound herring is 20% of the forecasted 
mature biomass and a 20% harvest rate has been historically used along with thresholds in herring 
management throughout Alaska (e.g., Prince William Sound area (5 AAC 27.365 (b)), Togiak 
district (5 AAC 27.865 (b) (4); 5 AAC 27.865 (b) (6)), Southeast Alaska (5 AAC 27.190 (4)) and 
for British Columbia stocks (Cleary et al. 2010). This maximum harvest rate was originally based 
on studies in the 1980’s and 1990’s concluding that a 20% harvest rate is sufficiently conservative 
to maintain s herring stocks when paired with a threshold level (Doubleday 1985; Fried and 
Wespestad 1985; Hall et al. 1988; Zheng et al. 1993). Specifically, Hall et al. (1988) and Zheng et 
al. (1993) recommended a 20% harvest rate paired with a threshold level (also referred to as a 
cutoff) equal to 25% of average unfished biomass for stocks in British Columbia and Alaska. More 
recent simulations have suggested that when population productivity is high, a 20% harvest rate 
paired with a threshold level equal to 25% of average unfished biomass is sufficient to avoid stock 
declines to critical levels with greater than 95% probability (Cleary et al. 2010). However, a 20% 
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harvest rate may not be adequate in preventing long-term declines for herring stocks in low 
productivity states (Schweigert et al. 2007) or rebuilding seriously depleted stocks (Cleary et al. 
2010). Indeed, during the mid-2000s 3 of the 5 herring stocks in British Columbia entered states 
of “low production, low biomass” despite having been managed with a 20% maximum harvest 
rate and 25% threshold level for over a decade (Kronlund et al. 2018). Department of Fisheries 
and Oceans (DFO) has been aligning their herring management with the precautionary approach 
(DFO 2006, 2009) and in 2018 first established limit reference points of 30% of estimated average 
unfished biomass for 3 of their herring stocks (Kronlund et al. 2018). “Limit reference point” refers 
to a population biomass level which should be avoided with high probability to prevent serious 
harm to a stock, and DFO manages BC herring stocks with a conservation objective to maintain 
spawning biomass at or above the limit reference point with at least 75% probability for at least 3e 
herring generations (Forrest et al. 2023). For 2024 forecasts, DFO research (Fisheries and Oceans 
Canada Pacific Science Branch) explored numerous harvest rate strategies with their most 
plausible model (density-dependent process model) for British Columbia herring stocks. These 
included strategies with a sliding scale harvest rate from a 30% unfished biomass threshold 
(referred to as lower operational control point) to a 60% unfished biomass inflection point where 
the maximum harvest rate is attained. Sliding scale harvest rates with the following maximum 
harvest rates were identified by DFO research as meeting their conservation objective: 0% for 
Haida Gwaii, up to 20% for Prince Rupert, up to 10% for Central Coast (15% and 20% were not 
explored), up to 15% for Strait of Georgia, and up to 15% for the West Coast of Vancouver Island 
(20% was not explored; DFO 2024a; Jaclyn Cleary, Fisheries Biologist, Fisheries and Oceans 
Canada [DFO], fall 2023, personal communication). The fisheries policy as reported in the 
2023/2024 Integrated Fisheries Management Plan (DFO 2024b) was more conservative. Currently, 
for the 2023–2024 season, the Minister of Fisheries, Oceans, and the Canadian Coast Guard, set 
the harvest rate at a maximum of 4% for the Central Coast management area, 5% for the Prince 
Rupert District management area, and 10% for the Strait of Georgia, while the Haida Gwaii and 
West Coast of Vancouver Island management areas were closed to commercial harvest (DFO 
2024b).  
The department last calculated a proposed threshold level for Sitka Sound herring in 1997 
(16,759 tons) that was based on a 25% average unfished spawning biomass criterion (Carlile 
1998). Thresholds for the Sitka Sound herring fishery prior to 1997 were based on historical 
estimates of abundance, and professional judgement regarding the minimum amount of harvest 
that could be managed and controlled (Carlile 1998). Carlile (1998) implemented a more formal 
analysis. To estimate the average unfished spawning biomass of the stock, Carlile (1998) simulated 
the spawning stock’s biomass trajectory under a no-harvest scenario (the unfished spawning 
biomass) and then calculated the average unfished spawning biomass after 2,500 simulation years 
using parameter estimates from the 1996 ASA (1997 forecast) Sitka herring model in a similar 
approach to Funk and Rowell (1995). Recruitment, the number of immature and mature age-3 fish, 
was sampled with replacement from 3 strata for 2,500 simulation years. The strata were chosen 
based on perceived natural breaks in the number of herring recruits spawned from 10,000 and 
30,000 tons of biomass. After allowing for model stabilization and excluding the first 
500 simulation years, the mean unfished spawning biomass estimate was 67,036 tons which, after 
multiplying by 25%, resulted in a proposed threshold level of 16,759 tons (Carlile 1998). Carlile’s 
(1998) use of this “25% criterion” was based on past work concluding that a threshold level of 
25% of a herring stock’s average unfished spawning biomass (combined with an 20% maximum 
harvest rate) would provide adequate protection from overfishing (Zheng et al. 1993). The 25% 
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criterion had been previously implemented in British Columbia herring stocks (Schweigert 1993) 
and recommended by department staff, but not adopted by the Alaska BOF, for the Togiak herring 
stock (Funk and Rowell 1995).  
The current analysis, which provides an update to the estimate of average unfished spawning 
biomass from Carlile (1998), is being undertaken due to the number of years since the last analysis 
and the increase in mature biomass (indicating increased productivity) since that time. 
Furthermore, the hindcasted estimates for spawning stock size from the current 2023-forecast ASA 
model exceed the average unfished spawning biomass estimate from Carlile (1998) for 14 of the 
26 Sitka Sound herring sac roe seasons since the Alaska BOF decision in 1997 (i.e., from the 1997 
to the 2022 sac-roe fishery season), despite an active fishery in most of those years. While fished 
biomass can exceed an average unfished spawning biomass in one or more years and not indicate 
that the carrying capacity of the ocean has changed, if estimates of annual fished biomass 
persistently exceed average unfished spawning biomass over many years, then an analysis with 
updated data like that provided here is valuable to assess whether the carrying capacity of the ocean 
has changed. Our analysis updates the estimated average unfished spawning biomass of herring in 
Sitka Sound based on parameter estimates from the most recent (2023–forecast) ASA model, more 
rigorous statistical methods, and a longer time series. In the analysis, 1,000 simulations of the 
biomass trajectory of the spawning stock are run under a no-harvest scenario, and the resulting 
median biomass is reported as the equilibrium average unfished spawning biomass (i.e., the 
expected, long-term dynamics of the Sitka Sound herring stock in the absence of fishing; 𝐵𝐵0) of 
the Sitka Sound herring stock. 

OBJECTIVES 
Estimate the average unfished spawning biomass of Sitka Sound herring. 

METHODS 
STATISTICAL CATCH-AT-AGE (SCAA) MODEL 
The statistical catch at age model (SCAA) used for Sitka Sound herring, previously known by the 
more general term of the ASA model, is a standard implementation of an age-structured assessment 
model (Quinn and Deriso 1999, chapter 8), with time-dependent parameterizations, using least 
squares minimization. A detailed description of the general model structure and equations are 
found in Hulson et al. 2018. The observed data that were fit by the 2023-forecast model included 
an egg deposition index, commercial fishery age composition data (from samples of the purse seine 
sac-roe harvest of pre-spawning herring), and fishery-independent spawning age composition data 
(from cast net sampling of spawning herring). Egg estimates used in the model for 1982 to 2022 
were based on a two-stage sampling design (aerial surveys followed by scuba dive surveys) to 
estimate egg deposition as described in Hebert (2020). To extend the egg index back further in 
time, hydroacoustic estimates of herring biomass for 1976 to 1981 (1976–1980 estimates from 
Blankenbeckler and Larson (1982); 1981 estimate from Blankenbeckler and Larson (1987)) were 
converted to eggs assuming 100 million eggs per ton of spawners (Blankenbeckler and Larson 
1987). The egg deposition index was fit by assuming log-normally distributed observation 
uncertainty and an among-dataset weighting of 1.0. The fishery and spawning age compositions 
were fit using the normal distribution with variance (i.e., sum of squares, SSQ) fixed at 1.0 (among-
data set weighting). The objective function also included the model fit to a Ricker spawner-recruit 
function. The Ricker spawner-recruit function was weighted low (0.0001; among-data set 
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weighting) in the objective function so had virtually no influence on the model fit but kept 
estimates of recruitment positive and was used for forecasting the number of recruits in the 
upcoming year. For within-data set weighting, there was equal weighting among years for both 
age composition data sets (each year is set to 1.0). For the egg index, individual years were 
weighted with an inverse of the estimated variance (or approximated inverse-variance). For 1991 
to 2022 (years for which spawn deposition dive survey raw data were available), the variance for 
the egg index was estimated with a bootstrap procedure of the egg deposition observations in each 
year according to the two-stage survey sampling design (Thompson 2002). For 1982–1990 (years 
in which spawn deposition dive surveys were the basis for the egg estimate, but raw data were not 
available), variance (standard deviation squared) is estimated using the egg estimate for each year 
and a linear regression of log-transformed egg estimates and associated standard deviations from 
1991–2022. For 1976 to 1981 (hydroacoustic biomass estimates converted to eggs), a CV of 0.29 
(measurement error estimated from Prince William Sound herring acoustic surveys; Muradian et 
al. 2017) was used to calculate the variance where: 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  (𝑣𝑣𝑒𝑒𝑒𝑒 𝑣𝑣𝑒𝑒𝑒𝑒𝑣𝑣𝑒𝑒𝑣𝑣𝑒𝑒𝑣𝑣 ∗  𝐶𝐶𝐶𝐶)2. 
Parameters (e.g., instantaneous natural mortality, logistic parameters for maturity and selectivity, 
initial abundance of age-4 to 8+, recruitment of age-3 fish, Ricker spawner-recruit parameters; 
Hulson et al. 2018) were estimated within the model to maximize the objective function (i.e., to 
produce a model that best described the data that was collected).  
To ensure the best possible fit to the data, a suite of alternative model structures with different 
time-dependent parameterizations were compared to determine the recommended model for the 
2023-forecast. Time blocks, between which the survival, maturity, and gear selectivity parameters 
were allowed to differ within the Sitka herring forecast models, were based on breakpoints in the 
mean monthly Pacific Decadal Oscillation (PDO) index (Appendix A). Breakpoints were defined 
as the point in time in which positive PDO anomalies switch to negative PDO anomalies, or vice 
versa. The “Sequential t-Test Analysis of Regime Shifts” (STARS) method (Rodionov and 
Overland 2005) was used to identify the breakpoints in the mean PDO index (Appendix A). Based 
on the STARS method, 3 potential time blocks (1976–2007, 2008–2014, and 2015–2022) were 
considered in the 2023-forecast model; years in which model-estimated survival, maturity, and 
gear selectivity were allowed to change corresponded with these time blocks. The selection of the 
recommended model was then based on the Akaike Information Criterion corrected for small 
sample sizes (AICc; Burnham and Anderson 1998), biologically realistic estimation of parameters, 
inspection of residuals, and consistency with prior structures (i.e., similar time blocks of change 
for survival, maturity, and selectivity as prior years’ forecast models). The recommended 2023-
forecast model had 3 survival time blocks (1976–2007, 2008–2014, 2015–2022), one maturity 
time block (1976–2022), and one selectivity time block (1976–2022).  

AVERAGE UNFISHED SPAWNING BIOMASS SIMULATIONS 
Data 
Data used in this simulation-based approach included inputs to, and outputs from, the 2023-
forecast SCAA model for Sitka Sound herring for years 1980–2022. The SCAA model input data 
used in the simulations consisted of annual weight-at-age samples from the Sitka Sound herring 
purse-seine fishery (Table 1). The annual weight-at-ages input to the SCAA model were averaged 
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over 1980–20221. The SCAA model’s outputs, fed into the simulations, included key parameter 
estimates such as recruitment (the number of immature and mature age-3 fish in millions), 
spawning stock biomass (tons; Figure 1), the age-invariant annual survival fraction (proportion) 
averaged across the 3 time blocks (63% survival for 1976–2007, 77% survival for 2008–2014, and 
69% survival for 2015–2022) in the model time series (0.6645), and the time-invariant age-specific 
proportion of mature herring from the estimated logistic maturity function (Tables 1–2).  
The SCAA model data and parameter estimates that were used in the simulation included the years 
1980–2022, although the SCAA model includes years back to 1976. This range (1980–2022) was 
determined based on having enough years for a simulation-type analysis and a year-range that 
comprises a reasonable environmental regime of the Northeast Pacific over which carrying 
capacity can be assumed (post-1976 conditions). Many year-ranges can be, and have been, used to 
describe environmental regimes in the Northeast Pacific. The 1980–2022 year range was chosen 
for this study because there was a notable and widely substantiated climatic (Trenberth 1990; 
Ebbesmeyer et al. 1991; Graham 1994; Miller et al. 1994) and ecological (Beamish 1993; Beamish 
et al. 1997; Francis and Hare 1994; Francis et al. 1998; McGowan et al. 1998) regime shift in the 
winter of 1976/1977 across the Northeast Pacific. Although other potential regime shifts have been 
identified in the Northeast Pacific within the model time series (1976 on) of the Sitka Sound 
herring stock, such as 1988/1989 (Beamish et al. 1999; Watanabe and Nitta 1999; McFarlane et 
al. 2000; Welch et al. 2000; Benson and Trites 2002), 1998/1999 (McFarlane et al. 2000; Bond et 
al. 2003; Chavez et al. 2003; Batten and Welch 2004), and 2007/2008 (Overland et al. 2012; Hatch 
2013), the 1976/1977 regime shift remains the most widely recognized climatological and 
ecological shift. Only the 1976/1977 regime shift has been identified as a “new climate state” 
(Litzow and Mueter 2014) with a “significant transformation in ocean conditions and their 
associated ecosystems” (Wooster and Zhang 2004) in the North Pacific. The first herring eggs laid 
during this new climate state hatched in spring of 1977 and contributed to the age-3 population 
starting in 1980. Therefore, the time series used to perform the average spawning biomass 
simulations was based on herring recruitment from 1980 through 2022.   

Algorithms 
The average unfished spawning biomass (𝐵𝐵0) simulations consisted of two different, but similar, 
algorithms (Figure 2). Firstly, a numbers-at-age matrix is initialized by sampling SCAA-estimated 
recruitment and populating older age classes using the mean annual survival fraction (Appendix 
B). Secondly, the spawning biomass for the numbers-at-age matrix is calculated and used to 
simulate new recruits via stratified sampling, wherein older age classes are again populated, 
spawning biomass calculated, and so on. This procedure iterates until 30,000 years after the 
cumulative mean of spawning biomass converges (Appendix C). To account for stochastic effects 
from the initial conditions of the simulation, these algorithms were performed 1,000 times with 
different initial population sizes. The final estimate for 𝐵𝐵0 was the median simulated biomass 
across all 1,000 simulations. All calculations and analysis were performed in the R programming 
language2 and is reproducible using code available at www.github.com/commfish/sitka-herring-
unfished-biomass. Details of the simulation are as follows. 

 
1  There was no purse seine fishery in 2019 and 2020; the weight-at-age used for 2019 and 2020 was the average weight-at-age from 2017 and 

2018. 
2  R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 

http://www.github.com/commfish/sitka-herring-unfished-biomass
http://www.github.com/commfish/sitka-herring-unfished-biomass
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Initialize numbers-at-age matrix 
The numbers-at-age matrix is initialized during years 1 through 8 of the simulation (𝑒𝑒 ∈
[1,8]). 𝑁𝑁𝑡𝑡,𝑎𝑎 denotes the numbers-at-age matrix of mature and immature fish, where 𝑣𝑣 ∈ [3, 8] is 
age class and 𝑒𝑒 is the year of the simulation (t ranges from 1 through 30,000 years after 
convergence). The plus age-group (i.e., 8+) in the SCAA model and in this simulation included all 
fish age-8 or older. The numbers-at-age matrix is initialized by sampling SCAA-estimated age-3 
recruitment (𝑅𝑅𝑦𝑦, where y indexes years in the SCAA model time series, 1980–2022) with 
replacement. That is, for year 𝑒𝑒 ∈ [1,8] of the simulation 𝑁𝑁𝑡𝑡,3 is sampled from the column of 
recruits in Table 2. All older age classes are calculated using 

 𝑁𝑁𝑡𝑡+1,𝑎𝑎+1 = 𝑆𝑆 ⋅ 𝑁𝑁𝑡𝑡,𝑎𝑎                                                         (1) 

where 𝑆𝑆 is the mean annual survival fraction (Table 1). All age classes in the numbers-at-age 
matrix are populated beginning in year 6 of the simulation since that is the first year in which the 
initial cohort (𝑁𝑁1,3) appears in the plus age-group. For example, in year one, only age-3 appears in 
the numbers-at-age matrix, in year 2 that age-3 cohort becomes age-4, and so forth until the plus 
age-group is populated in year 6. When the numbers-at-age matrix contains all age classes (t = 6, 
7, 8), the spawning biomass for year 𝑒𝑒 is calculated as 

            𝐵𝐵𝑡𝑡 = ∑ 𝜌𝜌𝑎𝑎8+
𝑎𝑎=3 ⋅ 𝑊𝑊𝑎𝑎 ⋅ 𝑁𝑁𝑡𝑡,𝑎𝑎                                                   (2) 

where 𝜌𝜌𝑎𝑎 is the proportion of mature herring at age 𝑣𝑣, and 𝑊𝑊𝑎𝑎 is the weight-at-age (Table 1). Since 
recruitment is defined as the abundance of immature and mature age-3 fish, there is a three-year 
lag between simulated recruitments and the biomass from which they spawned. And, because 
spawning biomass is first calculated in year 6, density-dependent recruitment can first be simulated 
in year 9. Hence, the initialization algorithm iterates for 8 years and the main simulation procedure 
begins in year 9. See Appendix B for pseudocode implementing the initialization algorithm. 

Simulation Procedure 
After the numbers-at-age matrix is initialized, the rest of the simulation is an iterative procedure 
in which new recruits are sampled conditional on their spawning biomass, older age-classes are 
populated in the age-matrix, spawning biomass is projected forward, and convergence is checked. 
Beginning in year 9 of the simulation (t = 9), a stratified sampling approach with 3 sampling blocks 
(i.e., three-strata sampling) is taken to simulate new recruits (pseudocode implementation in 
Appendix C). This 3-strata sampling approach enables the incorporation of spawning stock 
information into the simulation of age-3 herring cohorts without the use of a traditional spawner-
recruit relationship such as a Ricker (Ricker 1954) or Beverton-Holt (Beverton and Holt 1957) 
model (Appendix D). The stratified sampling works by delineating the coordinate pairs of the 
spawner-recruit SCAA parameter estimates into 3 strata, based on the k-means cluster analysis 
(Hartigan and Wong 1979; Figure 3), and then sampling (with replacement) new age-3 herring 
cohorts from the available SCAA age-3 estimates within one of the 3 different strata, conditional 
on spawning biomass (𝐵𝐵𝑡𝑡−3) from 3 years prior (i.e., the size of the spawning stock). For example, 
in 2019 there were an estimated 3,472 million recruits spawned from a biomass of 63,890 tons of 
fish in 2016 (𝐵𝐵𝑦𝑦−3) (Table 2, Figure 3). Hence, (63890, 3472) is one example of an SCAA 
parameter estimate coordinate pair used to delineate sampling strata. When sampling new recruits 
over the course of the simulation, the following rules are applied: 

• if 𝐵𝐵𝑡𝑡−3 < 𝑙𝑙1 sample 𝑁𝑁𝑡𝑡,3 from stratum 1, 
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• if 𝑙𝑙1 ≤ 𝐵𝐵𝑡𝑡−3 < 𝑙𝑙2 sample 𝑁𝑁𝑡𝑡,3 from stratum 2, and 
• if 𝑙𝑙2 ≤ 𝐵𝐵𝑡𝑡−3 sample 𝑁𝑁𝑡𝑡,3 from stratum 3. 

The strata boundaries (𝑙𝑙1 and 𝑙𝑙2) were the mean between the minimum and maximum values of 
𝐵𝐵𝑡𝑡−3 in adjacent clusters; 𝑙𝑙1 = 39,182 tons and 𝑙𝑙2 = 78,706 tons (Figure 3). Due to stochasticity 
in the initialization of the k-means algorithm, the cluster analysis was repeated 100 times prior to 
the unfished spawning biomass simulations. Of the 100 repeated cluster analyses, the most 
frequently chosen clusters were the sampling strata used in the unfished spawning biomass 
simulation. During the repeated cluster analysis, there were always 3 strata. 
After the age-3 recruits are sampled with replacement from the column of recruits in Table 2, 
beginning in year 9 of the simulation, the abundance of older age classes is calculated using 
Equation 1 and total spawning biomass is calculated using Equation 2. The last step in each 
simulation iteration is to check for convergence (Appendix B). Arbitrary convergence criteria are 
applied to provide a consistent rule to determine when to stop the simulations. Convergence is 
defined using a sliding window of root mean squared deviations (RMSD) in the spawning biomass 
cumulative mean series, where “window” refers to a subset of the spawning biomass cumulative 
mean series for which a statistic is calculated (i.e.,  RMSD) and iterated sequentially over the series. 
For a window 𝑣𝑣 of size 𝑣𝑣, the RMSD is calculated as 

          RMSD𝑖𝑖  =  � 1
𝑛𝑛−1

 ∑ �𝐵𝐵𝑖𝑖,𝑡𝑡  −  𝐵𝐵‾𝑖𝑖 �
2𝐼𝐼0+𝑛𝑛

𝑡𝑡=𝐼𝐼0                                             (3) 

where 𝐼𝐼0 is the initial year of window 𝑣𝑣, 𝐵𝐵𝑖𝑖,𝑡𝑡 is the spawning biomass in year 𝑒𝑒 and window 𝑣𝑣, and 
𝐵𝐵‾𝑖𝑖 is the mean spawning biomass in window 𝑣𝑣. After RMSD𝑖𝑖 is calculated, Equation 3 is applied 
again to obtain a RMSD for window 𝑣𝑣 + 1 beginning in year 𝐼𝐼0 + 1, and so forth. As the spawning 
biomass cumulative mean series tends towards convergence, the associated RMSD𝑖𝑖 statistics tend 
towards zero. Convergence in the spawning biomass cumulative mean series is defined as the year 
in which RMSD𝑖𝑖 < 0.05 for 100 consecutive windows The simulation iterates for 30,000 more 
years after the spawning biomass cumulative mean converges. To ensure robustness towards the 
initial conditions of the simulation, the simulation was repeated 1,000 times with varying start 
states, resulting in a combined distribution of 3 × 107 iterations of post-convergence spawning 
biomass from the 1,000 simulations. To address any potential skewness in the distribution of 
spawning biomass estimates, the median was used as the final estimate for 𝐵𝐵0 and the 0.025 and 
0.975 quantiles made up an associated 95% confidence interval. 

SENSITIVITY ANALYSIS 
Since a large recruitment event, like the one in 2019, may or may not occur again in the future, a 
sensitivity analysis was performed to check the robustness of the biomass simulations to infrequent 
(once every 43 years) large recruitments. The 2019 abundance of age-3 recruits in the Sitka Sound 
stock was estimated by the 2023-forecast SCAA to be the largest in the model time series by a 
wide margin. The recruitment in the Sitka Sound stock in 2019 (3,472 million immature and 
mature age-3 fish; Table 2) was estimated to be approximately 3.5 times larger than the next largest 
recruitment (987 million in 2003; Table 2), and almost 18 times larger than the median of the time 
series (196 million; 1980–2022). This sensitivity analysis was performed by repeating the 1,000 
simulations with the same simulation procedure, but with the large 2019 recruitment omitted.  
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RESULTS 
UNFISHED SPAWNING BIOMASS SIMULATIONS 
Based on the simulation procedure in this study, the estimated 𝐵𝐵0 for Sitka Sound herring was 
85,576 tons (Figure 4). An example of one of the 1,000 biomass simulations is shown in Figure 5. 
In this example, the cumulative mean series converged in year 768 of the simulation, after which 
the simulation continued for 30,000 more years (Figure 2). The 30,000 iterations for the one 
simulation created a right-skewed distribution (Figure 6). When results of the 1,000 simulations 
were combined, they formed a single right-skewed distribution of 3 × 107 iterations (Figure 4). 
The median spawning biomass of this distribution was 85,576 tons. Based on the 0.025 and 0.975 
quantiles, the lower and upper bounds of the 95% confidence interval were 47,282 tons and 
288,768 tons (Table 3). That is, 95% of all simulated unfished spawning biomasses for Sitka Sound 
herring were between 47,282 tons and 288,768 tons. Note that the median, 95% confidence 
bounds, and right-skewness of the distribution of simulated biomasses in the overall results (Figure 
4) were all very similar to the example simulation shown in Figure 6, indicating that the initial 
conditions of individual simulations likely had little effect on the results.  

SENSITIVITY ANALYSIS 
To explore the impact of the exceptional 2019 recruitment, this year was omitted from biomass 
simulations and the results were compared to the full simulation. The simulation procedure without 
the 2019 recruits resulted in a median unfished spawning biomass of 81,794 tons (Figure 7). Based 
on the 0.025 and 0.975 quantiles, the lower and upper bounds of a 95% interval were 46,384 tons 
and 146,850 tons, respectively (Figure 7). Although removing the large 2019 recruitment from the 
analysis had little effect on the median point estimate and lower confidence bound (2% and 4% 
lower, than the full simulation), the upper confidence bound was much lower (49%) than the full 
simulation and the overall distribution of simulated biomasses was more symmetric. This indicated 
that the median point estimate for 𝐵𝐵0 was robust to the magnitude of extreme recruitment events, 
but the large uncertainty in 𝐵𝐵0 was partially driven by the 2019 abundance estimate. 

DISCUSSION 
Updating the average unfished spawning biomass estimate of herring in Sitka Sound with more 
current data, more rigorous statistical methods, and a longer time series resulted in a 28%increase 
compared to Carlile’s (1998) estimate. In the prior analysis, the mean estimate for average unfished 
spawning biomass was 67,036 tons and, by applying the 25% criterion, the suggested threshold 
level was 16,759 tons (Carlile 1998). Based on the simulation procedure in our study, the median 
estimate of unfished spawning biomass for Sitka Sound herring was determined to be 85,576 tons 
and, if a 25% criterion is applied, a harvest threshold level of 21,394 tons would result. This higher 
estimate for 𝐵𝐵0 is consistent with the increase in spawning stock biomass since the mid-2000’s, 
according to the 2023-forecast SCAA model. Of note is that Carlile (1998) calculated the average 
unfished spawning biomass (67,036 tons) using the mean because the distribution of the simulated 
biomasses was not skewed; the mean and median would be very similar in a non-skewed 
distribution. Due to the skewed distribution in the updated analysis, the calculated average 
unfished spawning biomass was based on the median point estimate, not the mean point estimate.  

Basing thresholds on a percent of average unfished spawning biomass (𝐵𝐵0) has been shown to 
provide an effective basis for threshold management strategies, but there are numerous approaches 
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to estimating 𝐵𝐵0. For unfished stocks, methods for estimating 𝐵𝐵0 are often derived from a first-
order approximation of current biomass estimates from remote, unfished areas (e.g., coral reef 
habitats or established marine protected areas with limited to no fishing; Heyer and Samhouri 
2017; McClanahan 2018). For fished stocks, 𝐵𝐵0 is sometimes calculated from the estimated 
parameters of stock assessment models. One way to estimate average unfished spawning biomass 
from the estimated parameters of stock assessment models is to find the product of the estimate of 
unfished spawning biomass-per-recruit by the estimated average recruitment when the stock’s 
biomass is relatively high (e.g., Goethel et al. 2021). This method is conditional on the availability 
of fishery independent data during periods of light fishing pressure (Haltuch et al. 2008). 
Alternatively, analytical solutions exist for calculating 𝐵𝐵0 from estimates of MSY and the fishing 
mortality rate (𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀) that would result in MSY (Martell et al. 2008). These calculations are 
contingent on models parameterized such that MSY and 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 are directly estimated as well as 
information about stock productivity. Furthermore, an estimate for the steepness parameter from 
a spawner-recruit relationship is necessary and may be integrated within the stock assessment 
model or estimated outside of it (Haltuch et al. 2009). Unfortunately, in practice, spawner-recruit 
models often suffer from poor fit resulting in their parameters being estimated with low precision 
(Quinn and Deriso 1999, chapter 3). 

A simulation-based approach to estimate 𝐵𝐵0, as done in this report, may be performed in lieu of 
the calculations described above (e.g., Quinn et al. 1990; Zheng et al. 1993; Funk and Rowell 
1995; Carlile 1998). Specifically for Sitka Sound herring, neither method for calculating 𝐵𝐵0 
directly from estimated parameters of stock assessment models (i.e., calculating 𝐵𝐵0 from unfished 
spawning biomass-per-recruit, or from MSY and 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀) is appropriate. Firstly, the Sitka Sound 
herring stock has a long history of fishing pressure, which predates the time series modeled by the 
stock assessment (i.e., 1976). Thus, calculating 𝐵𝐵0 from unfished spawning biomass-per-recruit is 
not feasible. Secondly, calculating 𝐵𝐵0 from MSY and 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 is not possible since the 2023-forecast 
SCAA model is not currently parameterized to estimate those quantities due to the current 
weighted least-squares structure of the model. In addition, although a Ricker spawner-recruit 
relationship is integrated into the model, its parameters are not expected to be estimated with high 
precision and thus weighted low in the objective function. 

Setting a threshold level at 25% of 𝐵𝐵0 has an established history in exploited Pacific herring stocks. 
After the 20% harvest rate was introduced for the 1983 forecasts of British Columbia herring 
stocks (Stocker et al. 1983), an arbitrary threshold level (“cutoff”; 25% of 𝐵𝐵0) was introduced to 
the British Columbia harvest strategy to protect endangered stocks (Hall et al. 1988), and first 
implemented in the 1986 forecasts (Haist et al. 1986; Schweigert and Ware 1986). This 
management decision was later validated by research suggesting a 20% harvest rate coupled with 
a 25% threshold level would sustain all British Columbia herring stocks even during periods of 
low productivity (Hall et al. 1988). Zheng et al. (1993) similarly found that a threshold level set to 
25% of 𝐵𝐵0 (coupled with a 20% harvest rate) would protect Pacific herring stocks in Prince 
William Sound and the Eastern Bering Sea, while balancing population size, average harvest, 
variation in harvest, and the frequency of fishing closures and recognizing multiple users of the 
resource and species interactions. Zheng et al. (1993) estimated that the 20% harvest rate was 
nearly half of that which would occur at maximum sustainable yield (MSY) and did not 
recommend harvesting at MSY or maximum economic yield due to the importance of herring to 
multiple users of Alaska herring resources. Carlile (1998) estimated 𝐵𝐵0 for Sitka Sound herring 
and applied the 25% criterion recommended by Zheng et al. (1993) for management of the Sitka 
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Sound sac roe fishery (16,759 tons). In 1997, the BOF used the results of Carlile (1998) and 
elevated the threshold level to 20,000 tons (~30% of 𝐵𝐵0) to account for subsistence concerns for 
the fishery, and later raised it to 25,000 tons (~37% of 𝐵𝐵0) for the 2010 fishery season and on 
(Hebert 2022).  
Recent studies, though, have recommended a more conservative approach to setting threshold 
levels and harvest rates than Hall et al. (1988) and Zheng et al. (1993), particularly for key prey 
species (e.g., Sainsbury 2008; Pikitch et al. 2012; Froese et al. 2016). Kronlund et al. (2018) and 
Forrest et al. (2023), for example, recommended a limit reference point of 30% of unfished 
spawning biomass for Pacific herring stocks in the British Columbia management areas of Central 
Coast, Haida Gwaii, and the West Coast of Vancouver Island. The production analysis by 
Kronlund et al. (2018) noted that 3 of the 5 major British Columbia Pacific herring stocks (Central 
Coast, Haida Gwaii, West Coast of Vancouver Island) entered states of “low production, low 
biomass” even when managed with threshold management strategies implementing the 25% 
criterion and recommended increasing to a limit reference point of 0.3𝐵𝐵0. Although similar 
analyses were not performed for either the Prince Rupert District or the Strait of Georgia 
management areas, Kronlund et al. (2018) also recommended the limit reference point of 30% of 
unfished spawning biomass for these areas due to common life history traits and recent states of 
persistent “low production, low biomass” of herring stocks in the surrounding geographic vicinity. 
This value (0.3𝐵𝐵0) is consistent with a “best practice” limit reference point recommended to the 
Australian Fisheries Management Authority (Sainsbury 2008), and harvest advice for British 
Columbia herring stocks by DFO research (Fisheries and Oceans Canada Pacific Science Branch) 
is based on management strategy evaluations using the limit reference point of 0.3𝐵𝐵0 (DFO 2024a). 
Taking a broader view, other authors have advocated considering the quality and quantity of 
available information of a fish stock when setting harvest control rules. Pikitch et al. (2012) suggest 
classifying forage fish stocks into “information tiers” and recommend a threshold level of 0.8𝐵𝐵0 
for stocks in the low information tier, 0.4𝐵𝐵0 for stocks in the intermediate information tier, and 
0.3𝐵𝐵0 for stocks in the high information tier. Based on the criteria in the Pikitch et al. (2012) report, 
the Sitka herring stock might fall in the intermediate information tier.  
Average unfished spawning biomass in this analysis is simulated from parameter estimates from 
the 2023-forecast SCAA model; hence, all relevant assumptions of the model (and key data) are 
propagated to the methods of this report. That is, the validity of the reported estimate for 𝐵𝐵0 of 
Sitka Sound herring relies on the ability of the 2023-forecast SCAA model to accurately describe 
the spawning stock biomass over time as well as to estimate maturity and survival parameters. 
Although all fisheries models contain assumptions, error within a fish assessment model (e.g., 
model misspecification, observation error, confounding of parameters, natural variation within the 
environment that is unaccounted for) where common model assumptions are violated, or data is 
biased or imprecise, can result in substantial assessment errors (NRC 1998) and inaccurate 
estimates of population abundance (as spawning stock biomass). Some key model (and data) 
assumptions include: 100 million eggs per ton of spawner to unite data from hydroacoustic 
biomass surveys (1976–1981); spawning herring are 100% vulnerable to fishery-independent cast 
net sampling and these fish represent the proportion of the population by age class in the spawning 
stock; observation error of the egg deposition index is log-normally distributed; age compositions 
are multinomially distributed; harvest in the purse-seine fishery is observed without error; the 
stock-specific fecundity-to-weight relationships over time are representative of the stock; the egg 
loss between spawning and dive surveys (correction factor applied to the dive survey estimate) is 



 

 12 

10% and does not vary annually; assumptions applied in the two-stage sampling design (Hebert 
2022); survival and maturity of herring are affected by changes in the mean PDO index; survival 
is age-invariant; and maturity is time-invariant. As the unfished spawning biomass simulations are 
conditional on these model assumptions, if the assumptions or model formulation change (e.g., a 
Bayesian stock assessment model; Muradian et a. 2017; Trochta and Branch 2021) then the 
estimate for average unfished spawning biomass may also need to be updated in the transition to 
reflect improved understanding of the stock dynamics.   
Our calculation for average unfished spawning biomass was based on simulations of herring stock 
dynamics under average conditions in Sitka Sound since 1980 and, hence, implicitly assumes 
constant carrying capacity over that time. For our estimate of 𝐵𝐵0 to be relevant for stock 
management, the constant carrying capacity assumption must also be valid in the future. This is 
likely a reasonable assumption for the near future; long-term directional trends in the North Pacific 
climate are generally expected to occur on time scales greater than decadal (King and McFarlane 
2006; Hollowed et al. 2013; Litzow et al. 2014). The simulation start year (1980) was chosen (a 
priori to the analysis) as broad changes in oceanic and ecological conditions in the Northeast 
Pacific and a perceived shift in the long-term recruitment pattern occurred after the regime shift in 
winter 1976/77, and 1980 was the first year that an age-3 cohort, which was spawned after the 
regime shift in winter 1976/1977, joined the spawning stock. Simulating unfished spawning 
biomass using the time series based on regime shifts other than the 1976/1977 shift were also 
considered. The 2007/2008 regime shift (Overland et al. 2012; Hatch 2013; Litzow and Mueter 
2014), for example, has been proposed as a significant ecological shift, similar in magnitude to the 
1976/1977 shift. A simulated estimate for 𝐵𝐵0 based on data from 2011 (recruitment year of the 
first post-2007/2008 year-class) to 2022 would likely be higher than the value in this report, since 
herring in those years had the highest survival (77% survival for 2008–2014 and 69% survival for 
2015–2022, compared to 63% for 1976–2007) and the stock experienced its largest spawn events 
as estimated by the 2023-forecast SCAA model. However, using a longer time series (1980 on) 
“averages” across multiple conditions (low biomass and high biomass), which may be more 
applicable for future unknown conditions, as long as directional trends such as climate change are 
not the predominant environmental factor affecting herring. In addition, using a shorter time series 
(2011 on) would not provide enough data to perform the recruitment forecasting comparison 
analysis in Appendix D. Moving forward, the estimate for average unfished spawning biomass 
will be most accurate if future recruitment patterns mirror past estimates due to the recruitment 
sampling techniques used in the unfished spawning biomass simulations. Specifically, the 𝐵𝐵0 
estimate in this report is expected to be closest to true 𝐵𝐵0 if a large recruitment event, similar to 
the 2019 event, occurs approximately once every 43 years. If large recruitment events happen more 
frequently, then the true 𝐵𝐵0 is likely higher than currently estimated. Conversely, if large 
recruitment events happen less frequently, then the true 𝐵𝐵0 may be lower than estimated. Given 
the results shown in the sensitivity analysis, however, the magnitude of influence that the 
frequency of large recruitment events has on the estimate for 𝐵𝐵0 is likely low due to calculating 
average unfished spawning biomass using the median instead of the mean. Indeed, when the 2019 
recruitment was omitted from the analysis the 𝐵𝐵0 estimate only lowered from 85,576 tons to 81,794 
tons (Figure 4, Figure 7). The influence of these large age-3 abundance events, though, is still 
reflected in the variability around the point estimate of 𝐵𝐵0.  

The updated estimate of average unfished spawning biomass of Pacific herring in Sitka Sound 
provides a basis for setting a threshold that includes recent data, a long time series of data, and 
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rigorous methods. These are considered a necessary update and valuable methodological 
improvements to the Sitka Sound herring harvest strategy. Future work should emphasize further 
improving the calculation of biological reference points as well as the effectiveness of the harvest 
rate strategy for Sitka Sound herring. Potential projects that might achieve these goals could 
include utilizing maximum likelihood estimation in the SCAA model’s objective function rather 
than least squares minimization, reformulating the model to directly calculate MSY and 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀, 
incorporating more robust assumptions regarding the error structure of data sources, implementing 
a Bayesian formulation of the model, or implementing a management strategy evaluation within 
the modeling framework.  
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Table 1.–Inputs to unfished biomass simulations. Mean weight (g) is an unweighted average of 1980–
2022 annual mean weight-at-age estimates used as input data to the 2023-forecast statistical catch-at-age 
model and comes from field samples of the spring commercial purse seine catch. Maturity proportion is an 
age-specific model estimate over 1980–2022. Annual survival fraction is a weighted average of the 1980–
2007, 2008–2014 and 2015–2022 time block estimates from the 2023-forecast model (65%, 77%, and 69%, 
respectively), where the weights are proportional to the number of years in each time block. 

Age Mean weight (g) Maturity proportion Annual survival fraction 

3 77.1 0.34 0.66 

4 99.9 0.95 0.66 

5 121.7 1.00 0.66 

6 141.8 1.00 0.66 

7 158.9 1.00 0.66 

8+ 177.5 1.00 0.66 
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Table 2.–Annual outputs from the 2023-forecast statistical catch-at-age (SCAA) model for Sitka Sound 
herring 1980–2022, including spawning biomass (short tons) and the number of age-3 recruits (millions). 
Note that the recruits were spawned from the biomass shown 3 years prior. For example, in year 2019, there 
were an estimated 3,472 million recruits spawned from a biomass of 63,890 short tons in 2016 (bolded 
values). Hence, (63890, 3472) is one example of an SCAA parameter estimate coordinate pair used to 
delineate sampling strata. Also shown is the implemented threshold level (short tons) in each year. 

Year Spawning biomass (short tons) Age-3 recruits (millions; immature and mature) Threshold level (short tons) 
1980 44,902 93 6,000 
1981 42,319 48 6,000 
1982 29,005 59 6,000 
1983 36,045 460 7,500 
1984 44,424 172 7,500 
1985 34,686 42 7,500 
1986 27,327 175 7,500 
1987 45,021 952 7,500 
1988 56,172 109 7,500 
1989 32,459 8 7,500 
1990 23,212 3 7,500 
1991 30,582 774 7,500 
1992 47,371 20 7,500 
1993 25,061 1 7,500 
1994 17,858 63 7,500 
1995 28,421 372 7,500 
1996 31,756 180 7,500 
1997 35,814 335 20,000 
1998 49,225 391 20,000 
1999 49,882 149 20,000 
2000 50,031 315 20,000 
2001 54,729 384 20,000 
2002 58,798 261 20,000 
2003 83,900 987 20,000 
2004 103,989 184 20,000 
2005 85,790 245 20,000 
2006 73,512 296 20,000 
2007 70,554 328 20,000 
2008 85,667 415 20,000 
2009 102,566 297 20,000 
2010 96,429 269 25,000 
2011 88,185 88 25,000 
2012 63,311 49 25,000 
2013 68,355 196 25,000 
2014 54,583 46 25,000 
2015 55,365 760 25,000 
2016 63,890 37 25,000 
2017 48,823 265 25,000 
2018 53,106 256 25,000 
2019 155,440 3,472 25,000 
2020 274,801 110 25,000 
2021 233,137 386 25,000 
2022 176,906 145 25,000 

Note: The recruits were spawned from the biomass shown 3 years prior. For example, in year 2019, there were an estimated 3,472 
million recruits spawned from a biomass of 63,890 short tons in 2016 (bolded values). Hence, (63890, 3472) is one example of 
an SCAA parameter estimate coordinate pair used to delineate sampling strata. Also shown is the implemented threshold level 
(short tons) in each year. 
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Table 3.–Selected quantiles for the combined distribution of all unfished spawning biomass simulations 
of Sitka Sound herring.  

Quantile Unfished spawning 
biomass (short tons) 

0.000 6,177 

0.005 38,549 

0.025 47,282 

0.250 69,542 

0.500 85,576 

0.750 111,738 

0.975 288,768 

0.995 347,701 

1.000 662,980 
 

 

 
Figure 1.–Spawning biomass estimates from the 2023-forecast statistical catch-at-age (SCAA) model 

for Sitka Sound herring 1980–2022 (black solid line). The estimate of average unfished spawning biomass 
from 1998 (Carlile 1998) is shown as a dashed line (67,036 short tons) and the estimate of average unfished 
spawning biomass from this simulation is shown as a dotted line (85,576 short tons). The light grey line 
gives the threshold levels implemented for 1980–2022. 
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Figure 2.–A flowchart representing the algorithm used to estimate the average unfished spawning 

biomass (𝐵𝐵0) of Sitka Sound herring. Shaded nodes represent inputs to the simulation. Rectangular nodes 
show stochastic processes of the simulation, whereas round nodes show deterministic calculations. The 
simulation algorithm was repeated 1,000 times, resulting in a distribution of 3 × 107 iterations of simulated 
spawning biomass. The median spawning biomass from the 1,000 simulations (3 × 107 iterations) with no 
fishing was then determined to be the average unfished spawning biomass. The subscript y represents year 
in the input data time series (i.e., 1980–2022), the subscript t represents simulation year (i.e., from year one 
until 30,000 years after convergence in the cumulative mean series), and the subscript a represents age 
group (i.e., 3–8+). See Appendix C for more details. 
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Figure 3.–Estimates of age-3 recruits (millions) for 1980–2022 and the biomass from which they were 

spawned (short tons) from the 2023-forecast statistical catch-at-age (SCAA) model for Sitka Sound herring; 
labeled coordinate pairs are by year of recruitment. For example, in 2019 (labeled year on strata symbols is 
19) there were an estimated 3,472 million recruits spawned from a biomass of 63,890 short tons of fish in 
2016 (y-3). Hence, (63890, 3472) is one example of an SCAA parameter estimate coordinate pair used to 
delineate sampling strata. The strata were chosen by the k-means algorithm and are delineated by 𝑙𝑙1 and 𝑙𝑙2 
(vertical black lines). For ease of viewing, only some of the stratified coordinate pairs are labeled by year. 
The strata are used to sample new recruits in the Sitka Sound herring unfished spawning biomass 
simulations. 
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Figure 4.–Combined distribution of 30,000,000 iterations of the 1,000 simulations of Sitka Sound 

herring unfished spawning biomass. The light grey interval denotes the middle 95% of spawning biomass 
estimates, and the dark grey interval denotes the middle 50%. The dotted vertical line is the median.
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Figure 5.–An example of one Sitka Sound herring unfished spawning biomass simulation, an 

implementation of the procedure shown in Figure 2. The noisy light grey series shows the spawning biomass 
(short tons) in each simulation year and the dark grey horizontal line shows the spawning biomass 
cumulative mean series. The cumulative mean series converged in year 768 of this simulation (dotted 
vertical line).  The 𝐵𝐵0 estimate for this single simulation was taken to be median biomass from year 769 to 
year 30,768 of the simulation. This resulted in an example estimate of 𝐵𝐵0 of 86,102 short tons. 

 
Figure 6.–Distribution of the single 30,000-year simulation of Sitka Sound herring spawning biomass is 

shown in Figure 5. The light grey interval denotes the middle 95% of spawning biomass estimates, and the 
dark grey interval denotes the middle 50%. The dotted vertical line is the median.
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Figure 7.–Combined distribution of 30,000,000 iterations from the 1,000 Sitka Sound herring unfished 

spawning biomass simulations when the large 2016 year-class (2019 recruitment) was omitted. The light 
grey interval denotes the middle 95% of spawning unfished biomass estimates and the dark grey interval 
denotes the middle 50%. The dotted vertical line is the median. 
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Appendix A1.–Description of the pacific decadal oscillation and the sequential t-test analysis of regime 
shifts. 

Fisheries stock assessments often model life history parameters as varying over time (e.g., Thorson 
2011; Johnson et al. 2014; Jacobsen et al. 2019). Sometimes data, or theory, suggest that model 
parameters shift between discrete time blocks in response to regime shifts in oceanic conditions. 
To model such dynamics, it is helpful to identify time blocks within which oceanic conditions 
relevant to life history parameters are relatively constant but are delineated by temporal changes 
in those conditions. The statistical catch-at-age (SCAA) model for Southeast Alaska herring stocks 
allows for fitting of time varying parameters by utilizing such time blocks, between which the 
survival, maturity, and gear selectivity parameters are allowed to differ. Gear selectivity 
(availability plus fishing selectivity) is only allowed to vary if there are similar time period changes 
in maturity or if there are known and obvious changes in selectivity/fishing. Alternative models 
based on different time blocks used for each life history parameter are evaluated during stock 
assessments on an annual basis, and it is a best practice in fisheries assessments to apply a range 
of diagnostics to select a “best” model (e.g., convergence diagnostics, residual diagnostics, 
retrospective analysis; Punt 2023). The recommended model each year is selected by considering 
Akaike Information Criterion corrected for small sample sizes (AICc; Burnham and Anderson 
1998), biologically realistic estimation of parameters, inspection of residuals, consistency with 
prior structures (i.e., similar time period blocks for survival, maturity, and gear selectivity as prior 
years), and parsimony. The difference in AICc between a given model and the model with the 
lowest AICc value (∆i) was one factor used for choosing a “best” model. For biologically realistic 
models, those with ∆i ≤ 2 have substantial support, those in which 4 ≤ ∆i ≤ 7 have considerably 
less support, and models with ∆i > 10 have essentially no support for being chosen (Burnham and 
Anderson 2004).  
Pacific Decadal Oscillation (PDO) 

Sea-surface temperature anomalies are often leading indicators and important drivers of ecosystem 
fluctuations (Stock et al. 2015) and temperature indices have shown to be important for herring 
population dynamics (Stocker et al. 1985; Zebdi and Collie 1995; Williams and Quinn 2000). 
Temperature has been identified as affecting the recruitment (Stocker et al. 1985; Zebdi and Collie 
1995; Williams and Quinn 2000), growth (Moores and Winters 1982; McGurk 1984; Haist and 
Stocker 1985), survival (McGurk 1984; Gregg et al. 2011), and maturity (Moores and Winters 
1982) of herring species. The mechanism by which temperature affects herring may be direct (e.g., 
changes in metabolism) or indirect, as temperature often does not drive ecosystem changes and 
processes through direct physiological effects, but serves as a proxy for other physical (e.g., mixed 
layer depth, stratification, horizontal transports; Stock et al. 2015) and biological factors (e.g., prey 
quality and availability, predation, spawn timing; Benson and Trites 2002; Tojo et al. 2007; 
Andrews et al. 2016). 
The Pacific Decadal Oscillation (PDO) is a basin-wide oceanographic index of sea surface 
temperatures that has been linked to productivity of lower trophic levels and Pacific salmon 
production in the North Pacific (Mantua et al. 1997; Mantua and Hare 2002). Models incorporating 
the mean PDO index as environmental information, whether through time-blocks or as a covariate, 
have shown to have better model fits to available data compared to the model in which these 
parameters were time-invariant (Hulson et al. 2018). Due to the importance of temperature to the  
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population dynamics of herring, an annual index, based on temperature anomalies (mean monthly 
PDO values; Mantua et al. 1997; Zhang et al. 1997; Newman et al. 2016), is used as an annual 
PDO index to determine time period blocks in the forecast models for Southeast Alaska herring 
stocks. Time period blocks, within which the survival, maturity, and gear selectivity parameters 
were allowed to differ within the Southeast Alaska herring forecast models, were based on the 
defined breakpoints between years with predominantly positive PDO anomalies and years with 
predominantly negative PDO anomalies.  
For Southeast Alaska herring assessments, a “mean PDO index” was constructed to coincide with 
herring growth and herring data collection. Annual herring growth, based on growth rings on the 
scale, slows overwinter and accelerates after spawning when spring and summer feeding occurs. 
The mean PDO index was, therefore, based on the annual average of PDO values from April of 
one year through March of the next year. For example, the ‘mean PDO index’ value for 1990 is 
the average monthly PDO value from April 1989 through March 1990. The natural mortality (or 
maturity or gear selectivity) time-dependent parameter that is estimated for a given year is based 
on the natural mortality experienced by herring during the year from the previous spring spawning 
event, the last time data was collected. 
The current method of determining time period blocks uses the Sequential t-Test Analysis of 
Regime Shifts method. Model-estimated survival, maturity, and gear selectivity parameters were 
allowed to change with perceived shifts in the PDO following 3 consecutive years of mean PDO 
index change from positive to negative values, or from negative to positive values. Because 
consistently defining meaningful shifts in the PDO is not necessarily obvious, the Sequential t-
Test Analysis of Regime Shifts method (STARS; Rodionov 2004; Rodionov and Overland 2005; 
Rodionov 2006) is now used as a way to more objectively determine the breaks in the ‘mean PDO 
index’. 
Sequential t-Test Analysis of Regime Shifts (STARS) method 
The STARS method identifies discontinuity in a time-series and allows for early detection of a 
regime shift and subsequent monitoring of changes in its magnitude over time (Rodionov 2004). 
Detection of discontinuity is accomplished by sequentially testing whether a new mean PDO value 
within a time-series represents a statistically significant deviation from the mean value of the 
current ‘regime.’ As data are added to the time-series, the hypothesis of a new ‘regime’ (i.e., time 
period block) is either confirmed or rejected based on the Student’s t-test (Rodionov and Overland 
2005). The STARS method is well documented in the literature and has been applied previously 
to physical and biological indices (Mueter et al. 2007; Howard et al. 2007; Marty 2008; Conversi 
et al. 2010; Lindegren et al. 2010; Blamey et al. 2012; Menberg et al. 2014; Reid et al. 2016).  
Several parameters within the STARS method need specification prior to application to determine 
the breaks in the mean PDO index; p-value, cutoff length, Huber’s weight parameter, and 
autocorrelation with an associated subsample size. Two parameters, the p-value (the probability 
level for significance between ‘regime’ means) and the cutoff length (the approximate minimum 
number of years within a regime) control the magnitude and scale of the regimes to be detected, 
or how strong a change in the mean PDO index needs to be detected. There is a reduced probability 
of detection for regimes shorter than the cutoff length, but the regimes may still be detected if the 
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shift is of sufficient magnitude (Rodionov 2004). Regime shifts are known to be associated with 
relatively rapid changes in climate, oceanic conditions, or the ecosystem (King 2005) and the most 
important scale of variability for fisheries management has been identified in some literature as 
decadal-scale (King and McFarlane 2006). Climate variability over decadal-scale timeframes, as 
described in climate indices such as the PDO, continues to be an important mode of ocean and 
atmospheric change (Francis et al. 1998; Miller et al. 2004; Wang et al. 2023). Therefore, a cutoff 
value of ten years was specified within the STARS method. For this study, a p-value of 0.10 was 
chosen, which is well within the range of other studies that have applied the STARS method (e.g., 
Mueter et al. 2007; Blamey et al. 2012). Huber’s weight parameter determines the weight assigned 
to outliers and thus the magnitude of the average values of each regime (Huber 1964); the STARS 
method’s default value of one for Huber’s weight parameter was used. Finally, the user determines 
whether to account for autocorrelation and specifies the associated subsample size needed. Two 
frameworks are available within the STARS method to estimate autocorrelation (Rodionov 2004): 
the Marriott-Pope and Kendall (MPK) and the Inverse Proportionality with 4 corrections (IPN4). 
The 2 frameworks break the time series into subsamples, estimate bias corrected first-order 
autocorrelation for each subsample and then use the median value of all estimates. The 2 
frameworks produce very similar results and only in certain instances (small subsample size) does 
the IPN4 method significantly outperform the MPK method (Rodionov 2004). Therefore, 
autocorrelation in the PDO (Newman et al. 2003) was accounted for using the IPN4 method was 
used in this analysis with the suggested subsample size of m = (l+1)/3, where l is the cutoff length. 
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Appendix B1.–Pseudocode implementation of numbers-at-age matrix initialization. 

Initialization algorithm: The following pseudocode implements the first 8 years of the unfished 
spawning biomass simulation. Age-3 herring are simulated by sampling (with replacement) 1980–
2022 recruitments estimated by the 2023-forecast statistical catch-at-age (SCAA) model. Older 
age classes are calculated using an SCAA-estimated annual survival fraction.  All age classes are 
populated by year 6; 2 more years are simulated to allow for the year 6 spawning stock to start 
simulating age-3 recruits in year 9. 

Input: The inputs are mean weight-at-age (𝑊𝑊𝑎𝑎), age-specific maturity (𝜌𝜌𝑎𝑎), annual survival 
fraction (𝑆𝑆), SCAA estimated age-3 recruitment (number of mature and immature fish) for years 
1980–2022 (𝑅𝑅𝑦𝑦). The subscript y represents year in the input data time series (i.e., 1980–2022); 
the subscript t represents simulation year (i.e., from year 1 to 8); and the subscript a represents age 
group (i.e., 3–8+). 

Output: The output is initialized numbers-at-age matrix (𝑁𝑁𝑡𝑡). 

1. Define 𝑁𝑁𝑡𝑡,𝑎𝑎 to be a 8 × 6 matrix 
2. For 𝑒𝑒 ∈ [1,8] 

a) 𝑁𝑁𝑡𝑡,3 is sampled from 𝑅𝑅𝑦𝑦 
b) for 𝑣𝑣 ∈ [4,8] 

• if 𝑁𝑁𝑡𝑡−1,𝑎𝑎−1 exists then 𝑁𝑁𝑡𝑡,𝑎𝑎 = 𝑆𝑆 ⋅ 𝑁𝑁𝑡𝑡−1,𝑎𝑎−1 
• if 𝑁𝑁𝑡𝑡−1,𝑎𝑎−1 does not exist then 𝑁𝑁𝑡𝑡,𝑎𝑎 = 0 

c) if 𝑁𝑁𝑡𝑡,8 exists then compute total spawning biomass as 𝐵𝐵𝑡𝑡 = ∑ 𝜌𝜌𝑎𝑎8+
𝑎𝑎=3 ⋅ 𝑊𝑊𝑎𝑎 ⋅ 𝑁𝑁𝑎𝑎,𝑡𝑡 

3. Return 𝑁𝑁𝑡𝑡,𝑎𝑎 
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Appendix C1.–Pseudocode implementation of simulation algorithm. 
Simulation algorithm: The following pseudocode implements the remainder of the unfished 
spawning biomass simulation starting in year 9. Age-3 herring are simulated by sampling 1980–
2022 recruitments estimated by the 2023-forecast statistical catch-at-age (SCAA) model. Samples 
are drawn (with replacement) from 1 of 3 strata, depending on spawning biomass. Older age 
classes are calculated using an SCAA-estimated annual survival fraction. The simulation ends 
30,000 years after its cumulative mean series converges. 

Input: The inputs are initialized numbers-at-age matrix (𝑁𝑁𝑡𝑡), mean weight-at-age (𝑊𝑊𝑎𝑎), annual 
survival fraction (𝑆𝑆), age-specific maturity (𝜌𝜌𝑎𝑎), and number of recruits in 1980–2022 estimated 
by SCAA model and grouped into 𝑘𝑘 strata (𝑅𝑅𝑦𝑦𝑘𝑘, 𝑦𝑦 ∈ [1980,  2022], 𝑘𝑘 ∈ [1,  3]). The subscript y 
represents year in the input data time series (i.e., 1980–2022), the subscript t represents simulation 
year (i.e., from year 9 until 30,000 years after convergence in the cumulative mean series), and the 
subscript a represents age group (i.e., 3–8+). 

Output: The output is 30,000 simulated years of unfished spawning biomass (𝐵𝐵𝑡𝑡). This excludes 
years before convergence of the cumulative mean series. 

1. Define 𝑒𝑒 = 9 
2. Define strata boundaries 

a) 𝑙𝑙1 = 1
2
�max�𝑅𝑅𝑦𝑦1� + min(𝑅𝑅𝑀𝑀2)� 

b) 𝑙𝑙2 = 1
2
�max�𝑅𝑅𝑦𝑦2� + min(𝑅𝑅𝑀𝑀3)� 

3. Simulate spawning biomass (𝐵𝐵𝑡𝑡) 
a) identify spawning biomass for recruits in year t, 𝐵𝐵𝑡𝑡−3 

• if 𝐵𝐵𝑡𝑡−3 < 𝑙𝑙1 then 𝑁𝑁𝑡𝑡,3 is sampled from 𝑅𝑅𝑦𝑦1 
• if 𝑙𝑙1 ≤ 𝐵𝐵𝑡𝑡−3 < 𝑙𝑙2 then 𝑁𝑁𝑡𝑡,3 is sampled from 𝑅𝑅𝑦𝑦2 
• if 𝑙𝑙2 ≤ 𝐵𝐵𝑡𝑡−3 then 𝑁𝑁𝑡𝑡,3 is sampled from 𝑅𝑅𝑦𝑦3 

b) compute the number of fish in age classes 4–8 in year t 
•  for 𝑣𝑣 ∈ [4,7],𝑁𝑁𝑡𝑡,𝑎𝑎 = 𝑆𝑆 ⋅ 𝑁𝑁𝑡𝑡−1,𝑎𝑎−1 
•  for 𝑣𝑣 = 8, 𝑁𝑁𝑡𝑡,𝑎𝑎 = 𝑆𝑆 ⋅ 𝑁𝑁𝑡𝑡−1,𝑎𝑎−1 + 𝑆𝑆 ⋅ 𝑁𝑁𝑡𝑡−1,𝑎𝑎 

c) compute total spawning biomass for year t; 𝐵𝐵𝑡𝑡 = ∑ 𝜌𝜌𝑎𝑎8+
𝑎𝑎=3 ⋅ 𝑊𝑊𝑎𝑎 ⋅ 𝑁𝑁𝑡𝑡,𝑎𝑎 

d) t = t+1 
e) check convergence of 1

𝑡𝑡−1
∑ 𝐵𝐵𝑡𝑡𝑡𝑡−1
1  

• if convergence false repeat steps 3a through 3e 
• if convergence true define 𝑇𝑇𝑐𝑐 = 𝑒𝑒 and repeat steps 3a through 3d 30,000 

more times  
 

4. Return 𝐵𝐵𝑡𝑡 for 𝑒𝑒 > 𝑇𝑇𝑐𝑐 
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Appendix D1.–Recruitment simulation method comparison. 

BACKGROUND 
Recruitment in fish stocks (defined for Sitka Sound Pacific herring as the abundance of immature 
and mature age-3 fish) is a notoriously variable vital rate that drives population dynamics and 
presents a particular challenge when estimating and forecasting abundance or biomass within stock 
assessments. The practical application of stock assessment and management generally includes the 
mature portion of recruitment forecasts as part of forecasted spawning stock biomass from which 
allowable harvest and fisheries opening and closures are determined. There are many different 
methods used by fisheries researchers to forecast recruitment. Recruitment forecasting methods 
can include classical spawner-recruit models such as Ricker (Ricker 1954; e.g., Sitka Sound 
Pacific herring (Clupea pallasii) statistical catch-at-age (SCAA) model) and Beverton-Holt 
(Beverton and Holt 1957; e.g., British Columbia Pacific herring stocks [DFO 2024a]); 
environmentally-conditioned stock recruit models (e.g., Pacific sardine in the US West Coast 
(Sardinops sagax) prior to 2005 (Hill 2007)); sampling algorithms (e.g., in Atlantic cod (Gadus 
morhua) research (Paz and Larrañeta 1993)); time series methods (e.g., in Atlantic herring (Clupea 
harengus) in the North Sea [Noakes et al. 1987]); and modern machine learning algorithms (e.g., 
walleye (Sander vitreus) in Wisconsin lakes [Hansen et al. 2015]).  
In a recent paper, Van Beveren et al. (2021) suggested a framework for comparing different 
recruitment forecasting methods used in stock assessments. The general idea is to use the 
population dynamics in the early years of an age-structured model to make a series of predictions 
for spawning biomass in the later years of the model, and these predictions differ only in how 
recruitment is forecasted. Then, the different recruitment forecasting methods are compared by 
their ability to accurately predict spawning biomass in the model. This approach was adapted to 
choose a recruitment forecasting method for application in biomass simulations for the Sitka Sound 
Pacific herring stock. In this appendix, nine methods were evaluated by their ability to predict 
spawning biomass of Sitka Sound Pacific herring in the 2023-forecast statistical catch-at-age 
(SCAA) model after accounting for harvest. Recruitment forecasting methods were compared 
using the performance metrics mean percent error (MPE) to evaluate for bias and mean absolute 
percent error (MAPE) to evaluate for precision. The least biased and most precise recruitment 
forecasting method was then applied in the unfished spawning biomass simulation in the main 
report. This analysis was implemented in R programming language (R Core Team 2022) and is 
reproducible using code available at www.github.com/commfish/sitka-herring-unfished-biomass. 

METHODS 
Evaluation of Recruitment Forecasting Methods 
Nine methods were evaluated by their ability to predict spawning biomass of Sitka Sound Pacific 
herring in an operating model using the performance metrics MPE and MAPE. The general idea 
was to use the 2023-forecast SCAA model to represent the true state of the stock (i.e., the 
“operating model”), truncate the final years of the operating model, produce recruitment forecasts 
(defined in this study as the number of immature and mature age-3 fish) using the nine methods 
under evaluation, and then use the forecasts to calculate spawning biomass (Figure 1D). The 
estimates of spawning biomass made by each recruitment forecast method were then compared to  
spawning biomass in the operating model using the performance metrics.  

-continued- 
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This procedure (using recruitment forecasts to predict biomass for truncated years in the operating 
model) was repeated 12 times over varying degrees of truncation (i.e., truncating up to 12 years).3 
That is, spawning biomass estimates were made for the final 𝛿𝛿 years in the operating model, where 
𝛿𝛿 represents the number of years truncated (and consequently projected by each recruitment 
forecasting method) and varied from 𝛿𝛿 =  1 to 𝛿𝛿 = 12. The full operating model, derived from the 
outputs of the 2023-forecast SCAA model, describes herring dynamics for the years 1980–2022. 
If 𝛿𝛿 = 3, for example, then the operating model dynamics for the years 1980–2019 were used to 
forecast recruitment for the years 2020–2022 using each of the nine recruitment forecasting 
methods under evaluation.  
After recruitment forecasts were made, projections for spawning biomass were calculated using 
weight-at-age and catch-at-age data from the Sitka Sound spring commercial purse seine herring 
catch, and survival and maturity from the operating model (Figure D1). As the 2023-forecast 
SCAA model estimates maturity as time-invariant, the same maturation schedule (34% maturity 
for age-3 herring, 95% maturity for age-4, and 100% maturity for age-5 and older) was used to 
calculate spawning biomass in each projection year. Survival, however, was estimated as time-
varying in discrete time blocks. Thus, the annual survival fraction used to compute spawning 
biomass depended on which year was projected (77% survival for 2011–2014 and 69% survival 
for 2015–2022).  
The performance metrics, MPE and MAPE, were used to evaluate the bias and precision, 
respectively, of each of the nine recruitment forecasting methods’ estimates for spawning biomass 
in the operating model. The general form for these metrics is as follows: 

MPE = 100 ⋅ 1
𝑛𝑛
∑ 𝐵𝐵�𝑖𝑖−𝐵𝐵𝑖𝑖

𝐵𝐵𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ,                                                             (1) 

 
and 

           MAPE = 100 ⋅ 1
𝑛𝑛
∑ |𝐵𝐵�𝑖𝑖−𝐵𝐵𝑖𝑖|

𝐵𝐵𝑖𝑖
𝑛𝑛
𝑖𝑖=1  ,                                                        (2) 

where i indexes n estimates for spawning biomass (𝐵𝐵�𝑖𝑖) in the operating model (𝐵𝐵𝑖𝑖). The bias metric, 
MPE, may be positive (indicating overestimation) or negative (indicating underestimation) and 
values close to 0 indicate unbiasedness in estimating spawning biomass in the operating model. 
The precision metric, MAPE, is strictly nonnegative, and values closer to 0 indicate precise 
estimates of spawning biomass and large positive values indicate poor precision. For each 
recruitment forecasting method, the performance metrics were calculated over 𝑣𝑣 =  78 percent 
errors since spawning biomass estimates were produced for each year, for each value of 𝛿𝛿 (i.e., 
one year of spawning biomass is predicted when 𝛿𝛿 = 1, 2 years are predicted when 𝛿𝛿 = 2, and so 
on until 𝛿𝛿 = 12).  
 

 

 
3 When the operating model was truncated 13 years or more, the 3 Ricker-type models (basic Ricker model, environmentally conditioned Ricker 

models) produced combinations of parameters which yielded near-infinite estimates for spawning biomass in certain years. Therefore, only 
results from truncating 12 or less years are shown in this report. 
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With one exception, the nine methods under evaluation can generally be classified as model-based 
or sampling-based. Recruitment forecasting methods were chosen based on their history of use in 
herring stock assessments (e.g., Beverton-Holt model), the hypothesized effect of environmental 
covariates on herring recruitment (e.g., sea surface temperature-conditioned Ricker model), or 
their prior application to unfished spawning biomass simulations (e.g., sampling algorithms). In 
addition, while not a model-based or sampling-based method, the simplex projection technique 
(Sugihara and May 1990) was shown to be skillful in forecasting the future biomass of multiple 
fish stocks in Van Beveren et al. (2021), so it was also considered as a candidate method. 

 
Figure D1.–Graphical representation of the approach used to compare recruitment forecasting methods. 

Two generic recruitment forecasting methods are shown as dotted and dashed lines (i.e., method one and 
method two). Recruitment was forecasted beginning 𝛿𝛿 years before the final year of the operating model. 
Recruitment forecasts, together with the statistical catch-at-age-estimated annual survival fraction (𝑆𝑆𝑦𝑦), 
were used to estimate numbers-at-age (𝑁𝑁𝑦𝑦,𝑎𝑎), from which post-fishery spawning biomass (𝐵𝐵𝑦𝑦) was 
calculated using age-specific maturity (𝜌𝜌𝑦𝑦,𝑎𝑎), mature catch-at-age (𝐶𝐶𝑦𝑦,𝑎𝑎), and time-varying weight-at-age 
(𝑊𝑊𝑦𝑦,𝑎𝑎). Then, new recruits were forecasted again using the post-fishery spawning biomass from 3 years 
prior (𝐵𝐵𝑦𝑦−3). This process was repeated until the final year of the operating model. 

Model-based methods 
Five model-based methods were investigated. An intercept-only model was considered as it makes 
no assumptions on the spawner-recruit relationship, and provided a useful baseline for comparison 
to more complex models: 

log�𝑅𝑅𝑦𝑦� = log(𝑅𝑅‾) + 𝜖𝜖𝑦𝑦;    𝜖𝜖𝑦𝑦 ∼ 𝒩𝒩(𝜇𝜇,𝜎𝜎2),                                             (3) 

where 𝑅𝑅𝑦𝑦 is recruitment in year y, 𝑅𝑅‾  is mean recruitment, and 𝜖𝜖𝑦𝑦 is normally distributed error 
with log-mean 𝜇𝜇 and log-variance 𝜎𝜎2. Due to their ubiquity in stock assessment science (Sharma 
et al.  
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2019), Ricker and Beverton-Holt models were also considered in this analysis. The basic Ricker 
model (Ricker 1954) was fit with the linearized formulation: 

log �𝑅𝑅𝑦𝑦
𝐵𝐵𝑦𝑦
� = 𝑣𝑣 + 𝑏𝑏𝐵𝐵𝑦𝑦 + 𝜖𝜖𝑦𝑦;    𝜖𝜖𝑦𝑦 ∼ 𝒩𝒩(𝜇𝜇,𝜎𝜎2),                                             (4) 

where 𝐵𝐵𝑦𝑦 denotes spawning biomass in year y; a and b are model parameters. The Beverton-Holt 
model (Beverton and Holt 1957) is given as: 

𝑅𝑅𝑦𝑦 = 𝐵𝐵𝑦𝑦
𝛼𝛼+𝛽𝛽𝐵𝐵𝑦𝑦

𝑣𝑣𝜖𝜖𝑦𝑦;    𝜖𝜖𝑦𝑦 ∼ 𝒩𝒩(𝜇𝜇,𝜎𝜎2),                                             (5) 

where 𝛼𝛼 and 𝛽𝛽 are model parameters. The intercept-only model and the basic Ricker model were 
fit with the least squares method and the Beverton-Holt model was fit with maximum likelihood. 
In addition to the intercept-only model, the basic Ricker model, and the Beverton-Holt model, 2 
environmentally conditioned Ricker models were also investigated, each with a single 
environmental covariate. The chosen environmental variables were the oceanographic variable sea 
surface temperature within Sitka Sound, and the basin-wide oceanographic index of sea surface 
temperature variability, the Pacific Decadal Oscillation (PDO; Mantua et al. 1997; Newman et al. 
2016). These 2 environmental covariates were based on data from the months of April and May 
(when larvae hatch in Sitka Sound; Haldorson and Collie 1990), lagged by 3 years (years 1977–
2019). The three-year lag was chosen to correspond to the survival of the larval life stage of Pacific 
herring, ultimately affecting survival to age-3 recruitment. Sea surface temperature (averaged from 
April to May lagged by 3 years) and sea surface temperature variability (represented by the mean 
PDO averaged from April–May lagged by 3 years) were hypothesized to drive larval survival and 
subsequent age-3 recruitment magnitude based on the ‘Match-Mismatch Theory’ (Cushing 1975, 
1990; e.g., Schweigert et al. 2013). These environmental variables were hypothesized to determine 
larval survival both directly (e.g., temperature-dependent larval survival; McGurk 1984; Chimura 
et al. 2009; Peck et al. 2012) and indirectly (e.g., temperature-dependent larval prey availability; 
Keister et al. 2011; Boldt et al. 2019). The ‘Match-Mismatch Theory’ (Cushing 1967, 1975, 1990), 
states that fish larvae survival during the early, first-feeding stage (critical period; Hjort 1914) 
through metamorphosis and just beyond, is enhanced by a match between suitable types of food 
production and larval emergence. Hence, the synchrony of temperature-dependent larval prey 
availability and larval emergence explains variability in fish recruitment. The sea surface 
temperature data used in this study were from the Extended Reconstructed Sea Surface 
Temperature (ERSST; Huang et al. 2017) dataset produced by the NOAA Physical Sciences 
Laboratory (PSL) and available at their website (https://psl.noaa.gov/). The ERSST dataset is 
available in a global 2∘ × 2∘ grid; the center of Sitka Sound is approximately at 57∘ N 135.5∘ W, 
hence the closest available coordinate was 56∘ N 136∘ W. The monthly PDO data were also 
obtained online at https://psl.noaa.gov/gcos_wgsp/Timeseries/PDO (Mantua and Hare 2002). 

Sampling-based methods 
Three different sampling-based methods were used to forecast recruitment. These methods are 
distinct from model fitting since they forecast recruitment by sampling past values instead of fitting 
a model to data. In each case, the sampling procedure (with replacement) was repeated 1,000 times 
and the median value was used for the recruitment forecast. The simplest algorithm, referred to as 
single-stratum sampling method, is based on sampling next year’s recruitment from the varying  
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number of previous years. In contrast, the three-strata sampling method divides the spawner-recruit 
data into 3 strata and samples next year’s recruitment from the stratum corresponding to the value 
of spawning biomass in the current estimate. The strata were chosen using the k-means algorithm. 
Lastly, time-tapered sampling is single-stratum sampling but with the additional assumption that 
values from longer ago are less likely to occur than more recent values. In other words, the 
recruitment sizes of earlier year classes are sampled at a lower rate than more recent year classes. 

Simplex projection method 

The last recruitment forecasting method considered in this analysis was the simplex projection 
method. This method is neither a model-based method nor a sampling-based method; it is a 
deterministic, nonparametric time-series forecasting method that is commonly used to identify 
predictable patterns in chaotic time series (Sugihara and May 1990). The simplex projection 
method works by identifying the current dynamics of the series and all past dynamics of the series 
with the same length (referred to as “embedding dimension”). The past dynamics that most closely 
resemble the current state of the time series are used to provide a projection via a weighted mean. 

RESULTS 
The three-strata and single-stratum sampling methods generally produced fairly accurate estimates 
of spawning biomass across a range of conditions. On average, all recruitment forecasting methods 
were positively biased except for the intercept-only model (Table D1). That is, all methods 
overestimated spawning biomass in the operating model apart from the intercept-only model which 
underestimated spawning biomass. The three-strata sampling method had the lowest overall bias; 
on average, the three-strata sampling method overestimated spawning biomass in the operating 
model by 0.7%. The single-stratum sampling method also performed well (3.1% MPE). In 
contrast, the PDO-conditioned Ricker model had the highest overall bias of 67.7% and the basic 
Ricker model had a similar high bias of 61.3%. The three-strata sampling and single-stratum 
sampling methods were also the most precise according to this analysis, featuring 23.1% and 
26.6% MAPEs, respectively. Similarly, the PDO-conditioned and basic Ricker models again 
performed most poorly in terms of MAPE at 82.2% and 78.7%, respectively.  
Based on both performance metrics, the sampling-based methods outperformed the model-based 
methods. Every sampling-based method had an MPE closer to zero, and a lower MAPE, than every 
model-based method with one exception (i.e., time-tapered sampling method had a similar MPE 
to the Beverton-Holt model and the time-tapered sampling method had a higher MAPE than the 
intercept-only model). Furthermore, model-based methods tended to suffer from outliers with high 
positive percent errors; for example, the PDO-conditioned Ricker model had the greatest percent 
error of 329.5%. The simplex projection method was generally on par with the model-based 
methods, with a 42.5% MPE and a 56.9% MAPE.  
Unsurprisingly, the magnitude of percent errors varied with how far into the future forecasts were 
made (Table D2). Spawning biomass forecasts made one or 2 years into the future were less than 
5% away from the operating model spawning biomass for all recruitment forecasting methods 
other than the intercept-only model and simplex projection method. In contrast, forecasts made 5 
or more years into the future were generally greater than 20% away from the operating model  
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spawning biomass for all recruitment forecasting methods other than three-strata sampling. Note 
that all recruitment methods substantially underestimated the large 2019 recruitment, resulting in 
high underestimation of operating model spawning biomass in every 12-year forecast.  
 
 

Table D1.–Table of summary statistics for percent errors in estimated spawning biomass for each 
recruitment forecasting method. The mean percent error (MPE) and the mean absolute percent error 
(MAPE) are used to indicate bias and precision, respectively, in the recruitment forecasting methods across 
all scenarios (truncating 12 years or less). There were 78 percent errors evaluated per method. 

Method Type Recruitment forecasting method MPE (%) MAPE (%) 
Model-based Intercept-only model -29.1 32.0 
Model-based Beverton-Holt 12.8 36.4 
Model-based Ricker 61.3 78.7 
Mode-based Environmental-based Ricker (SST) 16.5 41.1 
Model-based Environmental-based Ricker (PDO) 67.7 82.2 
Sampling-based Single-stratum sampling 3.1 26.6 
Sampling-based Three-strata sampling 0.7 23.1 
Sampling-based Time-tapered sampling 12.4 32.7 
Simplex Simplex 42.5 56.9 
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Table D2.–Mean percent error (MPE) in estimated spawning biomass for each recruitment forecasting 
method, averaged by the number of years being forecasted. For example, row one contains the percent error 
for the spawning biomass predicted for each method averaged over the following years forecasts.  

Number 
of years 
forecaste
d 

Intercept-
only 

Model 

Beverton-
Holt Ricker Ricker 

(SST) 
Ricker 
(PDO) 

Single-
stratum 

sampling 

Three-
strata 

sampling 

Time-
tapered 

sampling 
Simplex 

1 -7.02 -3.76 -3.35 -3.70 -2.98 -4.04 -2.90 -1.79 -0.28 

2 -14.43 -1.20 0.18 -2.36 1.52 0.37 -0.22 3.51 11.10 

3 -21.63 3.40 5.66 0.15 7.90 3.72 1.80 7.51 25.38 

4 -27.06 11.29 14.17 5.87 16.76 9.78 3.90 13.75 45.04 

5 -30.07 20.70 24.02 13.13 26.82 15.16 7.24 20.83 62.11 

6 -33.12 29.14 33.04 19.17 35.68 19.94 8.19 25.77 72.35 

7 -37.98 37.49 42.03 25.35 44.90 20.60 6.93 25.46 78.81 

8 -42.13 41.63 46.40 26.99 50.48 15.23 3.03 22.22 77.71 

9 -48.41 35.59 40.53 18.80 46.80 7.46 -4.09 15.01 74.16 

10 -50.29 28.66 34.46 14.03 42.73 5.82 -3.46 14.48 78.86 

11 -54.01 4.70 10.28 -2.86 16.75 -7.43 -17.56 -2.10 55.18 

12 -75.39 -48.34 -45.19 -49.49 -43.49 -52.27 -57.72 -49.27 -18.91 
 

CONCLUSION 
Nine recruitment forecasting methods were compared by their ability to predict spawning biomass 
for Sitka Sound herring for use in the unfished biomass simulations. This analysis was conducted 
because the choice of which method was used to forecast recruitment within the Sitka Sound 
herring unfished biomass simulation was an influential methodological decisions to make in 
determining the output (i.e., the unfished biomass). According to this analysis, sampling methods 
(three-strata and single-stratum) were generally more accurate than model-based methods and the 
three-strata sampling method was the least biased and most precise recruitment forecasting method 
considered in terms of its ability to accurately forecast the spawning biomass in truncated years of 
the operating model. Almost all these techniques for forecasting recruitment generally 
overestimated the spawning biomass estimated by the 2023-forecast SCAA to varying degrees. 
However, three-strata sampling was nearly unbiased (made spawning biomass forecasts only 0.7% 
greater than SCAA model spawning biomass on average) over all projections. Therefore, the three-
strata sampling method was applied to simulate new recruits in the simulation-based approach 
used to estimate unfished spawning biomass. 
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